北师大版八年级数学上册第四章第四节《一次函数的应用》第三课时课件分析
八年级数学上册 第四章 一次函数 4.4 一次函数的应用(

关闭
汽车在高速公路上的行驶速度为180÷2=90(km/h),A错误;乡村公路
的总长为360-180=180(km),B错误;汽车在乡村公路上的行驶速度为
90÷1.5=60(km/h),C正确;该记者从出发到采访地的时间为2+(360-
180)÷60=5(h),D错误.
关闭
C
解析 答案
1234
2. 在一次800 m的长跑比赛中,甲、乙两人所跑的路程s(单位:m)与 各自所用时间t(单位:s)之间的函数图象分别为线段OA和折线 OBCD,则下列说法正确的是( )
A.甲的速度随时间的增加而增大
关闭
BA.乙中的,从平线均段速OA度可比以甲看的出平路均程速是随度着大时间的增加而增加,并且成正比例
C函.在数起关跑系后,所1以80甲s时的,运两动人是相匀遇速运动,速度不变,故A不正确;B中,从图象 D可.在以起看跑出后甲5乙0 两s时人,乙同时在出甲发的,并前且面甲次函数的图象能直观地反映两个变量之间的关系,利用图象提 供的信息,我们可以对两个变量之间的关系作出判断或预测,以此 来指导我们的实际生活与工作生产等.
1234
1.某电视台“走基层”栏目的一位记者乘汽车赴360 km外的农村采访,全程的前一部分为高速公路,后一部 分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与 时间x(单位:h)之间的关系如图所示,则下列结论正确的是( ) A.汽车在高速公路上的行驶速度为100 km/h B.乡村公路总长为90 km C.汽车在乡村公路上的行驶速度为60 km/h D.该记者在出发后4.5 h到达采访地
度应大于乙的平均速度,故B错误;C中,180秒时,两图象并未相交,所以
北师大版八年级数学上册:4.4 一次函数的应用 课件(共15张PPT)

解:设V=kt; ∵点(2,5)在图象上 ∴5=2k
k=2.5 ∴ V=2.5t
拓展延伸
例1.在弹性限度内,弹簧的长度y(厘米)是所挂物体 质量x(千克)的一次函数。① 一根弹簧不挂物体时长14.5 厘米;②当所挂物体的质量为3千克时,弹簧长16厘米。请 写出y与x之间的关系式,并①求当所挂物体的质量为4千 克时弹簧的长度。
2、怎样求出一次函数的表达式?
• 第一步:(设)设出函数解析式;
• 第二步:(代)根据题目所给的条件列出 关于k,b的方程;
• 第三步:(求)解方程求出k,b的值;
• 第四步:(写)将k,b的值代入y=kx+b确定 一次函数解析式,
巩固提高
1.如图,直线L是一次函数y=kx+b的 图象,求它的表达式。
解:设y=kx+b,根据题意,得:
14.5=b …………① 16=3k+b …………② 所以在弹性限度内,y=0.5x+14.5.
当x=4时,y=0.5×4+14.5=16.5(cm).
即物体的质量为4kg时,弹簧长度为16.5cm.
感悟收获 考虑:
1、确定正比例函数的表达式需要几个条件? 确定一次函数的表达式呢?
(1)农民自带的零钱是多少?
(2)降价前他每千克西瓜出售的价格是多少?
(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含 备用的钱)是450元,ቤተ መጻሕፍቲ ባይዱ问他一共批发了多少千克的西瓜?
小结:
本节课你有哪些收获?
作业:
• 90页知识技能的1题,2题
巩固提高
2. 如图,直线L是一次函数y=kx+b的图象,填空:
(1) b=
北师大版八年级数学上册第四章第四节《一次函数的应用》第三课时 ppt课件

O 1O 2 13O24315O426351 O642 x351/吨O642x/3吨51 O642x/3吨51 O642x/3吨51O642x/13吨5 264x3/吨5 46x5/吨6 x/吨 x/吨
2020/12/2
8
(1)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元, 利润= 1000 元。
13
(3)15分钟内 B
海B
A
公
能否追上 A?
