直接转矩控制与DTC
第四章磁场定向控制(FOC)与直接转矩控制(DTC)

(4-4)
在形式上与直流电动机的特性十分相似,即如 果设法保持异步电动机的转子磁链恒定,则电机的 转矩就和转子电流I2成正比。控制转子电流就能控 制电机的转矩。
矢量控制的提出(1)
基于这种想法,提出了一种所谓以转子磁链定向 (FOC-Field Orientated Control)的矢量变换控制 方法,简称矢量控制。 它是利用在第二章中所介绍的坐标变换的办法, 把电机的三相电流、电压、磁链,经过坐标变换 变到以转子磁链定向的M、T二相坐标系上。 这个二相坐标系的M轴(磁化轴)沿着转子磁链 的方向,而另一个T轴与M轴相差90°,和力矩电 流的方向相重合。
如转子磁链 2M 保持不变,即 p 2M 0 ,则
i 2M 0
i1M 2M / L m 或 2M L mi1M
(4-10)
说明:在转子磁链保持不变的情况下,转子磁链全 部由定子磁化电流所决定,与转子电流无关。
转矩电流分量 转子电流全部是转矩电流分量。 由(4-7)式可以求得定子电流的转矩分量:
异步电机的转矩
从产生电磁转矩的角度来看,异步电动机的转矩
T CT m I 2 cos 2
(4-3)
它是气隙磁场 m 和转子电流的有功分量 I 2 cos 2 相互作用而产生的。 即使气隙磁场保持恒定,电机的转矩不但与转 子电流I2的大小有关,而且还取决于转子电流的 功率因数角 2 。
m Lm (i1 i 2 )
L2 两边同乘 得: Lm
L2 m L2 (i1 i L ) (L 2l Lm )(i1 i 2 ) Lm L 2li1 Lmi1 L 2i 2 L2li1 2
(4-18) (4-19) (4-20) (4-21)
三相异步电动机直接转矩控制(DTC)系统仿真

1 直接转矩控制简介直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。
直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。
这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。
直接转矩控制系统的主要特点有:(1)直接转矩控制是直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。
(2)直接转矩控制的磁场定向采用的是定子磁链轴,只要知道定子电阻就可以把它观测出来。
(3)直接转矩控制采用空间矢量的概念来分析三相交流电动机的数学模型和控制各物理量,使问题变得简单明了。
(4)直接转矩控制强调的是转矩的直接控制效果。
直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。
它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。
它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。
2 直接转矩控制的理论基础2.1直接转矩控制的原理ψ的正负符号和电磁直接转矩控制系统的基本思想是根据定子磁链幅值偏差ΔSψ所在位置,直接选取合适的转矩偏差ΔTe的正负符号,再依据当前定子磁链矢量S电压空间矢量,减小定子磁链幅值的偏差和电磁转矩的偏差,实现电磁转矩和定子磁链的控制。
直接转矩控制是为电压源型PWM逆变器传动系统提出的一种先进的转矩控制技术,基于该技术的传动系统性能可与矢量控制的异步电动机传动系统性能相媲美。
直接转矩控制和DTC讲述

杂
单
ቤተ መጻሕፍቲ ባይዱ
按转子磁链定向
盅知道定子磁链矢量
的位置,f曰无需定向
比较宽
不够宽
不够快
较快
五.PWM控制的基本原理
■ PWM控制技术重要理论基础——面积等效原理 ・冲量相等而形状不同的窄脉冲加在具有惯性的 环节上时, 其效果基本相同
形状不同而冲量相同的各种窄脉冲
三相SPWM逆变电路
