同济大学高等数学第七版1.4--无穷小与无穷大
高等数学同济大学第七版-第一章无穷小比较

(1)
lim x2 ln 1
x
3 x2 ;
解:当 x
ln 1
时,
3 x2
~
3 x2
,所以
lim x2 ln 1
x
3 x2
lim x2
x
3 x2
3
(2)
3 lim
sin x x
3x
x 0 1 cos x
解:
lim
x0
3
sin x x 1 cos x
3x
..
1 sin x x 1
lim 3x
3
x 0 1 cos x
例5
求
lim
x0
tan x sin sin3 2x
x
.
解 当x 0时, tan x ~ x, sin x ~ x.
原式 lim x x x0 (2x)3
0.
错
解 x 0时, sin 2x ~ 2x,
tan x sin x tan x(1 cos x) ~ 1 x3 ,
1 x3
例4 求 lim (x 1)sin x . x0 arcsin x
解 当x 0时, sin x ~ x, arcsin x ~ x.
原式 lim (x 1)x lim( x 1) 1.
x0 x
x0
注意 不能滥用等价无穷小代换.
切记,只可对函数的因子作等价无穷小代换, 对于代数和中各无穷小不能分别代换.
常用等价无穷小: 当x 0时,
x ~ sin x ~ tan x ~ arcsin x ~ arctan x ~ ln(1 x) x ~ e x 1, 1 cos x ~ 1 x2 , (1 x)a 1 ~ ax (a 0)
《高等数学》(同济大学第七版)上册知识点总结

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→x xx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
同济七版NUAA高数课件 第一章 函数与极限 无穷大与无穷小

则称函数 f ( x)当 x x0(或 x )时为无穷大,
记作 lim f ( x) (或 lim f ( x) ).
x x0
x
绝对值无限增大的变量称为无穷大.
特殊情形:正无穷大,负无穷大.
lim f ( x) (或 lim f ( x) )
x x0 ( x)
x x0 ( x)
lim 1 , 函数 1 是当x 0时的无穷大.
例如, n 时, 1 是无穷小, n
但n个 1 之和为1不是无穷小. n
定理3 有界函数与无穷小的乘积是无穷小.
证 设函数u在U 0 ( x0 , )内有界, 则M 0, 1 0,使得当0 x x0 1时 恒有u M.
定理3 有界函数与无穷小的乘积是无穷小.
又设是当x x0时的无穷小,
0, 2
0,使得当0
x
x0
时
2
恒有 . M
取 min{1 ,2 }, 则当 0 x x0 时, 恒有 u u M ,
M 当x x0时, u 为无穷小.
有界函数与无穷小的乘积是无穷小.
推论1 在同一过程中,有极限的变量与无穷小的 乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小.
恒有 f (x)
1,
即
1 f (x)
.
当x
x0时,
f
1 为无穷小. (x)
反之,设 lim f ( x) 0,且 f ( x) 0. x x0
M 0, 0,使得当0 x x0 时
恒有 f (x) 1 , M
由于 f ( x) 0, 从而 1 M . f (x)
当x
x0时,
M.
无界
(2)
取
xn
高等数学(同济大学版) 课程讲解 1.4-1.5 无穷小.

