人教版高中数学必修五 习题 3.1 不等关系与不等式

合集下载

2020版数学人教A版必修5学案:第三章 3.1 不等关系与不等式 Word版含解析

2020版数学人教A版必修5学案:第三章 3.1 不等关系与不等式 Word版含解析

§3.1不等关系与不等式学习目标 1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法、作商法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.知识点一不等关系现实世界中存在大量的不等关系.试用不等式表示下列关系:(1)a大于b a>b(2)a小于b a<b(3)a不大于b a≤b(4)a不小于b a≥b知识点二作差法作差法的理论依据:a>b⇔a-b>0;a=b⇔a-b=0;a<b⇔a-b<0.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小,而且具有说服力吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点三不等式的基本性质不等式性质:(1)a>b⇔b<a(对称性);(2)a>b,b>c⇒a>c(传递性);(3)a>b⇒a+c>b+c(可加性);(4)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;(5)a>b,c>d⇒a+c>b+d;(6)a>b>0,c>d>0⇒ac>bd;(7)a>b>0,n∈N,n≥1⇒a n>b n;(8)a >b >0,n ∈N ,n ≥21.2≥1.( √ ) 2.ab >1⇒a >b .( × ) 3.a >b ⇔a +c >b +c .( √ )4.⎩⎪⎨⎪⎧a >b ,c >d ⇔a +c >b +d .( × )题型一 用不等式(组)表示不等关系例1 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(x ≥2.5).反思感悟 数学中考查的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时 (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.跟踪训练1 某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系: .(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *.题型二 比较大小命题角度1 作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小.解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2. 引申探究1.若a >0,b >0,a 5+b 5与a 3b 2+a 2b 3的大小关系又如何? 解 (a 5+b 5)-(a 3b 2+a 2b 3)=a 5-a 3b 2+b 5-a 2b 3 =a 3(a 2-b 2)+b 3(b 2-a 2) =(a 2-b 2)(a 3-b 3)=(a -b )2(a +b )(a 2+ab +b 2). ∵a >0,b >0,∴(a -b )2≥0,a +b >0,a 2+ab +b 2>0. ∴a 5+b 5≥a 3b 2+a 2b 3.2.对于a n +b n ,你能有一个更具一般性的猜想吗?解 若a >0,b >0,n >r ,n ,r ∈N *,则a n +b n ≥a r b n -r +a n -r b r .反思感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式. 跟踪训练2 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x . 命题角度2 作商法比较大小例3 若0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小关系. 解|log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=||log (1+x )(1-x ),∵0<x <1,∴||log (1+x )(1-x )=-log (1+x )(1-x )=log (1+x )11-x,∵1-x 2=(1+x )(1-x )<1,且1-x >0,∴1+x <11-x, ∴log (1+x )11-x >1,即|log a (1-x )||log a (1+x )|>1,∴|log a (1+x )|<|log a (1-x )|.反思感悟 作商法的依据:若b >0,则ab >1⇔a >b .跟踪训练3 若a >b >0,比较a a b b 与a b b a 的大小. 解 a a b b a b b a =a a -b b b -a =⎝⎛⎭⎫ab a -b , ∵a >b >0, ∴ab >1,a -b >0, ∴⎝⎛⎭⎫a b a -b >1,即a a b ba b b a >1, 又∵a >b >0,∴a a b b >a b b a . 题型三 不等式的基本性质 例4 已知a >b >0,c <0,求证:c a >c b .证明 因为a >b >0,所以ab >0,1ab >0.于是a ×1ab >b ×1ab ,即1b >1a .由c <0,得c a >cb.反思感悟 有关不等式的证明,最基本的依据是不等式的8条基本性质,在解不等式时,对不等式进行有关变形的依据也是8条基本性质. 跟踪训练4 如果a >b >0,c >d >0,证明:ac >bd . 证明⎭⎪⎬⎪⎫ ⎭⎬⎫a >b >0c >0⇒ac >bc >0⎭⎬⎫c >d >0b >0⇒bc >bd >0⇒ac >bd .用好不等式性质,确保推理严谨性典例 已知12<a <60,15<b <36,求ab 的取值范围.[错解] ∵12<a <60,15<b <36,∴1215<a b <6036,∴45<a b <53. [点拨] 在确保条件的前提下,同向不等式可以相乘,但同向不等式没有相除的性质,不能臆造.确需相除,可转化为相乘.[正解] ∵15<b <36,∴136<1b <115,又12<a <60,∴1236<a b <6015,∴13<ab <4, 即ab的取值范围是⎝⎛⎭⎫13,4. [素养评析] 逻辑推理讲究言必有据.在不等式这一章,我们要对不等式进行大量的运算、变形,而运算、变形的依据就是不等式的性质.通过考问每一步是否有依据,整个推理过程是否有条理,可以使我们的理性精神和交流能力得到提升.1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45. 2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b答案 C解析 由a +b >0,知a >-b ,∴-a <b <0. 又b <0,∴-b >0,∴a >-b >b >-a .3.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1b D.⎭⎬⎫ab >0a >b ⇒1a >1b答案 C解析 当c =0时,A 不成立;当c <0时,B 不成立;当ab <0时,a >b ⇒a ab <b ab ,即1a >1b ,C 成立.同理可证D 不成立.4.