聚乙醇润滑油与矿物油和合成烃润滑油对比分析
润滑油齿轮油的分类及用途

润滑油齿轮油的分类及用途润滑油是一种用于润滑摩擦表面的液体或半固体材料。
齿轮油是一种特殊用途的润滑油,用于润滑和保护齿轮系统。
根据其化学成分、性质和用途的不同,齿轮油可以分为几个主要分类。
1. 矿物油:矿物油是一种由石油提炼而来的润滑油。
它可以分为不同的粘度等级,如SAE 75W-90、SAE 80W-90和SAE 85W-140等。
这些粘度等级表示了油的黏稠度,不同等级的矿物油适用于不同的操作温度范围。
2. 合成油:合成油是通过化学合成或重整合成的润滑油,其性能优于矿物油。
合成齿轮油具有更高的耐高温能力和更好的氧化稳定性,适用于高温高速运行的齿轮系统。
常见的合成齿轮油包括聚α烯烃、酯类和硅基合成物。
3.生物降解油:生物降解油是一种环境友好型的齿轮油,它可以在自然环境中迅速分解而不对环境造成污染。
生物降解齿轮油通常使用可再生原料制成,如植物油和动物油。
这些油具有良好的润滑和减摩性能,对环境友好。
根据齿轮应用的类型和要求的不同,齿轮油可以分为以下几种用途。
1. 工业齿轮油:工业齿轮油用于工业设备中的齿轮系统,如齿轮箱、轴承和齿轮传动。
它们广泛应用于造纸、化工、钢铁、能源和矿业等工业领域。
2. 汽车齿轮油:汽车齿轮油用于汽车变速器和传动系统。
它们提供变速器齿轮间的润滑和保护,确保汽车变速器顺畅运行。
3. 船舶齿轮油:船舶齿轮油用于船舶齿轮系统,如主机、推进器和转向装置。
这些油具有良好的润滑性能,可以在海洋环境中运行。
4. 风力发电齿轮油:风力发电齿轮油用于风力发电设备中的齿轮箱。
这些油需要具有耐高温、高速和重负荷的特性,以确保风力涡轮机的正常运行。
5. 导轨齿轮油:导轨齿轮油用于火车、地铁和电梯等轨道系统中的齿轮系统。
它们需要具有良好的抗磨、降噪和防锈性能,以确保轨道系统的稳定运行。
总结起来,齿轮油是润滑和保护齿轮系统的重要润滑剂。
根据化学成分、性质和用途的不同,齿轮油可以分为矿物油、合成油和生物降解油。
润滑油主要成分

润滑油主要成分
润滑油主要成分:
一、油基:
1、汽油:也称为抗摩和抗磨润滑油,它是最常用的传统油基润滑油,具有醇性特性,具有较好的抗磨擦性能、抗腐蚀性能,使用寿命较长,适用于湿热度较高的环境。
2、矿物油:它是传统的油基润滑油,主要成分是一定含量的烷烃,具有良好的润
滑性能,耐温性能,但是抗油污能力不强,燃烧特性较差,使用寿命较短,适用于温度较低的环境。
3、合成润滑油:这是一种合成油,它由多种合成基因组成,又称石油开发商直接
为润滑油设计的合成基,具有良好的抗油污、抗粘附、耐高温、耐腐蚀的特性,耐受温度较高的湿热环境。
二、添加剂:
1、抗磨剂:它是提高润滑油抗磨擦性能的首要物质,抗磨剂常用的有金属偏磷、
硅酸铝锆等。
2、抗氧剂:用于抑制润滑油中恶气的挥发,保护润滑油不受氧化破坏,能够延长
其寿命,天然矿油和合成油中往往早有加入抗氧剂,一般也可以单独添加。
3、抗泡剂:用于抑制润滑油中汽排的泡沫,避免影响润滑效果,润滑油中有抗泡
剂的,一般会有“水溶性”的字样,活性抗泡剂有亚铁醚、烷基硅油等。
4、稳定剂:用于抑制润滑油老化,提高其稳定性,也防止沉淀及颗粒形成,稳定
剂有两类:稳定接着剂,有甲苯、敌酚诸氨基酚;稳定化合物,有水解型、极性型、安乃近型。
5、防锈剂:润滑油中也可以加入防锈剂用于抗锈腐蚀,抗氧化,抗水解,对碳铝
之类的金属具有良好的防护效果,具体的防锈剂有润滑腻子、硅酸锌、氧化铝、石油沥青、抗氧剂等。