课时授课计划课次序号:一、课题:§1.4 无穷小与无穷大§1.5 极限运算法则二、课型:新授课三、目的要求:1.理解无穷小和无穷大的概念,掌握无穷小、无穷大以及有界量之间的关系;2.掌握极限的运算法则.四、教学重点:无穷小和无穷大的概念,极限的运算法则.教学难点:极限运算法则的应用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–4 4(1);习题1–5 1(1)(5)(7)(14),3(2)八、授课记录:授课日期班次九、授课效果分析:复习1.两种变化趋势下函数极限的定义,左右极限(单侧极限)2.函数极限的性质:唯一性、局部有界性、局部保号性、函数极限与数列极限的关系.对于函数极限来说,有两种情形比较特殊:一种是极限为零,另一种是极限无穷不存在,我们分别称之为无穷小和无穷大.下面我们先介绍无穷小与无穷大,在此基础上,进一步介绍极限的运算法则.第四节无穷小与无穷大一、无穷小定义1 若limα(x)=0,则称α(x)为该极限过程中的一个无穷小.例1当x→2时,y=2x-4是无穷小,因为容易证明(2x-4)=0.当x→∞时,y=也是无穷小,因为=0.定理1(无穷小与函数极限的关系定理lim f(x)=A的充要条件是f(x)=A+(x,其中(x为该极限过程中的无穷小.证为方便起见,仅对x→x0的情形证明,其他极限过程可仿此进行.设f(x=A,记(x=f(x-A,则ε>0,δ>0,当x∈(x0,δ)时,|f(x)-A|<ε,即|(x|<ε.由极限定义可知,(x=0,即(x是x→x0时的无穷小,且f(x)=A+(x.反过来,若当x→x0时,(ξ是无穷小,则ε>0,δ>0,当x∈(x0,δ)时,|(ξ-0|=|(ξ|<ε,即|f(ξ)-A|<ε,由极限定义可知,f(ξ)=A.二、无穷大在lim f(ξ)不存在的各种情形下,有一种较有规律,即当x→x0或x→∞时,|f(ξ)|无限增大的情形.例如,函数f(ξ)=,当x→1时,|f(ξ)|=无限增大,确切地说,M>0(无论它多么大),总δ>0,当x∈(1,δ)时,|f(ξ)|>M,这就是我们要介绍的无穷大.定义2 若M>0(无论它多么大),总δ>0(或X>0),当x∈(x0,δ)(或|ξ|>X)时,|f(ξ)|>M恒成立,则称f(ξ)当x→x0(或x→∞)时是一个无穷大.若用f(ξ)>M代替上述定义中的|f(ξ)|>M,则得到正无穷大的定义;若用f(ξ)<-M代替|f(ξ)|>M,则得到负无穷大的定义.某极限过程中的无穷大、正无穷大、负无穷大分别记作:.注(1)若,则称为曲线的垂直渐近线.(2)称一个函数为无穷大时,必须明确地指出自变量的变化趋势.对于一个函数,一般来说,自变量趋向不同会导致函数值的趋向不同.例如函数y=,当x→时,它是一个无穷大,而当x→时,它则是一个无穷小.(3)由无穷大的定义可知,在某一极限过程中的无穷大必是无界变量,但其逆命题不成立.例如, 当n→∞时,(1+(-1nn是无界变量,但它不是无穷大.例2=+∞,=-∞,=-∞,=+∞, =-∞.三、无穷小与无穷大的关系定理2在某极限过程中,若f(ξ)为无穷大,则为无穷小;反之,若f(ξ)为无穷小,且f(ξ)≠0,则为无穷大.证我们仅对x→x0的情形证明,其他情形仿此可证.设f(ξ)=∞,则ε>0,令M=,则δ>0,当x∈(x0,δ)时,|f(ξ)|>M=,即<ε,故为x→x0时的无穷小.反之,若f(ξ)=0,且f(ξ)≠0,则M>0,令ε=,则δ>0,当x∈(x0,δ)时,|f(ξ)|<ε=,即>M,故为x→x0时的无穷大.第五节极限运算法则一、无穷小运算法则定理1在某一极限过程中,如果(x,(x是无穷小,则(x± (x也是无穷小.证我们只证x→x0的情形,其他情形的证明类似.由于x→x0时,(x,(x均为无穷小,故ε>0,δ1>0,当0<|x-x0|<δ1时,|(x|<,(1)δ2>0,当0<|x-x0|<δ2时,|(x|<,(2)取δ=min(δ1,δ2),则当0<|x-x0|<δ时,(1)、(2)两式同时成立,因此|(x±(x|≤|(x|+|(x|<+=ε.由无穷小的定义可知,x→x0时,(x± (x为无穷小.推论在同一极限过程中的有限个无穷小的代数和仍为无穷小.定理2在某一极限过程中,若(x是无穷小,f(x)是有界变量,则(x f(x)仍是无穷小.