纳米二氧化钛的制备及性质实验

合集下载

实验溶胶凝胶法制备纳米二氧化钛实验

实验溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理;2、了解TiO2纳米粒子光催化机理;二、实验原理溶胶-凝胶法Sol-Gel法是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法;溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:TiORn+H2OTiOHORn-1+ROHTiOHORn-1+H2OTiOH2ORn-2+ROH……反应持续进行,直到生成TiOHn.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成;三、原料及设备仪器1、原料:钛酸正四丁脂分析纯、无水乙醇分析纯、冰醋酸分析纯、盐酸分析纯、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯TiOC4H94为前驱物,无水乙醇C2H5OH为溶剂,冰醋酸CH3COOH为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶;1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A;2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3;3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中;4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶倾斜烧瓶凝胶不流动;5、置于80℃下烘干,大约20h,得黄色晶体,研磨,得到淡黄色粉末;6、在600℃下热处理2h,得到二氧化钛纯白色粉体;五、思考题1、溶胶-凝胶法制备材料有哪些优点2、纳米二氧化钛粉体有哪些用途六、实验报告要求实验报告按照学校统一模板书写,包括下列内容:1、实验名称、目的和实验步骤;2、解答思考题;。

纳米二氧化钛的制备实验综述

纳米二氧化钛的制备实验综述

纳米二氧化钛的制备实验综述摘要:纳米二氧化钛,亦称纳米钛白粉。

其外观为白色疏松粉末。

具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。

关键词:纳米二氧化钛、溶胶凝胶法、应用、发展前景溶胶凝胶法:溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

一、二氧化钛的性质:白色无定形粉末。

溶于氢氟酸和热浓硫酸,不溶于水、盐酸、硝酸和稀硫酸。

与硫酸氢钾或与氢氧化碱或碳酸碱共同熔融成钛酸碱后可溶于水。

相对密度约4.0。

熔点1855℃。

二、纳米二氧化钛的应用1、杀菌:用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。

在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。

因此,纳米TiO2能净化空气,具有除臭功能。

2、防紫外线:纳米二氧化钛的强抗紫外线能力是由于其具有高折光性和高光活性。

其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。

防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫外线的反射、散射性不明显,而对中波区紫外线的吸收性明显增强。

其防晒机理是吸收紫外线,主要吸收中波区紫外线。

3、纳米二氧化钛可作为锂电池、太阳能电池原料(1)纳米二氧化钛具有极好的高倍率性能和循环稳定性,快速充放电性能和较高的容量,脱嵌锂可逆性好等特点,在锂电池领域具有很好的应用前景。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备方法综述纳米二氧化钛的制备方法综述【摘要】纳米二氧化钛(Ti02)具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点之一。

本文主要对纳米二氧化钛的各种制备方法作了简单介绍。

【关键词】纳米二氧化钛、制备【正文】二氧化钛的制备方法可分为气相法和液相法两大类。

一、气相制备法低压气体蒸发法此种制备方法是在低压的氩、氮气等惰性气体中加热普通的Ti02,然后骤冷生成纳米二氧化钛粉体,其加热源有以下几种:(1)电阻加热法;(2)等离子喷射法; (3)高频感应法; (4)电子束法; (5)激光法,这些方法可制备lOOnm以下的二氧化钛粒子。

活性氢—熔融金属反应法含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电离的N2,Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器或过滤式收集器使微粒与气体分离而获得纳米二氧化钛微粒。

溅射法此方法是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气,两电极间施加的电压范围为0.3—1.5kV。

由于两电极间的辉光放电使Ar离子形成。

在电场的作用下Ar离子冲击阴极靶材表面,靶上的Ti02就由其表面蒸发出来,被惰性气体冷却而凝结成纳米TiO2粉末,粒度在50nm以下,粒径分布较窄。

流动液面上真空蒸发法用电子束在高真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2超微粒子钛醇盐气相水解法该工艺可以用来开发单分散的纳米TiO2,其反应式如下: nTi(0R)4,+2nH2O(g)————>nTiO2(s)+4nROH优点是操作温度较低、能耗小,对材质要求不是很高,并且可以连续化TiCl4,高温气相水解法该法与气相法生产白炭黑的原理相似,是将TiCl4气体导入高温的氢氧火焰中进行气相水解,其化学反应式为: TiCl4(g)+2H2(g)+O2(g)→TiO2(s)+4HCl(g)优点工艺制备的纳米粉体产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小。

tio2纳米材料的制备与表征

tio2纳米材料的制备与表征

tio2纳米材料的制备与表征制备和表征二氧化钛(TiO2)纳米材料是一项重要的科学任务,由于其广泛的应用领域,包括光催化、太阳能电池、光电器件、光致发光、药物载体和生物成像等。