工业润滑剂成分

工业润滑剂成分
工业润滑剂,顾名思义就是工业生产中常用的润滑剂。
润滑剂是
为了减少机器磨损、降低摩擦而添加到机器零部件表面上的物质。
在
工业领域,润滑剂不仅用于润滑,还承担着清洁、冷却、密封、抗腐
蚀和减振等多种作用。
润滑剂的成分很多,常见的包括矿物油、合成油、聚合物、石膏
和硅酸盐等。
其中,矿物油是目前使用最广泛的基础型润滑剂成分之一。
矿物油质地黏稠,为常温下液态。
它的润滑性能好,且价格相对
较低,因此成为许多企业使用润滑剂的首选。
合成油也是工业润滑剂中常见的成分之一。
区别于矿物油,合成
油是在化学反应中合成的,并不是天然物质。
其优点在于使用寿命长、粘度稳定、抵抗氧化、耐高温等。
因此,在耐高温、耐腐蚀性等方面
的应用范围更广泛。
聚合物是目前新型润滑剂成分之一,常见的有聚四氟乙烯(PTFE)、聚乙烯(PE)和聚丙烯(PP)等。
聚合物润滑剂具有尺寸
稳定、化学稳定等优点,应用于高速轴承、推进器和机械密封件等高
速运转的部件上。
除此之外,石膏和硅酸盐也是工业润滑剂中常见的成分。
石膏润
滑剂具有良好的抗磨损性能和良好的防锈性能,应用于重载部件的润
滑保护;硅酸盐润滑剂则是一种钻井用润滑剂,具有优异的高温抗极
压性能和良好的防腐蚀性能,其应用领域涉及到石油化工和科学研究等领域。
综上所述,选择润滑剂成分时,需要考虑使用场合、使用温度、工作负荷等多种因素。
因此,不同场景下需要采用不同类型的润滑剂成分来达到最佳的润滑效果,才能保证机械设备的长期运转和生产效率的稳定提高。
合成润滑油与矿物油区别

合成润滑油是通过化学合成方法制备成较高分子 的化合物,再经过调配或进一步加工而成的润滑 油。合成分为6类:有机酯、合成烃、聚醚、聚 硅氧烷(硅油)、含氟油、磷酸酯。与矿物型润 滑油相比具有以下性能: 1、具有较好的高温性能;合成润滑油比矿物油 的热安定性要好,热分解温度、闪点和自燃点高 ,热氧化安定性好,允许在较高的温度下使用。 2、具有优良的粘温性能和低温性能 Nhomakorabea
3、大多数合成润滑油比矿物油粘度指数高,粘 度随温度变化小。在高温粘度相同时,大多数 合成油比矿物油的倾点(或凝点)低,低温粘 度小。 4、具有较低的挥发性。合成油一般是一种纯化 合物,其沸点范围较窄,挥发性较低,因此延 长油品的使用寿命。 5、优良的化学稳定性。在国防和化学工业中具 有重要的使用价值。 6、具有抗燃性 7、抗辐射性好。某些合成油具有较好的抗辐射 性 8、与橡胶密封件的适应性
润滑剂分类及应用

润滑剂分类及应用润滑剂是一种用来减少摩擦和磨损的物质,常用于机械设备、汽车、工业设备等。
润滑剂可以分为液体润滑剂、固体润滑剂和气体润滑剂三大类。
下面将详细介绍这三类润滑剂的分类和应用。
一、液体润滑剂1. 矿物油润滑剂:矿物油是一种常用的液体润滑剂,由石油经过精炼处理而得。
矿物油润滑剂具有较高的黏度和抗氧化性能,适用于高温工况和重载工况,如发动机、齿轮箱等。
2. 合成润滑剂:合成润滑剂是通过化学合成得到的,具有较高的温度稳定性和氧化稳定性。
常见的合成润滑剂有聚合酯、聚氨酯、聚烯烃等,适用于高温、高速和特殊工况,如航空发动机、涡轮机械等。
3. 水基润滑剂:水基润滑剂是以水为基础的润滑剂,主要由添加剂和水组成。
水基润滑剂具有对环境友好、易挥发、低毒性等优点,适用于一些对环境要求较高的场合,如食品加工、纺织工业等。