证我们只证x→∞时的情形,其他情形证法类似.设f(x)为x→∞时的有界变量,则M>0,当|x|>X1>0时,|f(x)|<M,又因(x=0,则ε>0,对来说,X2>0,当|x|>X2时,|(x|<,取X=m ax{X1,X2},则当|x|>X时,有|(x·f(x)|=|(x|·|f(x)|<·M =ε.这就证明了当x→∞时,(x f(x)是无穷小.例1求.解因为x∈(-∞,+∞),|sin x|≤1,且=0,故由定理2得sin x=0.推论在某一极限过程中,若C为常数,(x和(x是无穷小,则C(x,(x(x)均为无穷小.这是因为C和无穷小均为有界变量,由定理2即可得此推论.此推论可推广到有限个无穷小乘积的情形.定理3在某一极限过程中,如果(x是无穷小,f(x)以A为极限,且A≠0,则(x\f(x)仍为无穷小.证由定理2可知,我们只需证为该极限过程中的有界变量即可.我们仅对x→x0时进行证明,其他情形类似可证.因为f(x)=A,A≠0, 则对ε=,δ>0,当x∈(x0,δ)时,有||f(x)|-|A||≤|f(x)-A|<,从而<|f(x)|<,故<=M, 即为时的有界变量.利用无穷小的性质及无穷小与函数极限的关系,我们可得极限四则运算法则.二、极限的四则运算法则定理4若,则(1 ;(2 ;(3 l= (.证我们仅证(2),(3).因为,所以f(x)=A +(x,g(x)=B +β(x,其中,于是f(x g(x=[A+][B+β(x]=AB+Aβ(x+B+β(x.由定理1及其推论可得, , .故由第四节定理1及本节定理1可知.同理,对于式(3),只需证-是无穷小即可,因为-=-=,由定理1及其推论可知.由刚获证的式(2)可知.所以,其中为无穷小.最后由第四节中的定理1便得lim==(B≠0).推论1 若存在,C为常数,则.这就是说,求极限时,常数因子可提到极限符号外面,因为.推论2 若存在,n∈N,则.例2 求.结论:多项式函数当极限为,而解===-2.例3求,其中m,n∈N.解由于分子分母的极限均为零,这种情形称为“”型,对此情形不能直接运用极限运算法则,通常应设法去掉分母中的“零因子”.===.例4求.解此极限仍属于“”型,可采用二次根式有理化的办法去掉分母中的“零因子”.====.例5求.解分子分母均为无穷大,这种情形称为“”型.对于它,我们也不能直接运用极限运算法则,通常应设法将其变形.==.结论当,例6求解====1例7求解====.例8设f(x=问b取何值时,存在.解由于==2,==b,由第三节定理1可知,要存在,必须=,因此b=2.三、复合函数极限运算法则定理5设函数由复合而成,如果,且在x0的一个去心邻域内,,又=A,则=A.该定理可运用函数极限的定义直接推出,故略去证明.例9求解因为=0,=1,故=1.例10 求.解因为=0,=0,故=0.课堂总结1.无穷小与无穷大的概念以及它们之间的关系;2.极限运算法则:无穷小运算法则、四则运算法则、复合函数极限运算法则.在计算极限时,应注意法则成立的条件,不要错误地运用以上法则.。
高等数学1-4-无穷小与无穷大

说明: 除 0 以外任何很小的常数函数都不是无穷小 !
因为 C 当
显然 C 只能是 0 换句话说,0 是无穷小量。 C 时,
定理 1 . ( 无穷小与函数极限的关系 )
x x0
lim f ( x) A
f ( x ) A , 其中 为
x x0 时的无穷小量 .
证: lim f ( x) A
1.4 无穷小与无穷大
一、无穷小量 定义1 . 若 则称函数 例如 : 函数 函数 为当 函数
(或x ) 时 , 函数
为当
(或x ) 时的无穷小 .
(以零为极限的变量。) 为当 时为无穷小;
时为无穷小;
为当 时为无穷小.
定义1. 若 则称函数 为
(或
x ) 时 , 函数
(或
x ) 时的无穷小 .
当
但
所以
3. 若
时,
不是无穷大 !
则直线
x x0
为曲线
的铅直渐近线 .
三、无穷小与无穷大的关系
定理2. 在自变量的同一变化过程中, 若 若
1 为无穷大, 则 为无穷小 ; f ( x) 1 为无穷大. 为无穷小, 且 f ( x) 0 , 则 f ( x) (自证)
说明: 据此定理 , 关于无穷大的问题都可转化为 无穷小来讨论.