岸
海
可以看出,当t=15时,l1上对应点在l2上对应点的下方。
s /海里
8 6 4 2
l2 A l1 B
O
2 4 6 8 10 12 1415 t /分
2020/12/2
这表明, 15分钟时 B 尚未追上 A。
14
(4)如果一直追下去, 海 B 那么 B 能否追上 A? 岸
S=0, 故 l1 表示 B 到海 岸的距离与追赶时 间之间的关系;
12
(2)A、B 哪个速度快?海 B
t从0增加到10时,
岸
l2的纵坐标增加了2,
l1的纵坐标增加了5,
s /海里
8 7 6 5 4
l2 A l1 B
2
O
2 4 6 8 10
2020/12/2
t /分
A
公
海
即10分内, A 行驶了2海里, B 行驶了5海里, 所以 B 的速度快。
(2)当销售量为 4吨 时,销售收入等于销售成本。
销售收入和销售成本都是4000元
y/元
l1 销售收入
6000 5000
l2 销售成本
4000
3000
2000
1000
北师大版数学八年级上册4《一次函数的应用》说课稿3

北师大版数学八年级上册4《一次函数的应用》说课稿3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4节的内容。
本节主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。
教材通过实例引导学生认识一次函数的图像和性质,以及如何用一次函数解决实际问题。
二. 学情分析八年级的学生已经学习了初中数学的前置知识,对函数的概念和性质有了一定的了解。
但学生在解决实际问题时,往往不知道如何将数学知识与实际问题相结合。
因此,在教学过程中,教师需要引导学生将数学知识运用到实际问题中,提高学生的应用能力。
三. 说教学目标1.让学生了解一次函数在实际生活中的应用,体会数学与生活的紧密联系。
2.培养学生用数学的眼光观察生活,提高学生的数学应用能力。
3.帮助学生掌握一次函数的图像和性质,为后续学习打下基础。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用,一次函数的图像和性质。
2.教学难点:如何将一次函数与实际问题相结合,解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。
2.利用多媒体课件,展示一次函数的图像,帮助学生直观理解一次函数的性质。
3.创设生活情境,让学生在实践中感受一次函数的应用。
4.分组讨论与合作,培养学生团队合作精神,提高学生的解决问题能力。
六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学知识解决问题。
2.新课导入:介绍一次函数的定义和性质,让学生了解一次函数的基本概念。
3.实例讲解:通过生活实例,讲解一次函数在实际中的应用,让学生体会数学与生活的联系。
4.课堂练习:让学生独立解决实际问题,巩固一次函数的应用。
5.分组讨论:让学生围绕实际问题展开讨论,探讨如何用一次函数解决问题。
6.总结提升:总结一次函数的图像和性质,强化学生对一次函数的认识。
7.课后作业:布置相关练习题,巩固课堂所学知识。
七. 说板书设计板书设计应突出一次函数的图像和性质,以及一次函数在实际中的应用。
北师大版八年级数学上册《一次函数的应用》第3课时示范公开课教学课件

2.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是( )
A.3 km/h 和4 km/h B.3 km/h 和3 km/hC.4 km/h 和4 km/h D.4 km/h 和3 km/h
(6)l1与l2对应的两个一次函数s=k1t+b1与s=k2t+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?
k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2n mile/min,快艇B的速度是0.5n mile/min.
P
B
A
你能用其他方法解决例3(1)~(5)吗?
【分析】l1的图象过原点,表达式设为y=k1x,求解k1的值只需再找一个点的坐标即可.
如图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品销售成本与销售量的关系,根据图象填空:
(5)l2对应的函数表达式是:
解:设l2的表达式为y=k2x+b2,由图可知,图象过(0,2000)(4,4000),
(5)当A逃到离海岸12 n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?
你能用其他方法解决例3(1)~(5)吗?