下面将介绍一种常用的制备和表征TiO2纳米材料的方法。

制备目前,制备TiO2纳米材料的主要方法包括化学气相沉积(CVD)、溶胶-凝胶法、水热法、微波等离子体化学方法等。

这里我们以水热法为例。

水热法是一种在高温高压条件下,利用水作为溶剂,使原料在其中发生化学反应并形成结晶的方法。

制备TiO2纳米材料的水热法通常包括以下步骤:1.将一定量的钛酸丁酯(Ti(OC4H9)4)和适量的硝酸(HNO3)溶液混合,搅拌均匀。

2.将上述混合液转移到高压反应釜中,密封后置于烘箱中加热至指定温度(通常为150-250℃)。

3.在该温度下保持一定时间(例如1-10小时),使钛酸丁酯和硝酸发生水热反应,生成二氧化钛(TiO2)纳米颗粒。

4.待反应结束后,将反应釜自然冷却至室温,取出产物。

5.用去离子水冲洗产物,去除可能存在的杂质。

6.最后,将产物进行干燥,得到TiO2纳米材料。

表征为了确认制备得到的物质是否为TiO2纳米材料,以及其结构和形貌等性质,我们通常会使用一系列表征方法。

1.X射线衍射(XRD):XRD可以用于确定材料的晶体结构和相组成。

通过对比标准PDF卡片,可以确认制备得到的物质是否为TiO2纳米材料。

2.扫描电子显微镜(SEM)和透射电子显微镜(TEM):SEM和TEM可以用于观察材料的形貌和尺寸。

通过这些方法,我们可以了解到制备得到的TiO2纳米材料的形状、大小以及分布情况。

3.光电子能谱(XPS):XPS可以用于分析材料的化学组成和化学状态。

通过这种方法,我们可以确认制备得到的物质是否含有Ti、O元素,并得到它们的比例。

4.紫外-可见光谱(UV-Vis):UV-Vis可以用于研究材料的电子结构和光学性质。

通过这种方法,我们可以得到制备得到的TiO2纳米材料的吸收边和带隙等信息。

实验溶胶凝胶法制备纳米二氧化钛实验精编版

实验溶胶凝胶法制备纳米二氧化钛实验精编版

实验溶胶凝胶法制备纳米二氧化钛实验精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理。

2、了解TiO2纳米粒子光催化机理。

二、实验原理溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。

溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:Ti(OR)n+H2OTi(OH)(OR)n-1+ROHTi(OH)(OR)n-1+H2OTi(OH)2(OR)n-2+ROH……反应持续进行,直到生成Ti(OH)n.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。

三、原料及设备仪器1、原料:钛酸正四丁脂(分析纯)、无水乙醇(分析纯)、冰醋酸(分析纯)、盐酸(分析纯)、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯[Ti(OC4H9)4]为前驱物,无水乙醇(C2H5OH)为溶剂,冰醋酸(CH3COOH)为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶。

