苏教版八年级数学下册教案--10.1 分式

合集下载

苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计一. 教材分析《分式》是苏科版数学八年级下册第10章的内容,本节课的主要内容是分式的概念、分式的基本性质和分式的运算。

本节课的内容是学生学习更高级数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维和抽象思维能力。

但部分学生对于抽象概念的理解和运用还不够熟练,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会分式的运算,并能灵活运用。

3.培养学生的逻辑思维和抽象思维能力。

四. 教学重难点1.分式的概念和基本性质。

2.分式的运算及其运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探索、发现和解决问题,提高学生的动手实践能力和团队协作能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学课件和板书。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如:“某商店进行打折活动,原价100元的商品打八折后,顾客实际支付80元。

请问,顾客实际支付的价格是原价的多少?”让学生思考并解答,从而引出分式的概念。

2.呈现(10分钟)通过PPT呈现分式的定义、基本性质和运算规则,引导学生观察和理解。

同时,给出相应的例子,让学生跟随讲解,逐步掌握分式的基本知识。

3.操练(10分钟)让学生独立完成一些分式的基本运算题目,如分式的加减、乘除等。

教师巡回指导,解答学生遇到的问题,并给予反馈。

4.巩固(10分钟)通过一些综合性的题目,让学生运用所学的分式知识解决问题。

如:“已知a、b、c为实数,且a+b+c=0,求证:a/b+b/c+c/a=0。

”教师引导学生思考和解答,巩固所学知识。

5.拓展(10分钟)引导学生思考分式在实际生活中的应用,如经济、物理、化学等领域。

让学生举例说明,进一步拓宽视野。

10.1分式-苏科版八年级数学下册教案

10.1分式-苏科版八年级数学下册教案

10.1 分式-苏科版八年级数学下册教案
一、教学目标
1.能够复述分式的定义及其特点;
2.能够熟练使用分式加减法公式求解相关问题;
3.能够归纳、总结分式的基本运算规律。

二、教学重点
1.分式的概念及其特点;
2.分式的加减法公式。

三、教学难点
分式的乘法和除法。

四、教学过程
4.1 导入与引入(5分钟)
教师通过提问、讲故事等方式,让学生了解到分子、分母的含义,并通过实例引发学生对分式的认识。

4.2 介绍分式的定义及特点(10分钟)
教师介绍分式的定义及其特点,并通过数学公式、图表等方式,让学生深入理解。

4.3 分式的基本运算(40分钟)
4.3.1 分式的加减法(20分钟)
教师介绍分式的加减法公式,并通过示例让学生熟练掌握分式的加减法运算,最后让学生自己举出几个实例进行加减练习。

4.3.2 分式的乘法和除法(20分钟)
教师介绍分式的乘法和除法规律,并通过实例让学生掌握分式的乘法和除法运算。

4.4 讲解分式的简化(10分钟)
教师通过实例讲解分式的简化规律,并让学生自己练习简化分式。

4.5 小结(5分钟)
教师对本课时内容进行小结,并布置课后作业。

五、课后作业
1.完成课堂练习;
2.预习下一节内容:分式的应用。

六、教学反思
本节课的教学重点是基本运算,难点是乘法和除法。

让学生理解分式的概念及其特点,并规范运算,把知识点串起来,便于学生理解。

课后需要多进行练习,多理解思考。

苏科版数学八年级下册《10.1 分式》教学设计3

苏科版数学八年级下册《10.1 分式》教学设计3

苏科版数学八年级下册《10.1 分式》教学设计3一. 教材分析本节课的主题是分式,这是苏科版数学八年级下册的教学内容。

分式是初中的重要知识点,也是学生学习高中数学的基础。

分式的引入可以让学生更好地理解有理数的概念,同时也能培养学生的逻辑思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的概念,对分数有一定的理解。

但学生对分式的理解和运用还比较模糊,需要通过本节课的学习来进一步理解和掌握。

三. 教学目标1.让学生理解分式的概念,掌握分式的基本性质。

2.让学生学会分式的运算,能熟练地进行分式的化简和求值。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.重点:分式的概念,分式的基本性质,分式的运算。

2.难点:分式的化简和求值,分式方程的解法。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索,发现问题,解决问题。