若a >b >0,c <d <0,则一定有( ) A.a d >bc B.ad <b c C.a c >b d D.a c <b d 答案 B解析 因为c <d <0,所以-c >-d >0, 即1-d >1-c>0. 又a >b >0,所以a -d >b-c ,从而有a d <b c.5.比较(a +3)(a -5)与(a +2)(a -4)的大小. 解 ∵(a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8)=-7<0, ∴(a +3)(a -5)<(a +2)(a -4).1.比较两个实数的大小,只要求出它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.作差法比较大小的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论); 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备.一、选择题1.设x <a <0,则下列不等式一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<ax D .x 2>a 2>ax答案 B解析 ∵x 2-ax =x (x -a )>0,∴x 2>ax . 又ax -a 2=a (x -a )>0,∴ax >a 2,∴x 2>ax >a 2. 2.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >a b 2B.a b 2>a b >aC.a b >a >a b 2D.a b >a b2>a 答案 D解析 取a =-2,b =-2,则a b =1,a b 2=-12∴a b >a b 2>a .3.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A.1a <1bB .a 2>b 2 C.a c 2+1>bc 2+1 D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b <0,此时1a >1b,∴A 不成立;对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立; 对于C ,∵c 2+1≥1,且a >b , ∴a c 2+1>bc 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.4.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ) A .ab >ac B .ac >bc C .a |b |>c |b | D .a 2>b 2>c 2答案 A解析 由a >b >c 及a +b +c =0,知a >0,c <0,⎩⎪⎨⎪⎧a >0,b >c ,则ab >ac .5.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C.1ab 2<1a 2b D.b a <a b答案 C解析 对于A ,在a <b 中,当a <0,b <0时,a 2<b 2不成立; 对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立; 对于C ,∵a <b ,1a 2b 2>0,∴1ab 2<1a 2b ;对于D ,当a =-1,b =1时,b a =ab=-1.6.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( ) A .M <N B .M ≤N C .M >N D .M ≥N 答案 C解析 当a >1时,a 3+1>a 2+1, y =log a x 为(0,+∞)上的增函数, ∴log a (a 3+1)>log a (a 2+1); 当0<a <1时,a 3+1<a 2+1,y =log a x 为(0,+∞)上的减函数, ∴log a (a 3+1)>log a (a 2+1), ∴当a >0且a ≠1时,总有M >N . 二、填空题7.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:当b >a >0且m >0时, . 答案a +mb +m >ab解析 变甜了,意味着含糖量大了,即浓度高了.8.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是 . 答案 ⎝⎛⎭⎫-32,52 解析 由函数的解析式可知0<a +b <2,-1<-a +b <1, 且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得, 2a -b ∈⎝⎛⎭⎫-32,52. 9.若x ∈R ,则x 1+x 2与12的大小关系为 . 答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 10.(x +5)(x +7)与(x +6)2的大小关系为 . 答案 (x +5)(x +7)<(x +6)2 解析 因为(x +5)(x +7)-(x +6)2 =x 2+12x +35-(x 2+12x +36)=-1<0. 所以(x +5)(x +7)<(x +6)2. 三、解答题11.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表示出来.解 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N ).12.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小. 解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1 =(2x -1)2+(x -y )2+(z -1)2≥0, ∴5x 2+y 2+z 2≥2xy +4x +2z -2, 当且仅当x =y =12且z =1时取等号.13.已知a >b >0,c <d <0,e <0,求证:e a -c >eb -d .证明 ∵c <d <0,∴-c >-d >0, 又∵a >b >0,∴a +(-c )>b +(-d )>0, 即a -c >b -d >0,∴0<1a -c <1b -d,又∵e <0,∴e a -c >eb -d.14.若x >0,y >0,M =x +y 1+x +y ,N =x 1+x +y1+y ,则M ,N 的大小关系是( )A .M =NB .M <NC .M ≤ND .M >N答案 B解析 ∵x >0,y >0,∴x +y +1>1+x >0,1+x +y >1+y >0, ∴x 1+x +y <x 1+x ,y 1+x +y <y1+y,故M =x +y 1+x +y =x 1+x +y +y 1+x +y <x 1+x +y1+y=N ,即M <N .15.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -3y 的取值范围是 . 答案 [-6,9]解析 设9x -3y =a (x -y )+b (4x -y )=(a +4b )x -(a +b )y ,∴⎩⎪⎨⎪⎧ a +4b =9,a +b =3⇒⎩⎪⎨⎪⎧a =1,b =2,∴9x -3y =(x -y )+2(4x -y ),∵-1≤4x -y ≤5,∴-2≤2(4x -y )≤10, 又-4≤x -y ≤-1, ∴-6≤9x -3y ≤9.。