1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。

2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3。

3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中。

4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶(倾斜烧瓶凝胶不流动)。

纳米二氧化钛太阳能电池的制备及其性能测试实验报告

纳米二氧化钛太阳能电池的制备及其性能测试实验报告

纳米二氧化钛太阳能电池的制备及其性能测试一、前言1.1实验目的(1)了解纳米二氧化钛染料敏化太阳能电池的组成、工作原理及性能特点。

(2)掌握合成纳米二氧化钛溶胶、组装成电池的方法与原理。

(3)学会评价电池性能的方法。

1.2实验意义随着世界各国的工业发展,煤、石油等传统能源的使用量急剧增长,寻找干净的新能源成为当务之急。

太阳能是唯一种永不枯竭的清洁能源,受到众多研究者的青睐。

目前市场上的太阳能电池种类较多,其中硅半导体太阳能电池占了绝对的优势,另外还有无机半导体太阳能电池、p-n结型太阳能电池等。

1991年Gratzel等制备了TiO2太阳能电池,把多吡啶钌配合物吸附在多孔膜上,制作成染料敏化纳米晶TiO2太阳能电池,简称DSSC。

该太阳能电池的光电转换效率大于10%,且具有永久性、清洁性和灵活性三大优点。

只要有太阳光,DSSC就可以一次投资而长期使用。

1.3文献综述与总结1991年瑞士学者Grätzel等在Nature上发表文章,提出了一种新型的以染料敏化二氧化钛纳米薄膜为光阳极的光伏电池,现称为Grätzel型电池。

这种电池的出现为光电化学电池的发展带来了革命性的创新。

目前,此种电池的效率已稳定在10%左右,成本比硅太阳能电池大为降低,且性能稳定。

纳米TiO2的粒径和膜的微结构对光电性能的影响很大,纳米TiO2的粒径小,比表面积越大,吸附能力越强,吸附染料分子越多,光生电流也就越强,所以人们采用不同方法使之纳米化、多孔化、薄膜化。

只有紧密吸附在半导体表面的单层染料分子才能产生有效的敏化效率。

[1](1)半导体电极的制备目前,合成纳米TiO2的方法有溶胶凝胶法、水热反应法、溅射法、醇盐水解法、溅射沉积法、等离子喷涂法和丝网印刷法等。

应用在DSSC中的TiO2多孔薄膜常用制备方法有胶体涂膜直接低温烧结法、水热法烧结、热液法烧结、微波烧结、紫外-化学气相沉积法等。

[1]溶胶凝胶法是用水解钛酸正丁酷(或无机钛盐,如TiCl4)制得TiO2胶体溶液,后经由浸渍、提拉、丝网印刷、旋涂等方法在导电基底上生长纳米高温锻烧制备出纳米TiO2电极,向溶胶中加入聚合物则有助于TiO2纳米晶粒径的大小的控制。

《材料化学综合实验II》实验指导书-2012-2013年第二学期-20130315

《材料化学综合实验II》实验指导书-2012-2013年第二学期-20130315

《材料化学综合实验II》实验指导书实验一 纳米二氧化钛的制备及光催化性能研究一、实验目的1. 掌握二氧化钛的溶胶-凝胶的制备方法。

2. 了解二氧化钛光催化降解污染物的原理。

3. 熟悉测定光催化性能的方法。

二、 实验原理1、溶胶-凝胶法制备二氧化钛溶胶-凝胶法是20世纪 80年代兴起的一种制备纳米粉体的湿化学方法,具有分散性好、煅烧温度低、反应易控制等优点。

制备溶胶所用的原料为钛酸丁酯(Ti(O-C 4H 9)4)、水、无水乙醇(C 2H 5OH)以及盐酸(或者醋酸、硝酸等)。

反应物为钛酸丁酯和水,分散介质为乙醇,盐酸用来调节体系的酸度防止钛离子水解过速,使钛酸丁酯在乙醇中水解生成钛酸(Ti(OH)4),钛酸脱水后即可获得TiO 2。

水解反应方程式如下。

Ti(O-C 4H 9)4+4H 2O Ti(OH)44C 4H 9OH +Ti(OH)4Ti(OH)42TiO 24H 2O+ 在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以获得不同晶型的二氧化钛。

2、二氧化钛光催化降解污染物二氧化钛作为光催化剂的代表,在太阳能光解水, 污水处理等方面有着重要的应用前景。

TiO 2有三种晶型,四方晶系的锐钛矿型、金红石型和斜方晶系的板钛型。

此外,还存在着非晶型TiO 2。

其中板钛型不稳定;金红石型禁带宽度为3ev ,表现出最高的光敏性,但因为表面电子-空穴对重新结合的较快,几乎没有光催化活性;锐钛矿禁带宽度稍大一些,为3.2ev ,在一定波长范围的紫外光辐照下能被激发,产生电子和空穴,且二者能发生分离,另外它的表面对O 2的吸附能力较强,具有较高的光催化活性。