4. 生物润滑剂:生物润滑剂是一种以油酸酯为主要成分的润滑剂,与其他润滑剂相比具有较高的生物降解性能,对环境污染较小。
生物润滑剂适用于一些对环境要求较高的场合,如农业、水产养殖等。
二、固体润滑剂1. 石墨润滑剂:石墨是一种常见的固体润滑剂,具有低摩擦系数和高温稳定性。
石墨润滑剂适用于高温、高速和重载工况,如铁路、航空等领域。
2. 聚合物润滑剂:聚合物润滑剂以聚四氟乙烯(PTFE)为代表,具有很低的摩擦系数和良好的耐磨性能。
聚合物润滑剂适用于高速、高精度和真空工况,如航天、电子工业等。
3. 金属润滑剂:金属润滑剂是一种以金属为基础的固体润滑剂,常见的有铝、铜、锌等金属粉末。
金属润滑剂具有高温稳定性和耐压性能,适用于高温、高速和重载工况,如铁路、汽车等。
三、气体润滑剂1. 空气润滑剂:空气作为一种常见的气体润滑剂,在低速、低摩擦工况下具有较好的润滑性能。
空气润滑剂适用于一些对污染要求较高的场合,如医药、食品工业等。
2. 氮气润滑剂:氮气是一种广泛应用于高速、高温工况的气体润滑剂,常用于涡轮机械、气体轴承等。
合成油与矿物油的定义

合成油与矿物油的定义合成油和矿物油是两种不同类型的润滑油,它们在化学成分、生产工艺和性能特点上存在一些显著的差异。
本文将对合成油和矿物油进行定义和比较,并介绍它们的应用领域和优缺点。
一、合成油的定义合成油是通过化学合成方法或改性工艺制得的一种润滑油。
它是由合成基础油和添加剂组成的,可以根据需求调整基础油的物理性质和化学性质。
合成油可以通过合成酯、聚α烯烃、醚化物和聚氨酯等多种化学反应得到。
合成油具有高温稳定性好、氧化安定性高、粘度温度特性好等特点。
合成油的应用领域非常广泛。
在汽车工业中,合成油常用于高性能发动机的润滑,如赛车、高端豪华车等。
在航空航天领域,合成油被广泛用于航空发动机的润滑和冷却。
此外,合成油还被广泛应用于工业设备、机械制造、船舶、电力等领域。
合成油的优点是具有较低的摩擦系数和磨损,能够延长设备的使用寿命。
它在高温和极寒环境下都能保持较好的润滑性能,并且对机械设备的密封件和橡胶件的腐蚀性较小。
但是,合成油的缺点是制造成本较高,并且在使用过程中可能会与传统的矿物油发生不相容性反应。
二、矿物油的定义矿物油是通过从地下矿藏中提取和精炼石油得到的一种润滑油。
它主要由碳氢化合物组成,含有多种不同的碳链长度和化学键。
矿物油具有较好的润滑性能和热稳定性,但在氧化安定性和抗高温性能方面相对较弱。
矿物油广泛应用于各个领域。
在汽车工业中,矿物油是最常见的润滑油,被广泛用于普通轿车、货车和摩托车等。
在机械制造和工业设备领域,矿物油也是常用的润滑剂。
此外,矿物油还用于冶金、化工、纺织等工业领域。
矿物油的优点是价格相对较低,生产工艺成熟,供应充足。
它在低温环境下有较好的流动性能,并且对多种材料相容性较好。
但是,由于矿物油的分子结构不规则,其氧化安定性较差,容易在高温和长时间使用下产生沉积物和氧化产物。
三、合成油与矿物油的比较合成油和矿物油在化学成分、生产工艺和性能特点上存在一些差异。
首先,合成油是通过化学合成或改性工艺制得的,而矿物油是从石油中提取和精炼得到的。
润滑油基础知识培训实用篇

HS 高粘度指数、低倾点、合 严寒区 成油型
24
(2) 抗燃液压油
名称
特点
HFAE
水包油型乳化液含水80%以上
ห้องสมุดไป่ตู้
HFAS
高水基含水95%
HFB
油包水型乳化液
HFC
水-乙二醇型
HFDR
磷酸酯型
25
液压油产品名称的含义
• ISO –L-HM46