人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用

人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用

第三章 不等式 3.1 不等关系与不等式 第2课时不等式的性质与应用A 级 基础巩固一、选择题1.若a >0,b >0,则不等式-b <1x <a 等价于( )A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析:由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a ;(2)当x <0时,-b <1x <a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a .答案:D2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b <2a <2D .a 2<ab <1答案:C3.已知实数x,y,满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y 的取值范围是()A.[-7,26] B.[-1,20]C.[4,15] D.[1,15]答案:B4.已知a<b<0,那么下列不等式成立的是()A.a3<b3B.a2<b2C.(-a)3<(-b)3D.(-a)2<(-b)2解析:取a=-2.b=-1.验证知B,C,D均错,故选A.答案:A5.如下图所示,y=f(x)反映了某公司的销售收入y与销量x之间的函数关系,y=g(x)反映了该公司产品的销售成本与销售量之间的函数关系,当销量x满足下列哪个条件时,该公司盈利()A.x>a B.x<aC.x≥a D.0≤x≤a解析:当x<a时,f(x)<g(x);当x=a时,f(x)=g(x);当x>a 时,f(x)>g(x),故选A.答案:A二、填空题6.若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a这四个式子中,恒成立的序号是________. 答案:②④7.若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.答案:(-56π,0)8.设x >1,-1<y <0,试将x ,y ,-y 按从小到大的顺序排列如下________.答案:y <-y <x 三、解答题9.已知a >b >0,c <d <0,判断b a -c 与ab -d 的大小.解:因为a >b >0,c <d <0,所以-c >-d >0,所以a -c >b -d >0, 所以0<1a -c <1b -d,又因为a >b >0,所以b a -c <ab -d.10.已知0<x <1,0<a <1,试比较|log a (1-x )|和 |log a (1+x )|的大小.解:法一:|log a (1-x )|2-|log a (1+x )|2=[log a (1-x )+log a (1+x )]·[log a (1-x )-log a (1+x )]=log a (1-x )2log a 1-x 1+x.因为0<1-x 2<1,0<1-x1+x<1,所以log a (1-x 2)log a 1-x1+x>0.所以|log a (1-x )|>|log a (1+x )|.法二:⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log 1+x (1-x )|= -log 1+x (1-x )=log 1+x 11-x =log 1+x 1+x 1-x 2=1-log 1+x (1-x 2). 因为0<1-x 2<1,1+x >1, 所以log 1+x (1-x 2)<0. 所以1-log 1+x (1-x 2)>1. 所以|log a (1-x )|>|log a (1+x )|. 法三:因为0<x <1,所以0<1-x <1,1<1+x <2, 所以log a (1-x )>0,log a (1+x )<0. 所以|log a (1-x )|-|log a (1+x )|= log a (1-x )+log a (1+x )=log a (1-x 2). 因为0<1-x 2<1,且0<a <1, 所以log a (1-x 2)>0.所以|log a (1-x )|>|log a (1+x )|.B 级 能力提升1.对下列不等式的推论中: ①a >b ⇒c -a >c -b ; ②a >b +c ⇒(a -c )2>b 2; ③a >b ⇒ac >bc ;④a >b >c >0⇒(a -c )b >(b -c )b ;⑤a >b ,1a >1b ⇒a >0,b <0.其中正确的个数是( ) A .2 B .3 C .4 D .5 答案:A2.若-2<c <-1<a <b <1,则(c -a )(a -b )的取值范围为________.答案:(0,6)3.若二次函数f (x )的图象关于y 轴对称,且1≤f (1)≤2;3≤f (2)≤4,求f (3)的取值范围.解:由题意设f (x )=ax 2+c (a ≠0),则⎩⎪⎨⎪⎧f (1)=a +c ,f (2)=4a +c ,所以⎩⎨⎧a =f (2)-f (1)3,c =4f (1)-f (2)3,而f (3)=9a +c =3f (2)-3f (1)+4f (1)-f (2)3=8f (2)-5f (1)3,因为1≤f (1)≤2,3≤f (2)≤4, 所以5≤5f (1)≤10,24≤8f (2)≤32, 所以-10≤-5f (1)≤-5, 所以14≤8f (2)-5f (1)≤27, 所以143≤8f (2)-5f (1)3≤9,即143≤f (3)≤9.。

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

2.已知
a>b>0,求证:
a b>
b a.
证明:因为 a>b>0,所以 a> b >0.①又因为 a>b>0,两边同
乘正数a1b,得1b>1a>0.②
①②两式相乘,得
a b>
b a.
利用不等式性质求代数式的取值范围
已知-1<x<4,2<y<3. (1)求 x-y 的取值范围; (2)求 3x+2y 的取值范围. 【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以 -4<x-y<2. (2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x +2y<18.
A.ad>bc
B.ac>bd
C.a-c>b-d
D.a+c>b+d
解析:选 D.令 a=2,b=-2,c=3,d=-6,可排除 A,B,
C.由不等式的性质 5 知,D 一定成立.
若 x<1,M=x2+x,N=4x-2,则 M 与 N 的大小关系为 ________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M>N. 答案:M>N
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍 还要高.设太阳表面温度为 t ℃,那么 t 应满足的关系式是 ________. 解析:由题意得,太阳表面温度的 4.5 倍小于雷电的温度, 即 4.5t<28 000. 答案:4.5t<28 000