当它受到波长小于或等于387.5nm 的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e -);而价带中则相应地形成光生空穴(h +),如图1所示。

如果把分散在溶液中的每一颗TiO 2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。

纳米二氧化钛浆料的制备及应用研究

纳米二氧化钛浆料的制备及应用研究

纳米二氧化钛浆料的制备及应用研究纳米二氧化钛(Nano-TiO2)是一种具有良好耐候性和热稳定性的半导体材料,受到了广泛的关注和应用。

纳米二氧化钛具有低毒、高特异性、良好的光催化、电化学性质以及强氧化作用等多项优良性能,能够广泛应用于太阳能电池、物理信息学、光化学反应、生物医学等领域。

本文将从制备纳米二氧化钛浆料的方法、纳米二氧化钛的表征以及纳米二氧化钛在环境治理、电池、高分子复合材料、生物医学等方面的应用研究进展等几个方面描述纳米二氧化钛浆料的制备及应用研究。

一、纳米二氧化钛浆料的制备方法纳米二氧化钛浆料的制备方法通常包括水相法、界面法和气相法。

目前,最为常见的制备方法是水相法。

1、水相法水相法一般采用水热法或溶胶-凝胶法制备。

水热法是将氢氧化钛溶胶在高温高压的条件下,反应一段时间,形成微米到纳米级别的球状颗粒。

水热法能够制备高分散性、晶型和晶粒大小可控的纳米二氧化钛。

溶胶-凝胶法是将钛酸酯等前驱体经溶胶、凝胶、煅烧得到纳米晶粒的方法。

其中,水热法和溶胶-凝胶法的制备成本较低,应用领域较广。

2、界面法界面法除了水相法中的两种制备方法之外,还包括溶剂热法、微乳法、反应过程控制法、浆料法等。

溶剂热法是利用有机溶剂作为反应介质,将钛酸酯等前驱体加入有机溶剂中,加热后产生类似于水热法中超临界水流的条件下,形成纳米二氧化钛粉末。

微乳法是将油相和水相通过表面活性剂的作用形成微观混合体,再加入钛酸酯等前驱体,紧接着再通过加热等方法得到纳米二氧化钛的制备方法。

3、气相法气相法是利用化学气相沉积(CVD)工艺或物理气相沉积(PVD)制备纳米二氧化钛。

这种方法的优点是制备高纯度、晶型良好的纳米二氧化钛。

但同时也存在较高制备成本等缺点。

二、纳米二氧化钛的表征纳米二氧化钛的表征包括物理性质和化学性质等。

物理性质方面主要包括表面积、粒径、晶型等;化学性质方面主要包括化学组成、化学反应活性等。

1、表面积纳米二氧化钛的表面积一般通过比表面积等数据来表征纳米二氧化钛的分散性、活性等理化性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京信息工程大学综合化学实验报告
学院:环境科学与工程学院
专业:08应用化学
姓名:章翔宇
潘婷
袁成
钱勇
2010年6月25号
纳米二氧化钛的制备及性质实验
1、实验目的
熟悉溶胶凝胶法制备纳米二氧化钛的方法及相关操作;
理解二氧化钛吸附实验的原理和操作;
掌握数据处理的方法
2、溶胶凝胶法制备纳米二氧化钛
2.1 需要的仪器
恒压漏斗、茄行烧瓶、量筒、移液管、铁架台、磁力搅拌、磁子、冷凝管、温度计、烘箱、研钵
2.2 需要的试剂
钛酸丁酯异丙醇浓硝酸蒸馏水
2.3 实验步骤
1.50ml钛酸丁酯溶16ml的异丙醇中,摇匀(在恒压漏斗中进行)
得到溶液A
2.取200ml 的蒸馏水,加入0.32 ml 的浓硝酸,摇匀(在茄行烧瓶中进行),得到
溶液B
3.将烧瓶固定在铁架台上,进行磁力搅拌,将溶液A 逐滴滴加至溶液B中,使两溶液
缓慢接触,并进行水解反应,得到溶液C
溶液C室温回流,记载下当时的室温
4.回流分若干天进行,保证回流时间不少于48小时,得到溶液D
5.蒸干方式:将溶液D进行水浴加热85度并不断搅拌将水分蒸发干,得E
6.将E放入烘箱100烘干
7.研磨至粉末状;
2.4 实验结果
1、回流分4天进行,总计回流时间50小时,室温为15℃。