– ISO:国际标准 – L:润滑剂和有关产品 – H:液压油(液)组 – M:质量等级(抗磨液压油) – 46:粘度等级
润滑基础
无润滑剂 表面直接接触
有润滑剂 表面分离
润滑的基本原理是润滑剂能够牢固地附在机件摩擦副上, 形成一层油膜,这种油膜和机件的摩擦面接合力很强, 两个摩擦面被润滑剂分开,使机件间的摩擦变为润滑剂 本身分子间的摩擦,从而起到减少摩擦降低磨损的作用。
4
润滑基础
润滑剂概念:
所有使两相对运动表面之间摩擦力减小的物质
分级 低粘度指数 中粘度指数 高粘度指数 更高粘度指数
粘度指数范围 <35
35~80 80~110
>110
• 润滑油的主要 指标
d.凝点和倾点 凝点:凝点是指润滑油在规定的冷却条件下停止的最高温度; 倾点:倾点是指润滑油在规定的条件下冷却到仍能继续流动的最低 温度。 e.闪点:闪点是指在规定的条件下,将润滑油加热,蒸发出的油蒸 汽与空气混合,打到一定浓度与火焰接触时产生短暂闪火时的最低 温度。 f.酸值:酸值是指中和1g润滑油中所含的有机酸所需氧化钾的质量 ,单位mgKoH/g。酸值对新油和旧油油不同的含义。对于新油,酸值 表示油品精制深度,对于110油,酸值则表示使用过程中润滑油氧化 变质的程度。酸值过大,表示氧化变质严重。 g.水分:水分是指润滑油中含水量质量百分数。由于水分的存在, 当温度降到0℃以下时会使粘温特性变差,当温度升高时,水会汽化 ,产生气泡破坏油膜,使油品乳化,导致粘度降低,润滑效果变差 等。 h.机械杂质:所有悬浮和沉淀于润滑油中的固体杂质统称机械杂质 ,机械杂质的存在会破坏润滑油膜,加速摩擦副的磨损。 k.残炭:残炭是指润滑油在通入空气的情况下加热,进行汽化和分 解,最后生成焦炭状的残留物,以占油量的百分比表示。
聚乙醇润滑油与矿物油和合成烃润滑油对比分析

聚乙二醇润滑油与矿物油和合成烃润滑油对比分析三种润滑油的基础油的特性由于基础油是润滑油的基础,添加剂只是改善润滑油的性能。
因此,基础油的特性对润滑油的性能有很关键的影响。
1. 矿物油具有如下特性:1) 可以有各种粘度;2) 良好的润滑性能;3) 高于80℃(最高100 ℃)时就无法使用;4) 差的粘温特性;5) 非常差的生物可降解性。
2. 合成烃具有如下特性:1) 良好的抗氧化性能;2) 较好的粘温特性;3) 直到140℃一直保持很低的蒸发率(同时也有很低的粘度);4) 良好的低温特性(可以在约 -40/-50 ℃的温度下使用);5) 差的可生物降解性能;6) 低粘度会影响密封(收缩);7) 抗磨性能一般。
3. 聚乙二醇具有如下特性:1) 良好的抗氧化性能;2) 很好的粘温特性;3) 工作温度可达 160 °C;4) 优秀的承载能力;5) 很好的抗磨性能,尤其当主要是滑动摩擦的情况下。
三种润滑油的特性可以归纳为表1:表1 三种润滑油的性能对比++ = 很好0 = 一般+ = 好--- = 差(*) = 检查兼容性可见,矿物油、合成烃和聚乙二醇三种润滑油中,聚乙二醇润滑油的基础油特性最好。
这为聚乙二醇润滑油在蜗轮蜗杆传动中优异的润滑效果提供了基础。
油膜厚度弹流润滑理论是当今主要研究润滑状况的理论基础,它是Reynolds 的流体润滑理论与Hertz 的弹性接触理论相藕合来处理点线接触摩擦副的润滑问题从而建立起来的,称为弹性流体动压润滑理论,简称弹流润滑理论。
从1949 年Dowson 等人提出完备数值解开始, 经过30 多年的研究, 理想模型的弹流润滑理论已基本成熟, 并应用于工程设计。