麵三角波载波公用, 三相正弦调制波相位依次 差 120° ■同一三角波周期内三相的脉宽分别为丸、dv 和dw, 脉冲两边的间隙宽度分别为d't;、d\ 和d' w, 同一时刻三相调制波电压之和为零 利用下式:
磁
阽u 坫^
磁
I f e i t
a t f t i &
Vxi
I优
U
化 开
JX
P W
K农
M
矢
S
直接转矩控制原理图
直接转矩控制特点
■不需要旋转坐标变换, 有静止坐标系实行 Te与Vs砰-砰控制, 简化控制结构。
■选择定子磁链做被控量, 计算磁链模型不 受转子参数变化的影响, 提高系统的鲁棒 性。
■采用直接转矩控制, 能获得快速的转矩响 应。
转矩模型结构
定子磁链模型
■ (1)定子电压模型法
定子磁链可以在坐标下写出如下关系式:
\~
; ^p\ = J(^1-^1)^
■由此,川下图所示的电压模型结构可求得定子
磁链。
定子电压磁链模型框图
定子磁链模型
■ (2)电流模型法 在额定转速30%以下时, 磁链只能根据转速来正
电流磁链模型电路框图
直接转矩控制系统
交流同步电机矢量控制与DTC
直接转矩控制技术(DTC)参考文档

5.2 直接转矩控制技术(DTC)
• 概述 • 直接转矩控制的基本原理 • 定子电压矢量与定子磁链 • 定子电压矢量对磁链和转矩的影响 • 直接转矩控制系统的介绍 • 直接转矩控制技术与矢量控制技术的比较
1
Байду номын сангаас
电力电子与电机控制研究所
一、概 述
继矢量控制之后,1984年德国鲁尔 大学的Depen Brock 又提出了交流电动 机的直接转矩控制方法,其特点是直接采 用空间电压矢量,直接在定子坐标系下计 算并控制电机的转矩和磁通;采用定子磁 场定向,借助于离散的两点式调节产生 PWM(空间矢量SPWM)直接对逆变器 的开关状态进行最佳控制,以获得转矩的 高动态性能。
u
u
u
u
u
01 u u u u u u
-1 u u u u u u
11 u u u u u u
-1 u u u u u u
31
电力电子与电机控制研究所
电磁转矩模型
在直接转矩控制中,需要实测电磁转矩作 反馈值。直接测量电磁转矩在测量技术上有一 定困难。为此,采用间接法求电磁转矩。一般 是根据定子电流和定子磁链来计算电磁转矩。
1t rt
6
电力电子与电机控制研究所
将定子电压的方程变形为:
s (us Rsis )dt
忽略定子电阻后为:
s usdt
ds dt
us
将方程离散化得:
t2
s (t2 ) s (t1) t1 usdt
(2-3)
(2-4)
(2-5)
7
电力电子与电机控制研究所
定子磁链矢量 s 的轨迹将按式(2-5) 规律变化。这样,可 以通过控制定子电压 空间矢量来控制定子 磁链的幅值和旋转速 度,从而在保持磁通 恒定的情况下改变磁
异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较

异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较首先,我们来看看FOC方案。
FOC方案是基于电机矢量控制理论而发展起来的一种控制方法,在控制异步电动机时,可以通过精确测量和控制转子磁链矢量的方向和大小,来实现精确控制电机的转矩和转速。
其核心思想是将电动机的三相定子电流进行矢量拆分,分为一个磁场矢量和一个转矩矢量,从而实现转子磁链方向和大小的控制。
FOC方案的优点是控制精度高,响应速度快。
由于可以实时测量和控制电机的磁链矢量,FOC方案可以精确控制电机的转矩和转速。
此外,由于转子磁链矢量可以根据需要即时调整,FOC方案可以快速响应转矩和速度的变化,从而适用于需要快速响应和精确控制的应用。
然而,FOC方案也存在一些缺点。
首先,FOC方案的实现较为复杂,需要进行电流和电压的矢量控制,以及相应的转子定位和速度估算算法。
这些复杂的控制算法在实践中需要较高的计算能力和较多的计算资源,因此实现起来较为困难。