无穷小的性质
定理1
定理2
有限个无穷小量的代数和仍是无穷 小量。
有界变量与无穷小量的乘积仍是无
穷小量。 推论1 常量与无穷小量的乘积是无穷小量。
推论2 有限个无穷小量的乘积仍是无穷小量。
定理3 极限不为零的函数除无穷小量,所得的
商是无穷小量。
x x0
同济高数第七版上册考研数学考纲

做例1~9
数三做
例1~5
P108习题2-4:
1(3),2,3(4)
4(1)(3),5(2),
8(3)数三不用做5,8
由参数方程所确定的
函数的导数
会【重点】(仅数一数二要求)
相关变换率
不作要求
章节
教材内容
考纲要求
必做例题
必做习题
2.5函数的
微分
微分的定义、几何意义
掌握(数一数二)
了解(数三)
例1~6
2(2)(4), 3(2), 4(3),5(1), 7
7.2可分离变量的微分方程
可分离变量的微分方程的
概念及其解法
掌握
例1~4
习题7-2:1(3)(4)(5)(7)
(9), 2(3)(4)
7.3齐次方程
一阶齐次微分方程的形式及其解法
掌握【重点】
例1,2
习题7-3:
1(1)(5), 2(2)
可化为一阶齐次微分方程的
函数极限的性质
掌握(数一数二)
了解(数三)
1.4无穷小与无穷大
无穷小的概念
理解
P37习题1-4:
4,6
无穷大的概念
理解(数一数二)
了解(数三)
1.5极限的预算法则
无穷小的基本性质
理解
例1-8
P45习题1-5:
1(3)(5)(11)(13),
2(1),3,4,5
极限的性质
掌握(数一数二)
了解(数三)
极限的四则运算法则
有理函数的积分
会(仅数一数二要求)
例1~5,
5~8
习题4-4:
4,6,8,12,20,23
可化为有理函数的积分
高等数学第七版教材目录

高等数学第七版教材目录第一章:函数与极限1.1 函数的概念与性质1.2 极限的概念与性质1.3 极限运算法则1.4 无穷小与无穷大1.5 极限存在准则1.6 函数的连续性第二章:导数与微分2.1 导数的概念与性质2.2 导数的计算2.3 高阶导数与导数的应用2.4 微分的概念与性质2.5 微分中值定理2.6 隐函数与参数方程的求导第三章:微分中值定理与导数的应用3.1 罗尔定理与拉格朗日中值定理3.2 函数的单调性与曲线的凸凹性3.3 泰勒公式与函数的近似计算3.4 误差估计与导数的应用3.5 函数的图形与曲线的切线与法线第四章:积分与微分方程4.1 不定积分与定积分4.2 定积分的应用4.3 定积分的计算4.4 定积分中值定理与变限积分4.5 微积分基本定理4.6 微分方程的基本概念第五章:多元函数微分学5.1 二元函数的极限与连续性5.2 偏导数与全微分5.3 多元复合函数的求导法则5.4 隐函数与参数方程的求导5.5 多元函数的极值问题5.6 条件极值与拉格朗日乘数法第六章:重积分6.1 二重积分的概念与性质6.2 二重积分的计算6.3 二重积分的应用6.4 三重积分的概念与性质6.5 三重积分的计算6.6 三重积分的应用第七章:曲线与曲面积分7.1 曲线积分的概念与性质7.2 曲线积分的计算7.3 曲线积分的应用7.4 曲面积分的概念与性质7.5 曲面积分的计算7.6 曲面积分的应用第八章:无穷级数8.1 数项级数的收敛性与敛散性8.2 正项级数的审敛法8.3 一般级数的审敛法8.4 幂级数与幂函数8.5 傅里叶级数的概念与性质8.6 傅里叶级数的计算第九章:常微分方程9.1 微分方程的基本概念9.2 一阶微分方程的解法9.3 高阶微分方程的解法9.4 变量可分离方程与齐次方程9.5 常系数线性微分方程9.6 非齐次线性微分方程的特解第十章:数值计算方法10.1 插值多项式与拉格朗日插值10.2 牛顿插值与分段插值10.3 数值积分与复化公式10.4 数值微分与数值解微分方程10.5 常微分方程的数值解法10.6 线性方程组的数值解法通过以上目录,我们可以清楚地了解到高等数学第七版教材涵盖的知识内容。
1.4无穷小与无穷大

( x )
0
无穷大的概念 定义2 如果在 x x0 (或 x )时, 函数 f ( x ) 的绝对值无限增大, 则称函数 f ( x ) 为当 x x0 (或 x )时的无穷大.