70 年代中期以后, 向着建立工程模型弹流润滑理论的方向发展。
弹流润滑理论的建立是润滑理论发展的一次重大突破。
它不仅将润滑计算扩展到为数众多的高副机构的设计, 而且更为重要的是它的建立改变了润滑理论中许多常规的假设, 为建立润滑油膜失效准则以及表面粗糙峰磨损的模化和量化研究开创了前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚乙二醇润滑油与矿物油和合成烃润滑油对比分析三种润滑油的基础油的特性由于基础油是润滑油的基础,添加剂只是改善润滑油的性能。
因此,基础油的特性对润滑油的性能有很关键的影响。
1. 矿物油具有如下特性:1) 可以有各种粘度;2) 良好的润滑性能;3) 高于80℃(最高100 ℃)时就无法使用;4) 差的粘温特性;5) 非常差的生物可降解性。
2. 合成烃具有如下特性:1) 良好的抗氧化性能;2) 较好的粘温特性;3) 直到140℃一直保持很低的蒸发率(同时也有很低的粘度);4) 良好的低温特性(可以在约 -40/-50 ℃的温度下使用);5) 差的可生物降解性能;6) 低粘度会影响密封(收缩);7) 抗磨性能一般。
3. 聚乙二醇具有如下特性:1) 良好的抗氧化性能;2) 很好的粘温特性;3) 工作温度可达 160 °C;4) 优秀的承载能力;5) 很好的抗磨性能,尤其当主要是滑动摩擦的情况下。
三种润滑油的特性可以归纳为表1:表1 三种润滑油的性能对比++ = 很好0 = 一般+ = 好--- = 差(*) = 检查兼容性可见,矿物油、合成烃和聚乙二醇三种润滑油中,聚乙二醇润滑油的基础油特性最好。
这为聚乙二醇润滑油在蜗轮蜗杆传动中优异的润滑效果提供了基础。
油膜厚度弹流润滑理论是当今主要研究润滑状况的理论基础,它是Reynolds 的流体润滑理论与Hertz 的弹性接触理论相藕合来处理点线接触摩擦副的润滑问题从而建立起来的,称为弹性流体动压润滑理论,简称弹流润滑理论。
从1949 年Dowson 等人提出完备数值解开始, 经过30 多年的研究, 理想模型的弹流润滑理论已基本成熟, 并应用于工程设计。
70 年代中期以后, 向着建立工程模型弹流润滑理论的方向发展。
弹流润滑理论的建立是润滑理论发展的一次重大突破。
它不仅将润滑计算扩展到为数众多的高副机构的设计, 而且更为重要的是它的建立改变了润滑理论中许多常规的假设, 为建立润滑油膜失效准则以及表面粗糙峰磨损的模化和量化研究开创了前景。
研究表明,点线接触的机械零件在一定运转条件下可以实现弹流油膜润滑。
同时,这类零件的表面损伤与润滑状况有着密切的关系。
油膜形状和厚度、油膜中的压力分布、温度场以及摩擦力等都直接影响到表面胶合、擦伤和接触疲劳失效。
因此,在衡量润滑油的所有指标中,油膜厚度有着举足轻重的作用,下面本文就利用弹流润滑理论,研究矿物油、合成烃和聚乙二醇三种润滑油在蜗轮蜗杆传动中的油膜厚度。
表面张力表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
通常,由于环境不同,处于界面的分子与处于相本体内的分子所受力是不同的。
在水内部的一个水分子受到周围水分子的作用力的合力为零,但在表面的一个水分子却不如此。
因上层空间气相分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,结果导致液体表面具有自动缩小的趋势,这种收缩力称为表面张力。