人教版高一数学必修5 第三章《不等式》1

人教版高一数学必修5 第三章《不等式》1

必修5 不等式不等关系与不等式知识点:1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①a b b a >⇔<; ②,a b b c a c >>⇒>; ③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<; ⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1nna b a bn n >>⇒>∈N ≥;⑧()0,2n n a b a b n n >>⇒>∈N ≥.【基础练习】1、已知a b >,c d >,且c 、d 不为0,那么下列不等式成立的是( )A .ad bc >B .ac bc >C .a c b d ->-D .a c b d +>+ 2、下列命题中正确的是( )A .若a b >,则22ac bc > B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b < D .若a b >,c d <,则a b c d> 3、下列命题中正确命题的个数是( )①若x y z >>,则xy yz >; ②a b >,c d >,0abcd ≠,则a bc d>; ③若110a b <<,则2ab b <; ④若a b >,则11b b a a ->-. A .1 B .2 C .3 D .44、如果0a <,0b >,则下列不等式中正确的是( ) A .11a b< B .a b -< C .22a b < D .a b >5、下列各式中,对任何实数x 都成立的一个式子是( )A .()2lg 1lg 2x x +≥ B .212x x +> C .2111x ≤+ D .12x x+≥ 6、若a 、b 是任意实数,且a b >,则( )A .22a b > B .1b a < C .()lg 0a b -> D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7、如果a R ∈,且20a a +<,那么a ,2a ,a -,2a -的大小关系是( ) A .22a a a a >>->- B .22a a a a ->>-> C .22a a a a ->>>-D .22a a a a >->>-8、若231x x M =-+,22x x N =+,则( )A .M >NB .M <NC .M ≤ND .M ≥N9、若2x ≠或1y ≠-,2242x y x y M =+-+,5N =-,则M 与N 的大小关系是( ) A .M >NB .M <NC .M =ND .M ≥N10、不等式①222a a +>,②()2221a b a b +≥--,③22a b ab +>恒成立的个数是( )A .0B .1C .2D .311、已知0a b +>,0b <,那么a ,b ,a -,b -的大小关系是( ) A .a b b a >>->- B .a b a b >->-> C .a b b a >->>-D .a b a b >>->-12、给出下列命题:①22a b ac bc >⇒>;②22a b a b >⇒>;③33a b a b >⇒>;④22a b a b >⇒>.其中正确的命题是( ) A .①②B .②③C .③④D .①④13、已知实数a 和b 均为非负数,下面表达正确的是( )A .0a >且0b >B .0a >或0b >C .0a ≥或0b ≥D .0a ≥且0b ≥14、已知a ,b ,c ,d 均为实数,且0ab >,c da b -<-,则下列不等式中成立的是( ) A .bc ad <B .bc ad >C .a b c d >D .a bc d<15、若()231f x x x =-+,()221g x x x =+-,则()f x ,()g x 的大小关系是( )A .()()f x g x <B .()()f x g x =C .()()f x g x >D .随x 值的变化而变化 16、某一天24小时内两艘船均须在某一码头停靠一次,为了卸货的方便,两艘船到达该码头的时间至少要相差两小时,设甲、乙两船到达码头的时间分别为x ,y 时,且两船互不影响,则x ,y 应满足的关系是( )A .200y x x y -≥⎧⎪≥⎨⎪≥⎩B .200x y x y -≥⎧⎪≥⎨⎪≥⎩C .200y x x y ->⎧⎪≥⎨⎪≥⎩ D .2024024y x x y ⎧-≥⎪≤≤⎨⎪≤≤⎩17. 四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示. 盛满酒后他们约定:先各自饮杯中酒的一半. 设剩余酒的高度从左到右依次为1234,,,h h h h ,则它们的大小关系正确的是( ).(A )2h >1h >4h (B ) 1h >2h >3h (C ) 3h >2h >4h (D ) 2h >4h >1h 18. 右图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示(50,55;20,30;30,35),图中123,,x x x 分别表示该时段单位时间通过路段 ,,AB BCCA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则 ( )(A )123x x x >> (B )1x >3x >2x (C )231x x x >> (D )231x x x >>19、某商场对顾客实行优惠活动,规定一次购物付款总额:①200元以内(包括200元)不予优惠;②超过200元不超过500元,按标价9折优惠;③超过500元其中500元按②优惠,超过部分按7折优惠,某人两次购物分别付款168元和423元,若他一次购物,应付款_______________元.20、某高校录取新生对语、数、英三科的高考分数的要求是:语文不低于70分;数学应高于80分;语、数、英三科的成绩之和不少于230分.若张三被录取到该校,设该生的语、数、英的成绩分别为x ,y ,z ,则x ,y ,z 应满足的条件是____________________________. 21、用“>”“<”号填空:如果0a b c >>>,那么c a ________c b. 22、某品牌酸奶的质量规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是____________________.23、某中学对高一美术生划定录取控制分数线,专业成绩x 不低于95分,文化课总分y 不低于380分,体育成绩z 不低于45分,写成不等式组就是____________________. 24、若0a b <<,且12a b +=,则12,a ,2ab ,22a b +中最大的是_______________. 25、a 克糖水中有b 克糖(0a b >>),若再添进m 克糖(0m >),则糖水就变甜了,试根据事实提炼一个不等式______________________.26、已知a 、b R +∈,且a b ≠,比较55a b +与3223a b a b +的大小.27、比较下列各组中两个数或代数式的大小: ⑴ 117+与153+; ⑵ ()()4422a b a b ++与()233a b +.28、已知0a b >>,0c d <<,0e <,求证:e e a c b d>--.29、若0,0a b >>,求证:22b a a b a b+≥+.30、已知a 、b 为正实数,试比较a b b a+与a b +的大小.31、已知22ππαβ-<<<,求αβ-的范围.32、已知 1260,1536a b <<<<,求a b -及ab的取值范围.33、若二次函数()y f x =的图象过原点,且()()112,314,f f ≤-≤≤≤求()2f -的取值范围.一元二次不等式及其解法知识点:1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.2、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-±∆=()12x x <有两个相等实数根122bx x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅【基础练习】1、不等式2654x x +<的解集为( ) A .41,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ B .41,32⎛⎫- ⎪⎝⎭ C .14,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ D .14,23⎛⎫- ⎪⎝⎭2、设集合{}12x x A =≤≤,{}0x x a B =-<,若A B ≠∅ ,那么实数a 的取值范围是( ) A .()1,+∞ B .[)2,+∞ C .(],2-∞ D .[)1,+∞3、若不等式210x mx ++>的解集为R ,则m 的取值范围是( ) A .R B .()2,2- C .()(),22,-∞-+∞ D .[]2,2-4、设一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值是( )A .6-B .5-C .6D .55、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式222693191122x x x x -+++⎛⎫⎛⎫≤⎪ ⎪⎝⎭⎝⎭的解集是( )A .[]1,10-B .()[),110,-∞-+∞C .RD .(][),110,-∞-+∞8、不等式()()120x x --≥的解集是( )A .{}12x x ≤≤B .{}12x x x ≥≤或C .{}12x x <<D .{}12x x x ><或9、不等式()200ax bx c a ++<≠的解集为∅,那么( )A .0a <,0∆>B .0a <,0∆≤C .0a >,0∆≤D .0a >,0∆≥10、设()21f x x bx =++,且()()13f f -=,则()0f x >的解集是( )A .()(),13,-∞-+∞B .RC .{}1x x ≠ D .{}1x x =11、若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( ) A .1a x a <<B .1x a a <<C .x a <或1x a >D .1x a<或x a > 12、不等式()130x x ->的解集是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .()1,00,3⎛⎫-∞ ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .10,3⎛⎫ ⎪⎝⎭13、二次函数()2y ax bx c x R =++∈的部分对应值如下表:x3- 2- 1- 0 1 2 3 4y60 4- 6-6- 4- 06则不等式20ax bx c ++>的解集是____________________________.14、若0a b >>,则()()0a bx ax b --≤的解集是_____________________________.15、不等式20a x b xc ++>的解集为{}23x x <<,则不等式20a x b x c -+>的解集是________________________.16、不等式2230x x -->的解集是___________________________.17、不等式2560x x -++≥的解集是______________________________.18、()21680k x x --+<的解集是425x x x ⎧⎫<->⎨⎬⎩⎭或,则k =_________.19、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________.20、不等式30x x +≥的解集为____________________. 21、求下列不等式的解集:⑴ ()()410x x +--<; ⑵ 232x x -+>; ⑶ 24410x x -+>.22、已知不等式220ax bx ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,求a 、b 的值.23、已知集合{}290x x A =-≤,{}2430x x x B =-+>,求A B ,A B .25、求函数()()124lg 2--+=x x x x f 的定义域.第 11 页 共 11 页 26、用一根长为m 100的绳子能围成一个面积大于2600m 的矩形吗? 当长、宽分别为多少米时,所围成的矩形的面积最大?27、已知0122>++mx mx 恒成立,求m 的范围.。