2、经研磨,得到白色细粉末状固体。

称量得二氧化钛质量为11.233g,理论产量不小于11.785g,损失为产品转移过程中损失。

3、纳米二氧化钛性质实验
3.1 二氧化钛吸附试验
1、仪器:烧杯(500mL),容量瓶(1000mL),样品瓶(6个),电子天平,磨口瓶,超
声波清洗机,玻璃注射器,过滤器,分光光度计
2、试剂:二氧化钛粉末,染料X-3B(分子量615),蒸馏水
3、实验步骤:
1、用电子天平称取60mg染料,配成1000mL的60mg/L溶液(避光保存)。

2、将烧杯润洗后,倒入100ml染料溶液,再倒入称量好的50mg的二氧化钛粉末。

静置后置于超声波清洗机中(70℃超声40分钟,注意避光)。

剩余原液取样保存编
号。

3、超声结束后,用玻璃注射器套过滤器取液体样于样品瓶中,编号避光保存。

4、重复上述方法配制浓度为50、30、18、1
5、20、10的有色溶液,并完成吸附、
超声和取样。

5、收集好7个样品瓶和7瓶原液做分光光度实验(波长λ=525nm ) 1) 测未吸附的原液样品不同浓度对应的吸光度A ; 2) 根据吸光度值坐A--c 0标准曲线。

绘制标准曲线:
曲线拟合结果:
A=0.01872c+0.00194 R=0.99807
3) 将吸附之后的样品有低浓度到高浓度顺序做分光光度实验,得到对应吸光度; 4) 将吸光度值代入标准曲线中求的浓度值并化为mol/L 单位,计算出吸附量
n=c 0-c ,将n 与c 0取倒数列于表格中;
5) 作1/n —1/c 吸附等温曲线,并拟合,分析。

C 0(mg/L ) 50 60
A
0.203 0.251 0.255 0.335 0.551 0.940 1.130
A 0 1.13 0.94 0.551 0.335 0.255 0.251 0.203 A 0.886 0.71
0.357 0.189 0.143 0.21
0.152
C 0/(*10-5mol /L)
9.80 8.15 4.77 2.89 2.20 2.16 1.75 C'/(*10-5mo l/L)
7.68 6.15 3.08 1.62 1.23 1.81 1.30 n/(*10-6mol ) 2.12 2.00 1.69 1.27 0.97 0.36 0.44 1/C 0 0.10 0.12 0.21 0.35 0.45 0.46 0.57 1/n
0.47 0.50 0.59 0.79 1.03 2.81 2.26
111
n n kcn =+1T
n kc
n kc θ==+
考虑到低浓度区的吸附误差,对前五点进行拟合:
拟合结果1/n=1.53344*1/c+0.29877 R=0.96758
由表面吸附率:
可得:
根据曲线可知:1/n T =0.2988, 1/kn T =1.533,可得k=0.1948。

得到表面吸附率为:
C0/(*10-5) 9.80 8.15 4.77 2.89 2.20 θ(表面吸附率) 0.66
0.62
0.49 0.36 0.30
由此得到的C-θ如下:
3.2 二氧化钛光催化实验
利用实验3.1中配制好的染料溶液,检测在阳光照射下二氧化钛的降解情况。

我们选用50mg/L的染料溶液。

取100mL与烧杯中,放入50mg二氧化钛粉末,置于阳光下并水浴控温。

每10分钟取一次样,共取六次。

收集好后进行分光光度检测得到对应吸光度。

-2
t/min
A 0.824 0.782 0.754 0.730 0.685 0.654
根据上表绘制A~t曲线:
由图可知:A随时间变化递减,近似成线性关系,拟合结果为:
A=-0.00333t+0.82138 R=0.99181
4、总结
本实验通过溶胶凝胶法制得的二氧化钛粉体,颗粒细,大小均匀。

吸附试验中,考虑到吸附速率的影响,我们把原来的超声时间由20分钟增加到40分钟,得到了较好的实验效果。

吸附试验表明,二氧化钛的可在太阳光的照射下,表现出较好光催化降解染料X-3B的能力。

相关文档
最新文档