其次,FOC方案对于电机参数和系统模型的准确性要求较高。
由于FOC方案需要测量和控制转子磁链矢量,因此对电机参数和系统模型的准确性要求较高,如果参数不准确,将导致控制性能下降。
接下来,我们来看看DTC方案。
DTC方案是一种基于直接转矩控制原理的控制方法,其核心思想是通过采用转矩和磁链两个控制变量直接控制电机的转矩和速度。
DTC方案通过测量和计算磁链和转矩的误差,根据预定的控制规则直接调节电机的电压和频率,以实现对电机转矩和速度的控制。
DTC方案的优点是实现简单,控制快速。
DTC方案不需要进行电流和电压的矢量控制,只需要测量和控制磁链和转矩的误差,因此实现起来相对简单。
此外,DTC方案由于直接控制电机的电压和频率,可以快速响应转矩和速度的变化,适用于需要快速相应和简单控制的应用。
然而,DTC方案也存在一些缺点。
首先,DTC方案的动态性能较差。
由于DTC方案是基于磁链和转矩误差进行控制的,其控制性能受到不可避免的误差和延迟的影响,因此其动态性能较差,不能达到FOC方案的精确度和响应速度。
DTC控制说明

DTC控制说明DTC控制简介DTC的发展1.直流电机DC Drive U图1直流电机控制环特点:・磁场方向通过机械换向器来转换・控制的变量为电枢电流以及励磁电流,速度反馈直接从电机测量・直接控制转矩在直流电机中,磁场由流经定子上励磁绕组的电流产生。
该磁场与电枢绕组产生的磁场总是成直角。
这种情况称为磁场定向,是产生最大转矩的条件。
无论转子处在什么位置,电刷都会保证这种磁场稳定在这种状态。
一旦磁场定向完成,直流电机的转矩就能很容易通过改变电枢电流和保持磁化电流恒定来实现。
直流传动的优势在于,速度和转矩这两个对用户来说最主要的因素,可以直接通过电枢电流来控制:转矩控制为内环,速度控制为外环(见图1)0 优点・精确快速的转矩控制・高速的速度动态响应・控制简单最初,直流传动用于调速传动,是因为它可以很轻易的实现良好的转矩和高精度的速度响应。
直流电机可以产生转矩并具有如下特性:・直接一电机的转矩与电枢电流成正比,因此可以直接精确的控制转矩。
・快速一转矩控制十分迅速;传动系统可以得到很高的速度动态响应。
如果电机由理想的电流源反馈转矩可以立即改变,电压反馈的传动同样可以实现快速响应,因为它只和转子电气时间常数有关(例如电枢回路中总的电感与电抗)。
•简单一磁场方向通过换向器/电刷这一简单的机械结构来实现,所以不需要使用复杂的电子控制电路,从而节约了控制电机的成本。
2. V/F控制Frequency Control图2使用PWM频率控制的交流传动控制环特点•控制变量为电压和频率・通过调速器来模拟交流正弦波・磁通维持恒压频比・开环控制・负载决定转矩水平与直流传动不同,交流传动频率控制技术使用的是电机的外部参数一即电压和频率一作为控制电机的变量。
电压和频率给定发送至调制器,为定子磁通提供近似的交流正弦波。
这种技术被称为脉宽调制(PWM),是利用二极管整流桥为直流母线提供直流电压使之保持恒定的。
逆变器通过脉宽调制脉冲序列改变电压和频率,由此来控制电机。
直接转矩控制系统DTC

运动控制系统2020大作业摘要:三峡工程是世界瞩目的超大工程,其中升船机的设计有着许多难点。
本文针对三峡工程中升船机运行的一些实际问题进行了解答,并基于直接转矩控制(DTC )策略,利用simulink 搭建了三相异步电机直接转矩控制系统仿真模型,采用了定子磁链圆形的控制策略,对系统进行仿真。
仿真结果表明,该直接转矩控制系统仿真模型能够很好地模拟实际调速系统的相关性能,体现了更优越的静动态性能。
关键词:DTC ;异步电动机;定子磁链控制;三峡工程 1引言 1.1 交流调速系统的发展与现状 长期以来,在调速传动领域大多采用磁场电流和电枢电流可以独立控制的直流电动机传动系统,它的调速性能和转矩控制特性比较理想,可以获得良好的动态响应,然而出于在结构上存在的问题使其在设计容量上受到限制,不能适应高速大容量化的发展方向,交流电机以其结构简单,制造方便、运行可靠,可以以更高的转速运行、可用于恶劣环境等优点得到了广泛的运用,但交流电动机的调速比较困难。