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.

高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5

高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5
A.5x+4y<200 B.5x+4y≥200 C.5x+4y=200 D.5x+4y≤200
2.设 M=x2,N=-x-1,则 M 与 N 的大小关系是( )
A.M>N
B.M=N
C.M<N
D.与 x 有关
A [M-N=x2-(-x-1)=x2+x+1=x+122+34>0,故 M>N.]
a>b,b>c⇒_a_>_c_
性质 3(可加性)
a>b⇒_a_+__c_>_b_+__c_
推论 1 性质 3
推论 2
a+b>c⇒_a_>__c_-__b__ a>b,c>d⇒_a_+__c_>__b_+__d_
性质 4(可乘性) a>b,c>0⇒_a_c_>__b_c_;a>b,c<0⇒_a_c_<__b_c_
2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为 正确吗?
[提示] 不正确.因为同向不等式具有可加性与可乘性.但不能 相减或相除,解题时要充分利用条件,运用不等式的性质进行等价变 形,而不可随意“创造”性质.
3.你知道下面的推理、变形错在哪吗? ∵2<a-b<4, ∴-4<b-a<-2. 又∵-2<a+b<2, ∴0<a<3,-3<b<0, ∴-3<a+b<3. 这怎么与-2<a+b<2 矛盾了呢?
1.利用不等式的性质证明不等式注意事项 (1)利用不等式的性质及其推论可以证明一些不等式.解决此类问 题一定要在理解的基础上, 记准、记熟不等式的性质并注意在解题 中灵活准确地加以应用. (2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.