解:(6)l1与l2对应的两个一次函数分别为s1=0.5t,s2=0.2t+5. 所以k1的实际意义是快艇B的速度,k2的实际意义是A船的速度.
B
A
故快艇B的速度为0.5n mile/min,A船的速度0.2n mile/min.
(6)l1与l2对应的两个一次函数s=k1t+b1与s=k2t+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?
北师大版八年级数学上册第四章第四节《一次函数的应用》第三课时课件

下图 l1 l2 分别是龟兔赛跑中 路程与时间之间的函数图象。 根据图象可以知道: (1)这一次是 100 米赛跑。 (2)表示兔子的图象是 l2 。
l2 l1
1
2
3
4
5
6
7
8
9
10 11 12
t /分
(3)当兔子到达终点时,乌龟距终点还有 40 米。
(4)乌龟要与兔子同时到达终点乌龟要先跑 40 米。
l2对应的函数表达式是 y=500x+2000 。
y/元
6000
5000
4000
l2 销售成本
3000
2000
1000
O
1
2
3
4
5
6
x/吨
l1 反映了公司 产品的销售收入与 销售量的关系。
l2 反映了公司 产品的销售成本与 销售量的关系。
销售收入 y/元 y/元 y/元 y/1 元 y/元 y/元 y/元 y/元 y/元 6000 6000 6000 6000 L 6000销售成本 6000 6000 6000 6000 销售成本 销售成本 销售成本 l 2 l 2 l 2 l 2 l2 销售成本 l2 销售成本 l2 销售成本 l2 销售成本 l2 销售成本 5000 5000 5000 5000 5000 5000 5000 5000 5000 4000 4000 4000 4000 4000 4000 4000 4000 4000 3000 3000 3000 3000 3000 3000 3000 3000 3000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1000 1000 1000 1000 1000 1000 1000 1000 1000 O 1 O 2 13 O 2 43 15 O 4 26 3 5 1O 6 4 2 x/ 3 5 1吨 O 6 4 2 x/3 吨 5 1O 6 4 2 x/3 吨 5 1O 6 4 2 x/3 吨 5 1O6 4 2 x/1 3 吨 5 2 6 4x/ 3吨 5 4 6x/ 5 吨6 x/吨 x/吨
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例

3.创设具有挑战性的问题情境,激发学生的思考,培养学生解决问题的能力。
(二)问题导向
1.引导学生提出问题,培养学生的问题意识。例如,在讲解商店促销活动时,引导学生思考:“购买不同数量的商品,费用如何变化?”
2.设计具有启发性的问题,引导学生进行思考、讨论,培养学生分析问题、解决问题பைடு நூலகம்能力。
(四)反思与评价
1.引导学生进行自我反思,总结一次函数在实际问题中的应用方法和规律。
2.组织学生进行互评、师评,评价学生在解决问题过程中的表现,给予鼓励和指导。
3.教师根据学生的表现,及时调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示商店促销活动的图片,引导学生关注实际问题。
5.作业小结的个性化设计:本节课的作业小结具有个性化设计,让学生运用一次函数的知识解决实际问题,例如家庭用电费用计算、购物预算等。这种作业设计既能够巩固所学知识,提高学生的应用能力,还能够激发学生的创新意识。
3.引导学生掌握一次函数的解析式,学会用数学模型表示实际问题。
4.讲解一次函数的性质,例如斜率、截距等,让学生了解一次函数的变化规律。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享各自对一次函数应用的理解。
2.讨论一次函数在实际问题中的变化规律,例如购买商品数量与费用的关系。
3.引导学生通过举例、绘制图像等方式,验证一次函数的性质。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
一、案例背景
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例,主要针对八年级学生进行设计。本节课的主要内容是让学生掌握一次函数在实际生活中的应用,通过具体案例的分析,让学生了解一次函数在解决实际问题中的重要性。
八年级数学上册 第四章 一次函数 4.4 一次函数的应用(

际意义各是什么?可疑船只A与快 艇B的速度各是多少?