2.使用多媒体辅助教学,通过动画和实例的展示,让学生更直观地理解分式的概念和运算。

3.采用小组合作学习的方式,让学生在讨论中加深对分式的理解。

六. 教学准备1.多媒体教学设备。

2.分式的PPT课件。

3.分式的相关练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,让学生思考分式在实际生活中的应用。

2.呈现(10分钟)通过PPT课件,展示分式的定义和基本性质,让学生理解和掌握分式的概念。

3.操练(10分钟)让学生进行分式的化简和求值的练习,巩固对分式的理解。

4.巩固(5分钟)通过一些相关的练习题,让学生进一步巩固对分式的理解和运用。

5.拓展(5分钟)引导学生思考分式在实际生活中的应用,让学生体会数学的价值。

6.小结(5分钟)对本节课的内容进行总结,让学生加深对分式的理解。

7.家庭作业(5分钟)布置一些相关的练习题,让学生在家里进行巩固和提高。

8.板书(5分钟)板书本节课的主要内容和重点,方便学生复习和记忆。

以上是本人对苏科版数学八年级下册《10.1 分式》教学设计的阐述,希望能对您的教学有所帮助。

苏科版数学八年级下册教学设计10.1 分式

苏科版数学八年级下册教学设计10.1 分式

苏科版数学八年级下册教学设计10.1 分式一. 教材分析《苏科版数学八年级下册》第十章第一节“分式”是初中学段数学的重要内容,也是代数学习的关键部分。

本节内容主要介绍分式的概念、分式的基本性质以及分式的运算。

通过本节的学习,学生能理解分式的实际意义,掌握分式的基本性质和运算方法,为后续的数学学习打下基础。

二. 学情分析八年级的学生已经学习了有理数、方程等基础知识,具备一定的逻辑思维和运算能力。

但学生在学习分式时,可能会对分式的抽象概念和运算规则产生困惑。

因此,在教学过程中,需要关注学生的学习困惑,引导学生理解分式的实际意义,并通过例题和练习帮助学生掌握分式的运算方法。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会分式的运算方法,能够熟练进行分式的化简、运算。

3.培养学生的逻辑思维和运算能力,提高学生解决实际问题的能力。

四. 教学重难点1.重点:分式的概念、分式的基本性质和运算方法。

2.难点:分式的运算规则和应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过问题探究分式的概念和性质。

2.使用案例教学法,通过具体的例题和练习,让学生掌握分式的运算方法。

3.利用小组合作学习,让学生在讨论和交流中提高对分式的理解和应用能力。

六. 教学准备1.准备PPT,展示分式的概念、性质和运算方法。

2.准备相关例题和练习题,用于巩固学生的学习效果。

3.准备小组讨论的学习材料,引导学生进行合作学习。

七. 教学过程1.导入(5分钟)通过提出实际问题,引发学生对分式的思考,如“小明买了2本书,小华买了3本书,小明比小华少买了几本书?”引导学生理解分式的实际意义。

2.呈现(10分钟)教师通过PPT呈现分式的概念和基本性质,让学生初步了解分式。

如分式的定义、分式的基本性质等。

3.操练(15分钟)学生独立完成PPT上的例题,教师进行讲解和指导。

如分式的化简、分式的运算等。

4.巩固(10分钟)学生分组讨论,合作完成教师准备的练习题,教师巡回指导,解答学生的疑问。

苏教版八年级数学下册教案--10.1 分式

苏教版八年级数学下册教案--10.1 分式

10.1 分式教学目标1、经历“列分式”的过程,理解分式的意义,会确定分式何时有意义;2、能分析出一个简单分式有、无意义的条件;3、经历“分式与分数的比较”过程,体验分式与分数的联系与区别,加深对分式的理解,了解类比的数学思想.重点分式的有关概念.难点怎样确定分式何时有意义.教法教具自主先学当堂检测交流展示检测反馈小结反思教具:多媒体等教学过程教学内容个案调整教师主导活动学生主体活动一、情境引入1、计算玻璃的长.一块长方形玻璃的面积为2m2,如果长是3m,那么宽是23m.如果它的宽是a m,那么这块玻璃的长是2am.2、小丽买瓜子的情境.小丽用n元人民币买了m袋相同包装的瓜子,你能写出每袋瓜子的价格吗?(是(n÷m)元,通常用nm元来表示.)二、自主先学1、自学内容:P98--992、自学指导:(1)分式的形式。