人教B版人教B版高中数学必修五3.1不等关系与不等式(人教实验B版).docx

人教B版人教B版高中数学必修五3.1不等关系与不等式(人教实验B版).docx

3.1不等关系与不等式(人教实验B 版必修5)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题5分,共20分)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是()A.a 2<b 2B.ab 2<a 2bC.21ab <21a b D.b a <a b 2.若1a <1b<0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④a 2<b 2中, 正确的个数是() A.1B.2C.3D.43.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是()A.1a <1b B.a 2>b 2 C.21a c +>21b c + D.a |c |>b |c | 4.如果c <b <a ,且ac <0,那么下列不等式不一定成立的是()A.ab >acB.c (b -a )>0C.cb 2<ab 2D.ac (a -c )<0二、填空题(每小题5分,共10分) 5.已知a >b >0,c <d <0,则b ac -与ab d-的大小关系是.6.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -db>0; ②若ab >0,c a -db>0,则bc -ad >0; ③若bc -ad >0,c a -db>0,则ab >0.其中正确命题的个数是.三、解答题(共70分)7.(15分)已知f (x )=ax 2+b ,若1≤f (1)≤2,2≤f (2)≤3,求f (3)的范围.8.(20分)已知a ,b ,c 是不全相等的正数,求证:a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2)>6abc .9.(15分)已知0<a<1,0<b<1,0<c<1.求证:(1-a)b,(1-b)c,(1-c)a不能都大于14.10.(20分)若二次函数y=f(x)的图象关于y轴对称,且1≤f(1)≤2,3≤f(2)≤4,求f(3)的范围.3.1 不等关系与不等式(数学人教实验B版必修5)答题纸得分:一、选择题题号 1 2 3 4答案二、填空题5.6.三、解答题7.8.9.10.3.1 不等关系与不等式(数学人教实验B版必修5)答案一、选择题1.C 解析:若a <b <0,则a 2>b 2,故A 错;若0<a <b ,则b a >ab,故D 错;若ab >0,则a 2b <ab 2,故B 错. 2.B 解析:∵1a <1b<0,∴b <a <0,∴a +b <0<ab ,|b |>|a |,∴a 2<b 2,故①④正确. 3.C 解析:∵a >b ,c 2+1>0,∴21a c +>21bc +.4.C 解析:∵c <a 且ac <0,∴c <0<a .但b 的符号不确定,∴当b =0时,cb 2=ab 2=0,∴cb 2<ab 2不一定成立.二、填空题5.b ac -<a bd -解析:∵a >b >0,-c >-d >0,∴a -c >b -d >0,∴ 0<1a c -<1b d-. ∵a >b >0,∴b a c -<ab d-.6.3 解析:由bc -ad >0得bc >ad ,又ab >0,∴bc ab >ad ab ,即c a >d b ,∴c a -db>0,故①正确;由ab >0,c a -d b >0,得ab (c a -db )>0,即bc -ad >0,故②正确;由c a -d b >0,得bc ad ab->0,又bc -ad >0,∴ab >0,故③正确. 三、解答题7. 解法一:整体代换.令f (3)=9a +b =m (a +b )+n (4a +b )=(m +4n )a +(m +n )b ,则49,1,m n m n +=⎧⎨+=⎩解得5,38.3m n ⎧=-⎪⎪⎨⎪=⎪⎩即f (3)=53-(a +b )+83(4a +b ).因为1≤a +b ≤2,2≤4a +b ≤3, 所以2≤f (3)≤193,即f (3)的范围是[2,193]. 解法2:巧妙换元.令a +b =x ,4a +b =y ,则a =3y x -,b =43x y-,1≤x ≤2,2≤y ≤3. 因为f (3)=9a +b =853y x-,6≤8y -5x ≤19,所以2≤f (3)≤193,即f (3)的范围是[2,193].8.证明:∵ (b-c )2≥0,∴ b 2+c 2-2bc ≥0,即b 2+c 2≥2bc.又a >0,∴a (b 2+c 2)≥2abc .同理b (c 2+a 2)≥2abc ,c (a 2+b 2)≥2abc . ∵a ,b ,c 不全相等,∴以上三个式子中至少有一个式子取不到等号(这是在论证中极易忽略的). 故a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2)>6abc .9.证明:假设(1-a )b14,(1-b )c 14,(1-c )a 14, 由(1a --b )2≥0,展开得(1)2a b -+≥(1)a b ->12.同理可得(1)2b c -+>12,(1)2c a -+>12.∴(1)2a b -++(1)2b c -++(1)2c a -+>32,即32>32,矛盾.∴原结论成立.10.解:设f (x )=ax 2+c (a ≠0),则f (1)=a+c ,f (2)=4a+c. 又∵f (3)=9a +c ,故设λ1f (1)+λ2f (2)=f (3),则有121249,1,λλλλ+=⎧⎨+=⎩解得125,38,3λλ⎧=-⎪⎪⎨⎪=⎪⎩∴f (3)=8(2)5(1)3f f -.∵ 1≤f (1)≤2,3≤f (2)≤4,∴ 5≤5f (1)≤10,24≤8f (2)≤32.∴ 14≤8f (2)-5f (1)≤27. ∴143≤8(2)5(1)3f f -≤9,即143≤f (3)≤9.。