在上个世纪20年代,人们认识到变频调速是一种理想的调速方法,由于当时的变频设备庞大,可靠性差,变频调速技术发展缓慢。
60年代至今,电力电子技术和控制技术的发展,使交流调速性能可以与直流调速相媲美。
现代电子技术的飞速发展、电动机控制理论的不断完善以及计算机仿真技术的日益成熟,极大的推动了交流电动机变频调速技术的发展。
1.1.1 直接转矩控制直接转矩控制(direct torque control ,简称DTC )利用逆变器六个开关管的“开关特性”直接对电动机的转矩进行控制,即根据电动机的实际电磁转矩大于还是小于给定转矩,直接选择逆变器开关的状态。
从而输出合适的电压空间矢量,使得转矩减小或增大。
它省掉了复杂的矢量变换,其控制思想新颖,控制结构简单,物理概念明确,转矩响应迅速,电机磁场可以接近圆形,谐波小,开关损耗小,噪声及温升较小;但它也存在转矩脉动大的不足。
整体上是一个非常优秀的控制策略。
DTC的基本控制原理

ABB变频器中DTC的基本控制原理众所周知,在ABB的交流变频器中,DTC技术已经广泛应用,那DTC究竟是什么东西,它是如何工作的呢?下文我们就介绍一下DTC的基本控制原理。
DTC是英文 Direct Torque Control 的缩写,它是最先进的一种交流传动技术,由ABB公司发展应用成功的。
它将逐步取代传统的脉宽调制(PWM)传动。
它之所以叫做直接转矩控制,是因为它对电动机输出转矩和速度的控制是基于电动机的电磁状态,DTC与直流传动的控制相似,但与传统的脉宽调制控制完全不一样。
传统的PWM控制是基于电压和频率的控制方式。
关键词:DTC,速度控制环,转矩控制环,电机模型下面我们就根据框图逐步介绍一下DTC控制的基本原理。
Figure 1, 直接转矩控制(DTC)的控制原理框图.Figure 1: DTC 由两个关键部分组成:: Speed Control and Torque Control框图表明,DTC有两个基本部分: Torque Control Loop(转矩控制环)和the Speed Control Loop(速度控制环). 现在我们根据框图分七步来逐步介绍每个基本部分以及它们是如何集成到一起的。
我们先从转矩控制环(Torque Control Loop)说起。
Figure 2 转矩控制环结构框图1.电压电流的测量正常情况下,电机的两相电流、直流电压是和变频器功率元件的导通位置是同时测量的。
2. 自适应电机模型来自电机的测量信息反馈到电机模型。
该电机模型非常复杂,但也只有这样复杂的电机模型才能对电机的数据进行精确的计算。
在运行DTC传动装置之前,首先需要将电机的一些参数诸如:定子电阻、公共阻抗、饱和系数等等输入到电机模型里。
这些参数是不需要手动输入的,而是在我们把正确的电动机铭牌数据输入到变频器后,再进行电动机识别运行后,它们就会自动输入到电机模型里。
当然,电机模型参数的识别也可以在不转动电机转子的情况下进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统的原理分析与比较
交流同步电动机
交流同步电动机具有非线性、强耦合、多变量的 性质,要获得良好的调速性能,必须从动态模型 出发,分析交流电动机的转矩和磁链控制规律, 研究高性能交流电动机的调速方案。 以永磁式同步电机(PMSM)为例研究和分析交 流同步电机的调速方案。永磁式同步电机控制系 统具有更高的运行速度,运行性能更稳定,位置 控制能力更强。永磁式同步电动机具有简单的结 构、小巧的体积、良好的功率因素、较高的效率 和易于维护保养等特点。
二. 矢量控制技术
1971年德国西门子公司F.Blaschke发明了基
于交流电机坐标交换的交流电机矢量控制 (VC)原理,由此交流电机矢量控制得到 了广泛地应用。 矢量控制借助于坐标变换,将实际的定子 三相电流变换成等效的力矩电流分量和励 磁电流分量,以实现电机的解耦控制,把 交流电动机模拟成直流电动机,控制概念 明确。