注意 1. 无穷大是变量, 不能与很大的数混淆;
lim 2. 切勿将 x x f ( x ) 认为极限存在;
1 4、 . f ( x)
无穷小的概念
注意: (1)无穷小是变量, 不能与很小的数混淆. (2) 零是可以作为无穷小的唯一常数. (3) 无穷小是相对于 x 的某个变化过程而言的, 例
1 1 如, 当 x 时, x 是无穷小; 当 x 2 时, x 就
不是无穷小.
无穷小的运算性质 性质1 有限个无穷小的代数和仍是无穷小. 注意 无穷多个无穷小的代数和未必是无穷小. 例如, x 时, 1 是无穷小, 但 n 个 1 之和为1, n n 不是无穷小. 性质2 有界函数与无穷小的乘积是无穷小.
0
3. 无穷大是一种特殊的无界变量. 反之不然.
1 1 例如, 当x 0时, y sin x x 是一个无界变量, 但不是无穷大.
y
1 1 sin x x
无穷大举例
1 无限增大, 故 1 是当 x 0 (1) 当 x 0 时, x x 1 . lim 时的无穷大, 即 x 0 x (2) 当 x 0 时, ln x 取负值无限减小, 故 ln x
于无穷小的讨论.
例 2 求 lim
x 1
x 1
4x 1 . 2 x 2x 3
证 因 lim( x 2 2 x 3) 0, 又 lim(4 x 1) 3 0, 故 x 1
x 2 2 x 3 0 0, lim x 1 4x 1 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lim f (x)
x
M 0,X 0,x : x X f (x) M
见教材37页, 题 5
填空:
当 x
2
时,tan x 是无穷大 lim tan x
x
2
1
当 x 0
时,
x
是正无穷大
1 lim x x0
1 lim x x0
无穷小一般用希腊字母 α, β, γ 等表示
无穷小的 ε-δ 定义
(x) 是 x x0 时的无穷小 lim (x) 0
xx0
0, 0
x : 0 x x0 (x)
无穷小的例子
下列函数何时为无穷小?
(x 1)2 (x 1)
lim(x 1)2 0
x1
1 (x ) x
谢谢观看! 2020
M
M 0 1 使得,当
M
0 x 0 时,就有 1 M
x
称 1/x 为 x 0 时的无穷大,记作:lim 1 x0 x
所以 lim f (x) 的刻划需要两个正数: x x0
M 用来表示函数值 f(x) 的绝对值可以任意大:
|f(x) | > M 。
δ 用来表示当自变量 x 与 x0 的距离充分接近时
x 1
x 1
只要 x 1 2
M 1
证 M 0 2 使得,当
M 1
0 x 1 时,就有
所以 lim x 1 x1 x 1
x 1 M
x 1
x 1 lim x1 x 1
x 1 铅直渐近线
水平渐近线 y 1
y x 1 x 1
若 lim f (x) x x0 则 x = x0 为 y = f(x) 的铅直渐近线 x x0 y f (x)
lim f (x) A f (x) A (x) lim(x) 0
证 以极限 lim f (x) A 为例。 xx0
lim f (x) A
xx0
0, 0,
x : 0 x x0 f (x) A
0, 0,
x : 0 x x0 (x)
lim (x) 0
xx0
x : 0 x x0 f (x) M
严格地说,lim f (x) 表明极限 lim f (x)
x x0
x x0
不存在。但为了方便,我们说函数的极限是
无穷大。
注意:
(1) 任何常数(无论其绝对值多么大)都不是无 穷大。
(2) 无穷大必须与自变量的变化过程联系起来, 不能孤立地说一个变量是无穷大。
(2) 0 是唯一的无穷小常数。
(3) 无穷小必须与自变量的变化过程联系起来, 不能孤立地说一个变量是无穷小。
如 (x 1)2 (x 1) 是无穷小 但 (x 1)2 (x 0) 不是无穷小
直观地看,应当有