高中数学3-1不等关系与不等式习题新人教A版必修5

高中数学3-1不等关系与不等式习题新人教A版必修5

3.1不等关系与不等式一、选择题:本题共8个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】已知a b >,c d >,那么一定正确的是 ( )A .ad bc >B .ac bd >C .a c b d ->-D .a d b c ->-2.【题文】设201612016a ⎛⎫= ⎪⎝⎭,120162016b =,1lg 2016c =,则c b a ,,的大小关系为 ( ) A .c a b << B .b c a <<C .a b c <<D .b a c <<3.【题文】已知,a b 为非零实数,且0a b <<,则下列命题成立的是 ( )A .22a b <B .2211ab a b <C .22a b ab <D .b a a b< 4.【题文】设22(21),(1)(3)M a a N a a =--=+-,则有 ( )A. M N >B. M N ≥C. M N <D. M N ≤5.【题文】如果01a <<,那么下列不等式中正确的是 ( )A .(1)log (1)0a a -+>C .32(1)(1)a a ->+D .1(1)1a a +->6.【题文】设,a b ∈R ,若0a b ->,则下列不等式中正确的是 ( )A .0b a ->B .330a b +<C .220a b -<D .0b a +> 7.【题文】设 1a b >>,0c <,给出下列三个结论:①c c a b>;②c c a b >; ③()()log >log b a a c b c --.其中所有正确结论的个数是 ( )A .0B .1C .2D .38.【题文】已知,,a b c ∈R ,则下列推证中错误的是( )A .22a b ac bc >⇒≥B .,0a b c a b c c><⇒< C .3311,0a b ab a b >>⇒< D .2211,0a b ab a b >>⇒<二、填空题:本题共3小题.9.【题文】132-,123,2log 5三个数中最大的数是 . 10.【题文】若13,12,a b ≤≤-≤≤则2a b -的取值范围为______.11.【题文】若2,a b c ==,则a 、b 、c 的大小顺序是 .三、解答题:解答应写出文字说明,证明过程或演算步骤.12.【题文】已知:m n >,a b <,求证:m a n b ->-.13.【题文】设110,1ab a >->,比较a +1的大小. 14.【题文】已知,a b ∈R ,b a x -=3,a b a y -=2,试比较x 与y 的大小.3.1不等关系与不等式 参考答案及解析1. 【答案】D【解析】由同向不等式的加法性质可知由a b >,c d >,可得,a c b d a d b c +>+∴->-.考点:不等式性质.【题型】选择题【难度】较易2. 【答案】D 【解析】()201612016110,1,20161,lg 0,.20162016a b c c a b ⎛⎫=∈=>=<∴<< ⎪⎝⎭考点:比较大小.【题型】选择题【难度】较易3. 【答案】B 【解析】因为0a b <<,所以可令2,1a b =-=,可排除A 、C 、D ,故选B.考点:不等式的性质.【题型】选择题【难度】较易4. 【答案】B【解析】()()()()22222211324223M N a a a a a a a a a -=---+-=-----=-()22110a a +=-≥恒成立,所以M N ≥.故B 正确.考点:作差法比较大小.【题型】选择题【难度】一般5. 【答案】A【解析】因为01,a <<所以011,a <-<所以(1)x y a =-在R 上单调递减,所以A.本题也可以用特殊值法,如:令12a =来解决. 考点:比较大小.【题型】选择题【难度】一般6. 【答案】D 【解析】由0a b ->得a b >,0,,0.a b a b a b ∴>≥∴>±∴+>考点:不等式性质.【题型】选择题【难度】一般7. 【答案】C【解析】①∵1a b >>,0c <,∴(0c c c b a a b ab --=>),故c c a b>,正确; ②∵0c <,∴c y x =在()0,+∞上是减函数,而0a b >>,所以c c a b <,错误;③当1a b >>时,有()()()log >log >log b b a a c b c b c ---,正确.故选C .考点:比较大小.【题型】选择题【难度】一般8. 【答案】D【解析】对于A : 20c ≥,则22ac bc ≥,故A 正确;对于B :0a b a b c c c--=> ,当0c <时,有a b <,故B 正确; 对于C :∵33a b >,0ab >,∴不等式两边同乘以()3ab 的倒数,得到3311b a >,即11a b<,故C 正确; 对于D :∵22a b >,0ab >,∴不等式两边同乘以()2ab 的倒数,得到2211b a >,不一定有11a b<,故D 错误.故选D . 考点:不等关系与不等式.【题型】选择题【难度】较难9. 【答案】2log 5 【解析】11322221,12,log 5log 42-<<<>=,所以最大的数为2log 5. 考点:指数、对数式大小判定.【题型】填空题【难度】一般10.【题文】若13,12,a b ≤≤-≤≤则2a b -的取值范围为______.【答案】[]0,7【解析】13,12,226,21,a b a b ≤≤-≤≤∴≤≤-≤-≤利用同向不等式可以相加,得到2a b -的取值范围为[]0,7.考点:不等式的性质.【题型】填空题【难度】一般10. 【答案】[]0,7【解析】13,12,226,21,a b a b ≤≤-≤≤∴≤≤-≤-≤利用同向不等式可以相加,得到2a b -的取值范围为[]0,7.考点:不等式的性质.【题型】填空题【难度】一般11. 【答案】a b c >>【解析】a ==,2bc ===,因为20+>,>>,故a b c >>. 考点:不等关系与不等式.【题型】填空题【难度】一般12. 【答案】证明略【解析】证法一:由m n >知0m n ->,由a b <知0b a ->.∴()()()()0m a n b m n b a m a n b ---=-+->⇒->-.证法二:∵a b <,∴a b ->-,又∵m n >,∴()()m a n b +->+-,即m a n b ->-.考点:不等式的性质.【题型】解答题【难度】较易13. 【答案】ba ->+111 【解析】由,10111,0<<⇒>->b a b a2211111ab a b ab b a b b ⎛⎫-- ⎪--⎝⎭∴-==--, 又110,10,1ab b b a>->->,22∴-⇒> 考点:平方法作差比较大小.【题型】解答题【难度】一般14. 【答案】详见解析 【解析】()()()32221x y a b a b a a a b a b a b a -=--+=-+-=-+, 当b a >时,0>-y x ,所以y x >;当b a =时,0=-y x ,所以y x =;当b a <时,0<-y x ,所以y x <.考点:作差法比较大小.【题型】解答题【难度】一般。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.m>n>pD.p>m>n