电压矢量的选择
下面以定子磁链逆时针在Ⅰ区的控制为例 进行说明(设定子磁链逆时针旋转) 增大磁链:
增大转矩:u6 减小转矩:u0/u7 大幅减小转矩:u5
减小磁链:
增大转矩:u2 减小转矩: u0/u7 电压空间矢量分布图
大幅减小转矩:u1
开关状态选择表
(N )
D1 DT
0 1
1 -1 1 -1
由图可推导出转矩角的表达式为:
tan ( sq / sd ) tan (
1 1
Lq iq Ld id f
)
式中: 、 :定子磁链在d、q坐标系下的分量(Wb ); :转子永磁磁链(Wb); id、iq:定子电流 is 在d、q坐标系下的分量(A); L q :定子电感 的d轴分量,即交轴电感(H); L d :定子电感 的q轴分量,即直轴电感(H)。
基于SVPWM的矢量控制系统
基于SVPWM的矢量控制系统结构图
矢量控制的特点及存在问题
• 转子磁链定向,实现了定子电流励磁分量与转 矩分量的解耦。 • 采用连续PID控制,转矩与磁链变化平稳。 • 电机转子参数(特别是电阻)受环境温度影 响较大,干扰磁链定向的准确性。 • 需要矢量变换,系统结构复杂,运算量大。
定子电压空间矢量对转矩的影响
当施加超前定子磁链的电压矢量时, 使定子磁链的旋转速度大于转子磁链 的旋转速度,磁链夹角加大,相应转 矩增加。如果施加零矢量或滞后矢量 时,相当于定子磁链矢量停滞不前或 反转,而转子磁链继续旋转,相应转 矩减小。
转矩和磁链砰-砰控制控制
直接转矩控制对转矩和磁链的控制要通过 滞环比较器来实现,采用砰-砰控制。转矩 滞环和磁链滞环的控制原理如图所示。
定子电压空间矢量与磁链的关系
在磁链旋转过程中,在每一个阶段施加什 么电压矢量,不但要依据磁链偏差的大小 ,而且还要考虑磁链矢量的方向。例如当 s处于扇区U6时,为了控制s沿顺时针方 向旋转,应当选择U4(100)、U5(101) 。当磁链幅值达到上限时应选择U5(101) ,当磁链幅值达到下限时选择U4(100)。 反之,当需要磁链作逆时钟旋转时,对应 扇区U6时应选取U2(010)、U3(011)。
Fβ Fb
60° 60°
Fa
Fα
Fc
Clarke变换
矢量控制的数学模型
β T i1 (F1) iT
φ
iβ iTcosφ
γ θ1 φ
Ф ,M iM iα iMcosφ iTsinφ
iMsinφ
α
Park 变换
空间坐标变换
矢量控制的数学模型
经过坐标变化从而 得到等效成直流电 动机模型,可以采 用控制直流电动机 方法控制交流电动 机,实现对电机电 磁转矩的动态控制 ,获得良好的调速 性能。
U2 U3 U1
U6 n U4 U5 θ
i s s r
电压空间矢量
定子电压空间矢量与磁链的关系
定子磁链s(t)与定子电压us(t)之间的关系为
:
s (t ) (u s (t ) i s (t ) Rs )dt
公式表示:忽略定子电阻Rs上压降,定子磁 链空间矢量s沿着电压空间矢量Us的方向, 以正比于输入电压的速度移动,通过逐步合 理地选择电压矢量,可以使定子磁链矢量s 的运动轨迹纳入一定的范围,沿着预定的轨 迹移动。
不需要旋转坐标变换,有静止坐标系实行 Te 与Ψs 砰-砰控制,简化控制结构。 选择定子磁链做被控量,计算磁链模型不 受转子参数变化的影响,提高系统的鲁棒 性。 采用直接转矩控制,能获得快速的转矩响 应。
直接转矩存在问题
由于转矩和磁链采用砰-砰控制,开关频率不确定 ,实际转矩必然在上下限内脉动,而不是完全恒 定的。 由于磁链计算采用了带积分环节的电压模型,积 分初值、累积误差和定子电阻的变化都会影响磁 链计算的准确度。 系统的定子磁链的轨迹是正六边 形,因而定子电 流含有高次谐渡分量,其中五次和七次 谐波对控 制系统和电网的影响最为严重。 在低速运行时,开关频率越低转矩脉动越大,影 响系统调速性能。
坐标变换等效结构图
磁通的计算