表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。
如果液面是曲面,表面张力就在这个曲面的切面上。
表面张力是物质的特性,其大小与温度和界面两相物质的性质有关[26][27]。
作为基础油的矿物油、合成烃和聚乙二醇也存在表面张力,其中矿物油的表面张力最小,而聚乙二醇的表面张力最大,其在金属表面的表现如图1 所示:聚乙二醇油矿物油图1 不同润滑油的表面张力Fig.1 Liquid Surface Tension of different lubrications润滑油的油膜厚度和表面张力有一定的关系,表面张力越大,在没有外力住用的相同条件下,油膜厚度越大。
因此,从表面张力方面来讲,聚乙二醇润滑油比矿物油和合成烃有更好的油膜厚度,从而有更好的润滑效果。
粘度在润滑理论的分析中,润滑油最重要的物理性质是它的粘度。
在一定的工况条件下,润滑油 的粘度是决定润滑油膜厚度的主要因素。
例如,对于流体动压润滑,润滑油膜厚度与粘度成正比; 而在弹性流体动压润滑下,润滑油膜厚度与粘度的 0.7 次方成正比。
粘度分为动力粘度和运动粘 度,一般情况下,对于润滑油我们只讨论其运动粘度,以下如不特别指出,所说的粘度均为运动 粘度。
润滑油的粘度随温度、压力等工况参数的变化更为显著。
在以液体作润滑油的流体动压润滑 中,主要的问题是粘度性质及其与温度的关系。
气体润滑是润滑剂的可压缩性即密度随压力的变 化将具有重要的作用。
而对于弹性流体动压润滑状态,温度和压力对粘度的影响都不可忽视[28]。
1. 粘温指数粘度指数 VI 是用来衡量粘温关系,它是基于 Dean 和 Davis 建立的经验方法之上的。
粘度 指数越高,表示流体粘度受温度的影响越小,粘度对温度越不敏感[29]。
不同类型润滑油的粘温曲线和粘度指数如图 2 和表 2 所示:log νT °C图 2 三种润滑油的粘温曲线Fig.2 The V-T curve of three kinds of lubrications表2 各种润滑油的粘温指数从图2 可以发现,矿物油、合成烃和聚乙二醇三种润滑油,聚乙二醇的粘度指数最高,粘温特性最好。
2. 粘压系数当液体或气体所受的压力增加时,分子之间的距离减小而分子间的引力增大,因而粘度增加。
通常,当润滑油所受压力超过0.02GPa 时,粘度随压力的变化就十分显著。
随着压力的增加,粘度的变化率也增加,当压力增到几个GPa 时,粘度升高几个量级。
由此可知:对于重载荷流体动压润滑,特别是弹性流体动压润滑状态,粘压特性是非常重要的[30]。
一般使用粘压系数a 体现粘度和压力的关系。
矿物油、合成烃和聚乙二醇三种润滑油的粘压系数近似相同。
最小平均油膜厚度蜗轮蜗杆传动属于高副接触(指点、线接触),其润滑状态属于弹性流体动力润滑(EHL)。
目前,根据Dowson 和Higginson 公式,理论上可以计算两个齿面某一接触点周围的局部最小油膜厚度h min[31] 。
但是由于蜗轮蜗杆传动啮合方式的空间复杂性,它每一瞬间的接触线、载荷分布和当量曲率半径均不相同,h min 的计算难度很大,因此,只能借助计算机进行数值计算和简化处理。
DIN3996 标准[32]中采用了最小平均油膜厚度h 的概念,它是以h 的局部值为基础,表示蜗min m min轮蜗杆副整个啮合区内最小油膜厚度的平均值。
最小平均油膜厚度h min m 的计算公式如下:hmin m = 21⨯ h ⨯c0.6 ⨯η 0.7 ⨯ n0.7 ⨯ a1.39 ⨯ E0.3T 0.13(2.1)式(2.1)中,h 为平均油膜厚度参数,它是个无量纲的参数,并且只取决于轮齿的几何形态,与弹性模量、材料和中心距无关。