解:k1表示快艇B的速度,k2表示
可疑船只A的速度.A的速度是 0.2 n mile/min,快艇B的速 度是0.5 n mile/min.
三、归纳小结
如何利用图象解决实际问题
1.找出图象的特殊点,明白其实际表示的意义. 2.找出图象的交点.
600元0,销售成本=
元5,000
(3)当销售量等于 4t 时,销售收入等于销售成本;
(4)当销售量 大于4t时,该公司赢利(收入大于成本);当销售量
小时于,4该t 公司
亏损(收入小于成本);
(5)l1对应的函数表达式是____y_=_1_0_0_,0xl2对应的函数表达式是_______y_=_5_0__0_x_+.2000
八年级数学北师大版·上册
第四章 一次函数
4.4(第3课时)
一、新课引入
如图,l1 反映了某公司产品的销售收入与销售量的关系, l2 反映了该公司 产品的销售成本与销售量的关系,根据图象填空:
(1)当销售量为2 t时,销售收入=______2_0元0,0 销售成本=_______元30; 00
(2)当销售量为6 t时,销售收入=
二、新课讲解
(5)当 A 逃到离海岸12 n mile 的 公海时,B 将无法对其进行检查.照 此速度,B 能否在 A 逃入公海前将 其拦截?
解:从图中可以看出,l1 与 l2 交点P的纵坐标小于12,这 说明在 A 逃入公海前,我 边防快艇 B能够追上 A.
二、新课讲解
(6)min内 B 能否追上 A? (4)如果一直追下去,那么 B 能 否追上 A?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当销售量 小于4吨 时,该公司亏损(收入小于成本);
你还有什么发现?
y/元
6000 5000 4000 3000 2000 1000
l1 销售收入 l2 销售成本
P
O
1
2
3
4
5
6 6
7
8 x/吨
议一议
我边防局接到情报,近海处有一可疑船只A正向公 海方向行驶,边防局迅速派出快艇B追赶(如下图)。
海 岸
l2对应的函数表达式是 y=500x+2000 。
y/元
6000
5000
4000
l2 销售成本
3000
2000
1000
O
1
2
3
4
5
6
x/吨
l1 反映了公司 产品的销售收入与 销售量的关系。
l2 反映了公司 产品的销售成本与 销售量的关系。
销售收入 y/元 y/元 y/元 y/1 元 y/元 y/元 y/元 y/元 y/元 6000 6000 6000 6000 L 6000销售成本 6000 6000 6000 6000 销售成本 销售成本 销售成本 l 2 l 2 l 2 l 2 l2 销售成本 l2 销售成本 l2 销售成本 l2 销售成本 l2 销售成本 5000 5000 5000 5000 5000 5000 5000 5000 5000 4000 4000 4000 4000 4000 4000 4000 4000 4000 3000 3000 3000 3000 3000 3000 3000 3000 3000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1000 1000 1000 1000 1000 1000 1000 1000 1000 O 1 O 2 13 O 2 43 15 O 4 26 3 5 1O 6 4 2 x/ 3 5 1吨 O 6 4 2 x/3 吨 5 1O 6 4 2 x/3 吨 5 1O 6 4 2 x/3 吨 5 1O6 4 2 x/1 3 吨 5 2 6 4x/ 3吨 5 4 6x/ 5 吨6 x/吨 x/吨
(1)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元, 利润= 1000 元。 (2)当销售量为 4吨 时,销售收入等于销售成本。 销售收入和销售成本都是4000元 y/元 l1 销售收入
6000 5000
l2 销售成本
4000
3000
2000
1000
5
6
x/吨
(3)当销售量 大于4吨 时,该公司赢利(收入大于成本);
下图 l1 l2 分别是龟兔赛跑中 路程与时间之间的函数图象。 根据图象可以知道: (1)这一次是 100 米赛跑。 (2)表示兔子的图象是 l2 。
l2 l1
1
2
3
4
5
6
7
8
9
10 11 12
t /分
(3)当兔子到达终点时,乌龟距终点还有 40 米。
(4)乌龟要与兔子同时到达终点乌龟要先跑 40 米。
8
因此,
l2 A
P
如果一直追
6
4 2 O 2 4 6 8 10
l1 B
下去,那么
B 一定能追
12 14
t /分
上 A。
(5)当 A 逃到离海岸12 B A 海 海里的公海时,B 将无法 对其进行检查。照此速度, 岸 B 能否在 A 逃入公海前 将其拦截? 从图中可以看出,l1 与 l2 交点P的纵坐标小于12,
(2)A、B 哪个速度快?海
t从0增加到10时,
岸
B
A
公 海
l2的纵坐标增加了2, l1的纵坐标增加了5,
s /海里
8 7 6 5 4 2 O
即10分内, A 行驶了2海里,
l2 A
l1 B
B 行驶了5海里,
所以 B 的速度快。
2 4 6 8
10
t /分
(3)15分钟内 B
能否追上 A?