lim f (x) A lim[ f (x) A] 0
以下定理说明了无穷小的重要性 定理 1 (极限与无穷小的关系)
((x) f (x) A)
xx0
(x) f (x) A 是无穷小
f (x) A (x) α(x) 是无穷小
定理 1 (函数极限与无穷小的关系)
lim f (x) A f (x) A (x) lim(x) 0
此定理表明:在自变量的某个变化过程中,
若 lim f (x) A 则 f (x) A 无穷小 若 f (x) A 无穷小 则 lim f (x) A
两个基本极限: lim 1 lim 1
x x0
x x0
1
1
lim e x e 0 lim ex e
x0
x0
1
lim arctan arctan()
x0
x
1
lim arctan arctan()
x0
x
定理 2 (无穷大与无穷小的关系)
无穷大与无穷小有倒数关系。
直观记忆
lim f (x) lim 1 0
这就是讨论无穷小的意义之一。
二、无穷大 (Infinity)
例 考察当 x 0 时,1/x 的变化趋势。
当 x 0 时,1 x
可以大于任何正数 M
例如 要
1 100 x
只要 x 1 100
要 1 1000 只要 x 1
x
1000
M 0 无论它多么大!
要 1 M 只要 x 1
x
第四节
第一章
无穷小与无穷大
一、 无穷小 二、 无穷大 三 、 无穷小与无穷大的关系
一、无穷小
定义 1 无穷小就是在自变量的某个变化过程中,以 0 为极限的函数(或变量)。
若 lim f (x) 0 xx0 则 f (x) 是 x x0 时的无穷小
若 lim f (x) 0 x 则 f (x) 是 x 时的无穷小
x0
lim f (x) M 0, 0
xx0
x : 0 x x0 f (x) M
问:如何定义 lim f (x) ? x 以上定义如何修改?
lim f (x)
x
M 0,X 0,x : x X f (x) M
M-X 定义
lim f (x)
x
M 0,X 0,x : x X f (x) M
y1 x
填空:
当 x 1 时, 1 是负无穷大
x 1 1
lim x1 x 1
1
当 x 0
1
时,2 x 是正无穷大 1
lim 2x
x0
1
y 2x
1
lim 2x
x0
1
lim 2x 0
x0
1
lim 2 x 不存在
x0
两个基本极限:
1 lim x x0
1 lim x x0
y1 x
f (x)
1 0
lim f (x) 0 lim 1
f (x) f (x) 0
1 0
例如
limln x 0 lim 1
x1
x1 ln x
lim
x0
ln
x
lim x0
1 ln x
0
lim ex 0
x
lim
x
1 ex
y ex
y ln x
内容小结
1. 无穷小与无穷大的定义 2. 无穷小与函数极限的关系 3. 无穷小与无穷大的关系
( |x - x0 |< δ ),就能保证 f(x)的绝对值大于事先 任意给定的 M 。
定义 2
无穷大就是在自变量的某个变化过程中绝对值 无限增:
x x0
M 定义
M 0 0 使得,当 0 x x0
时,就有 f (x) M
lim f (x) M 0, 0
lim 1 0 x x
ex (x )
lim ex 0
x
y ex
1.4 无穷小 与无穷大 5
下列函数何时为无穷小?
1
2x (x 0 )
1
y 2x
x 0 1
x
1
lim 2x 0 x0
注意:
(1) 任何非零常数(无论其绝对值多么小)都不 是无穷小,如 0.01, 0.0000023。
例2 证明: lim x 1 x1 x 1
分析 M 0 要 x 1 M x 1
要 x 1 1 2 M
x 1
x 1
只要 x 1 ?
只要 1 2 2 1 M
x 1 x 1
得 2 M 1 x 1
所以 x 1 2
M 1
证明:lim x 1 x1 x 1
M 0 要 x 1 1 2 M