平均油膜厚度参数的表达式为:h = 0.018 +q + 1 + x - μ + b(2.2)7.86 ⨯(q + Z ) Z 110 36300 370.4 ⨯ m式(2.2)中另一个参数,即润滑油在环境压力 p 0 、本体温度θM 的动力粘度,可以由下式计算:η = v m ⨯ ρ(2.3)在(2.3)式中,润滑油在本体温度θM 下的运动粘度 v m 由粘度-温度之间的关系式确定。
而本体温 度θM 的计算式见(2.4)~(2.11)。
θM = θs + ∆θ(2.4)蜗杆副的散热面积:∆θ =1⨯ P α ⨯ A(2.5)A = b ⨯ d 2 ⨯10(2.6)散热系数:α = 0.8(1940 +15n )(2.7)啮合功率损失:P =0.1⨯T ⨯ n ( 1 μ ηz-1)(2.8)蜗轮蜗杆副的效率:ηz =tg γtg (γ + arctg μm )(2.9)齿面平均摩擦系数:μm = μO ⨯Y 1 ⨯Y 2 ⨯Y 3 ⨯Y 4(2.10)基本摩擦系数:μo = 0.028 + 0.026 ⨯1(v + 0.17)0.76(2.11)另外,式(2.2)中等效弹性模量 E 的计算式见式(2.12)。
等效弹性模量:-6E =(1-ν 2 ) / E 2+ (1-ν 2 ) / E(2.12)1 12 2 式(2.11)分度圆上滑动速度v 的计算式见式(2.13)。
分度圆上滑动速度:v =d1⨯ n19098⨯cos γ(2.13)式中:a ——中心距mmb ——蜗轮宽度mmc ——压粘指数的近似值m2 / Nd1——蜗杆分度圆直径mmd2——蜗轮分度圆直径mmhmin——最小油膜厚度μmhmin m——最小平均油膜厚度μmh ——最小平均油膜厚度参数m ——蜗杆轴向模数mmn ——蜗杆轴转速rpmq ——蜗杆直径系数μ——齿数比v ——分度圆上的滑动速度x ——蜗轮变位系数Z——蜗轮齿数m / sE1——蜗杆弹性模量N / mm2E2——蜗轮弹性模量N / mm2 E ——等效弹性模量N / mm2η——环境压力和本体温度下的润滑剂动力粘度N / mm2p——环境压力Y——尺寸系数1Y——几何系数2Y——材料系数3Y——粗糙度系数4P ——啮合功率损失WT ——蜗轮输出转矩Nmγ——蜗杆分度圆上螺旋角η——蜗轮箱效率zμ——基本摩擦系数Oμ——齿面平均摩擦系数mν——蜗杆材料泊松比1ν——蜗轮材壮泊松比2v——本体温度下润滑剂的运动粘度mm2 / smθ——油池温度℃sθ——蜗轮本体温度℃Mα——散热系数A ——蜗杆副的冷却面积mm2ρ——本体温度下润滑剂密度kg / dm3由式(2.1)~(2.13)可见,对于确定的蜗轮蜗杆,在一定的工况条件下,润滑油的最小平均油膜厚度取决于润滑油的粘压系数和本体温度下润滑剂的运动粘度。
矿物油、合成烃和聚乙二醇三种润滑油的粘压系数近似相同,粘温指数聚乙二醇最好,而且通常蜗轮蜗杆润滑油的工作温度在40℃以上,因此,对于同等ISO VG 粘度的三种润滑油,聚乙二醇类润滑油的最小平均油膜厚度最大。
总结通过研究对比三种矿物油、合成烃和聚乙二醇三种润滑油的特性,利用液体表面张力概念和弹流润滑理论分析三种润滑油的油膜厚度,讨论三种润滑油形成油膜的原因从而对比三种润滑油的油膜强度,从理论上充分证明了聚乙二醇润滑油在蜗轮蜗杆传动中使用的优异性能。