海 岸
B
B
A
公 海
下图中 l1 ,l2 分别表 示 B 离岸起两船相对于海 海 岸的距离s与追赶时间t 岸 之间的关系。
B
A
公 海
根据图象回答下列问题: (1)哪条线表示 B 到海岸距离与追赶时间之间的关系?
s /海里
8 6 4 2 O 2 4 6 8 10
l2 A
l1 B
t /分
解:观察图象,得 当t=0时, B距海岸0海里,即 S=0, 故 l1 表示 B 到海 岸的距离与追赶时 间之间的关系;
一农民带上若干千克自产的土豆进城出 售,为了方便,他带了一些零钱备用, 按市场价售出一些后,又降价出售,售 出的土豆千克数与他手中持有的钱数 (含备用零钱)的关系,如图所示,结合 图象回答下列问题.
Y y=kx+b (k≠0)
X
O 1
练一练
l1 反映了某公司产品的销售收入与销售量 的关系,根据图意填空: 当销售量为2吨时,销售收入= 2000 元,
y/元
6000
L1 销售收入
5000
4000
3000
2000
1000
O
1
2
3
4
5
6
x/吨
l2 反映了该公司产品的销售成本与销售量的关系, 根据图意填空: 当销售成本=4500元时,销售量= 5 吨;
(5)乌龟要先到达终点,至少要比兔子早跑 4 分钟。
你还能用其他方法解决上述问题吗?
120 100 80 60
s /米
l2
l1
40
20
-4
-3
-2
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
小结:
你有哪些收获? 有什么困惑?
当一个坐标系中出现多个函 数图象时,你怎样处理?
第四章
一次函数
4. 一次函数的应用(第3课时)
10 8 6 4 2 O 2 4 6 8 10 12 14
公 海
s /海里
l2 A
P
这说明在
A 逃入公海前, 我边防快艇 B
l1 B
t /分
能够追上 A。
新龟兔赛跑
兔
这一次兔子全力以赴, 拿下了比赛!
乌龟
做一做
新龟兔赛跑
s /米 120 100 80 60 40 20 -4 -3 -2 -1 O
y/元
6000
5000
4000
l2 销售成本
3000
2000
1000
O
1
2
3
4
5
6
x/吨
l1 反映了公司产品的销售收入与销售量的关系。
l1对应的函数表达式是
y/元
6000
y=1000x
,
L1 销售收入
5000
4000
3000
2000
1000
O
1
2
3
4
5
6
x/吨
l2 反映了公司产品的销售成本与销售量的关系。
A
公 海
可以看出,当t=15时,l1上对应点在l2上对应点的下方。
s /海里
8 6 4 2 O 2 4 6 8 10 12 1415 t
l2 A
l1 B
这表明,
15分钟时 B
尚未追上 A。
/分
(4)如果一直追下去, 那么 B 能否追上 A?
海 岸
B
A
公 海
如图延伸l1 、l2 相交于点P。
s /海里