矢量变换的关键是将 1 LM L1 i1 LM i2 电流和磁通矢量变换 u1 ri 1 1 dt 到磁场定向的M-T坐 ' 标系上来。因此,能 2 LM L2 i2 LM i1 否准确地计算磁通Ф LM L2' ,将直接影响到控制 1 L i1 系统的精度。 LM (1)电压模型法 电压模型计算法只适用于 磁通计算公式: 高速运行,在低速运行时, 难以进行精确计算。
Ⅰ u u u u u
Ⅱ u u u u u
Ⅲ u u u u u
Ⅳ u u u u u
Ⅴ u u u u u
Ⅵ u u u u u
电磁转矩模型
在直接转矩控制中, 需要实测电磁转矩作 反馈值。直接测量电 磁转矩在测量技术上 有一定困难。为此, 采用间接法求电磁转 矩。一般是根据定子 电流和定子磁链来计 算电磁转矩。电磁转 矩的表达式可写为:
定子电压磁链模型框图
定子磁链模型
(2)电流模型法 在额定转速30%以下时,磁链只能根据转速来正 确计算,定子电流、转速磁链模型结构图如下:
电流磁链模型电路框图
直接转矩控制系统
+ Esα 磁 链 观 测 ψsα 磁链 角与 磁链 ψsβ 幅值 s 计算 +
s
*
Udc
-
( n)
s
ቤተ መጻሕፍቲ ባይዱ
+
SA SB iA iB
SC iC
U dc
-
PMSM
电压型逆变器
电压空间矢量
SA、SB、SC分别表示逆变器三相的开关状态 , SA =1,表示U相的上桥臂导通, SA =0, 表示U相的下桥臂导通。 三个开关量SA、SB、SC共有八种组合,分别 是: (SA、SB、SC) = (000), (101), (100), (110), (010), (011), (001), (111)。 这八种组合中,组合(000)和(111)状态下,电 动机的电压均为零,称为零电压状态,其他 六种组
PMSM的两种调速策略
矢量控制和直接转矩控制(DTC)是两种基于 动态模型的高性能的交流电动机调速系统。 矢量控制基于转子磁场定向,利用解耦思想将 电机电流分解为转矩电流和励磁电流, 并分别 加以控制,从而获得高性能的控制效果。 直接转矩控制基于定子磁场定向, 以电机转矩 为控制对象, 通过实时观测电机转矩和定子磁 链, 利用滞环控制器和开关选择表控制逆变器 功率器件的开关状态, 输出合理的电压矢量, 达到对转矩和定子磁链控制的目的。
矢量变换运算
矢量控制原理:矢量控制是以矢量变换 为工具,将定子电流矢量分解为两个相 互垂直的分量:一个相当于直流电动机 磁场电流称为励磁电流分量;另一个相 当于电枢电流称为转矩电流分量。对各 自独立的两个电流分量进行控制就构成 了转矩瞬时值的矢量控制。
矢量控制的数学模型
将定子电流iA、iB、iC 通 过三相/二相坐标变换 (Clarke 变换)等效成两 相静止坐标系下的交流 电流isα、isβ,再通过按 转子磁场定向的旋转变 换(Park 变换),可以等 效成同步旋转坐标系下 的直流电流ism、ist ,如 式(1)和(2)。
电压空间矢量
Us是由逆变器的开关状态( SA、SB、SC )得到的,六种有效电压状态可以得到 六个空间电压矢量。 用下式可以计算出U1 、 U2 ……U6六个 空间电压矢量的幅值和位置。
2 j 2 j 3 U s (ua ub e uc e 3 4 3
)
电压空间矢量
根据计算出其它 电压矢量的幅值 和位置。 由U1 、 U2 ……U6将 定子空间圆等分 为6个扇区,如 右图所示。
四. 矢量控制与DTC特点与性能比较
性能与特点
磁链控制 转矩控制 电流控制 坐标变换 磁链定向 调速范围 转矩动态响应
矢量控制
转子磁链闭环控制
DTC
定子磁链闭环控制
连续控制,比较平滑 砰-砰控制,有转矩 脉动 闭环控制 无闭环控制 旋转坐标变换,较复 静止坐标变换,较简 杂 单 按转子磁链定向 需知道定子磁链矢量 的位置,但无需定向 比较宽 不够宽 不够快 较快
转矩滞环比较器
磁链滞环比较器
开关状态的选择
规则如下:
| s* || s |
| s* || s |
D1 =1 D1 =0
(增加磁链) (减小磁链) (增加转矩) (减小转矩)