解析:∵a>1,∴a2+1>2a,2a>a-1.
已知m=loga(a2+1),n=loga(a-1),p=loga(2a),
∴m、n、p的大小关系为m>p>n.
答案:B
7.若1< < ,则有如下结论:
①logab>logba;②|logab+logba|>2;③(logba)2<1;④|logab|+|logba|>|logab+logba|.
解析:由4≤ ≤9,得16≤ ≤81.
又∵3≤xy2≤8,∴ ≤ ≤ ,∴2≤ ≤27.
又∵x=3,y=1满足条件,这时 =27.
∴ 的最大值是27.
答案:27
13.设f(x)=(4a-3)x+b-2a,x∈,若f(0)≤2,f(1)≤2,求a+b的取值范围.
解:∵f(0)=b-2a,f(1)=b+2a-3,
① > ;②ac<bc;③logb(a-c)>loga(b-c).
其中所有的正确结论的序号是()
A.①B.①②
C.②③D.①②③
解析:由a>b>1,c<0得 < , > ;幂函数y=xc(c<0)是减函数,所以ac<bc;因为a-c>b-c,所以logb(a-c)>loga(a-c)>loga(b-c),①②③均正确,选D.
将上式中的右式减左式,得-=-=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).
∵x≥1,y≥1,∴(xy-1)(x-1)(y-1)≥0,
逆推可得所要证明的不等式成立.
(2)设logab=x,logbc=y,由对数的换底公式得
logca= ,logba= ,logcb= ,logac=xy.
于是,所要证明的不等式即为x+y+ ≤ + +xy,
其中x=logab≥1,y=logbc≥1.
故由(1)可知所要证明的不等式成立.
且f(0)≤2,f(1)≤2,
∴a= ,b= ⇒a+b= ≤ .
∴a+b的取值范围是 .
14.(1)设x≥1,y≥1,证明:x+y+ ≤ + +xy;
(2)设1<a≤b≤c,证明:logab+logbc+logca≤logba+logcb+logac.
证明:(1)∵x≥1,y≥1,
∴x+y+ ≤ + +xy⇔xy(x+y)+1≤y+x+(xy)2.
不等关系与不等式
A组 基础巩固
1.已知c<d,a>b>0,下列不等式中必成立的一个是()
A.a+c>b+dB∵c<d,∴-c>-d.又∵a>b>0,∴a-c>b-d.故选B.
答案:B
2.下列说法正确的个数为()
①若a>|b|,则a2>b2;②若a>b,c>d,则a-c>b-d;③若a>b,c>d,则ac>bd;④若a>b>0,c<0,则 > .
C.1+dm+n≥dm+dnD.不能确定
解析:1+dm+n-(dm+dn)=(1-dm)+dn(dm-1)=(1-dm)(1-dn).
∵m,n∈N*,1-dm与1-dn同号,∴(1-dm)(1-dn)>0.
答案:A
12.设x,y为实数,满足3≤xy2≤8,4≤ ≤9,则 的最大值是________.
3.若x≠2且y≠-1,则M=x2+y2-4x+2y的值与-5的大小关系是()
A.M>-5 B.M<-5
C.M=-5 D.不能确定
解析:M-(-5)=x2+y2-4x+2y+5=(x-2)2+(y+1)2,∵x≠2且y≠-1,∴(x-2)2+(y+1)2>0,∴M>-5.故选A.
答案:A
4.设a>b>1,c<0,给出下列三个结论:
10.已知a>b>c>0,求证: > > .
证明:因为 - = , - = .又a>b>c>0,则a-c>0,a-b>0,b-c>0,所以 >0, >0,即 - >0, - >0,所以 > > .
B组 能力提升
11.若d>0,d≠1,m,n∈N*,则1+dm+n与dm+dn的大小关系是()
A.1+dm+n>dm+dnB.1+dm+n<dm+dn
解析:由b的范围,可求-b的范围, 的范围,再由不等式性质,可求a-b的范围, 的范围.由15<b<36⇒ ⇒-24<a-b<45.由15<b<36⇒ ⇒ < <4.∴a-b, 的取值范围分别为(-24,45), .
答案:(-24,45)
9.(1)设m≠n,x=m4-m3n,y=n3m-n4,比较x与y的大小;
∴(m-n)2(m2+mn+n2)>0,
∴x-y>0,∴x>y.
(2)P-Q=loga(a3+1)-loga(a2+1)=loga .
当a>1时,a3+1>a2+1,
∴ >1,∴loga >0;
当0<a<1时,a3+1<a2+1,
∴ <1,∴loga >0.
综上可知,当a>0且a≠1时,P-Q>0,即P>Q.
A.1 B.2
C.3 D.4
解析:①∵a>|b|≥0,∴a2>b2成立,∴①正确;
②取a=2,b=1,c=3,d=-2,则2-3<1-(-2),故②错误;
③取a=4,b=1,c=-1,d=-2,则4×(-1)<1×(-2),故③错误;
④∵a>b>0,∴0< < 且c<0,∴ > ,
∴④正确.
答案:B
(2)已知a>0且a≠1,P=loga(a3+1),Q=loga(a2+1),比较P与Q的大小.
解:(1)x-y=(m4-m3n)-(n3m-n4)=m3(m-n)-n3(m-n)=(m-n)(m3-n3)=(m-n)2(m2+mn+n2).
∵m≠n,∴(m-n)2>0.
又∵m2+mn+n2= 2+ >0,
答案:D
5.若a<b<c,则 + 的值为()
A.正数B.负数
C.非正数D.非负数
解析: + = = .
∵a<b<c,∴c-b>0,a-c<0,a-b<0,
∴ >0.
答案:A
6.若a>1,且m=loga(a2+1),n=loga(a-1),p=loga(2a),则m,n,p的大小关系为()
A.n>m>pB.m>p>n
其中,正确的结论是________(填序号).
解析:用特殊值法.由1< < ,知0<b<a<1.
令a= ,b= ,则logab=2,logba= .
可判定①②③均正确,④不正确.
答案:①②③
8.已知12<a<60,15<b<36,则a-b的取值范围为________, 的取值范围为________.
相关文档
最新文档