(2)分式有无意义的情况。

(3)分式的值为零的情况。

3、自学检测:思考回顾。

教学(1)、下列各式哪些是分式,哪些是整式?①38nm++m2②1+x+y2-z1③π213-x④x1分式有,整式有。

(2)、当x= 时,分式135-+xx无意义。

(3)、当x= 时,分式123-+xx的值为零;当分式23+-xx=0时,x= 。

(4)、当x 时,分式121+-xx有意义。

三、交流展示(一)展示一分组展示自主先学中的问题,归纳所学知识。

讲清:1、如果A、B表示两个整式,并且B中含有字母,那么代数式AB叫做分式(fraction),其中A是分式的分子,B是分式的分母.2、赋予a与b不同的含义,ab-1可以表示不同的意义.(二)展示二(例题)例1.试解释分式2ab+所表示的实际意义.例2.求分式32aa-+的值:(1)1a=-;(2)3a=;(3)23a=.例3.当x取什么值时,分式241xx+-(1)没有意义?(2)有意义?(3)值为零.自学教材内容完成检测题交流问难过程教学(三)展示代数式4m−1(1)当m为何值时,式子有意义?(2)当m为何值时,该式的值大于零?(3)当m为何整数时,该式的值为正整数?四、检测反馈1.课本P100练习第1、2、3题.2.下列各式:x2、22+x、xxyx-、33yx+、23+πx、5.0432-x中,分式有( )A.1个B.2个C.3个D.4个3.x为何值时,分式2122-++xxx的值为负数?4.当x取何值时,分式242xx--的值为零?5.当x为何整数时,分式44x-的值是整数?五、小结反思1、有什么收获?有什么疑惑和遗憾?2、(1)什么是分式?(2)如何求分式的值?(3)分式何时有意义?何时无意义?分组展示板演并讲解学生讲解试试看。

八年级数学下册 10.1 分式教案 (新版)苏科版-(新版)苏科版初中八年级下册数学教案

八年级数学下册 10.1 分式教案 (新版)苏科版-(新版)苏科版初中八年级下册数学教案
?
上述式子有什么共同的特点?
二.新授
分式的概念:一般地,形如 的式子叫做分式,其中A和B均为整式,B中含有字母.
下列各式哪些是分式,哪些是整式?
① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ ;⑨ .错误!未指定书签。




教 学 内 容
个案调整
教师主导活动
学生主体活动
三、例题精选:
所表示的实际意义.
个案调整
教师主导活动
学生主体活动
一、探索活动:
列出下列式子:
(1)一块长方形玻璃板的面积为2m2,如果宽为 m,那么长是m.
(2)小丽用 元人民币买了 袋瓜子,那么每袋瓜子的价格是元
(3)正 边形的每个内角为度.
(4)两块面积分别为 公顷、 公顷的棉田,产棉花分别为 2) ;(3) .
取什么值时,分式
(1)没有意义?(2)有意义?(3)值为零.
四、课堂练习:
1.下列各式: 、 、 、 、 、 中,分式有( )
A.1个 B.2个 C.3个
当 取何值时,分式 的值为零?
五.课堂小结:
板书设计
(用案人完成)
作业布置
教学札记
分式
教学目标
1.了解分式的概念,会判断一个代数式是否是分式;
简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义;
3.能分析出一个简单分式有、无意义的条件;
4.会根据已知条件求分式的值.
重点
理解分式的概念,掌握分式有、无意义的条件.
难点
掌握分式的值为0的条件.
教法及教具




教 学 内 容

苏科版数学八年级下册《10.1 分式》教学设计2

苏科版数学八年级下册《10.1 分式》教学设计2

苏科版数学八年级下册《10.1 分式》教学设计2一. 教材分析苏科版数学八年级下册《10.1 分式》是学生在学习了实数、代数式、方程等知识后,进一步拓展代数知识的重要章节。

本节内容通过分式的定义、分式的基本性质、分式的运算等知识,让学生掌握分式的基础知识,培养学生运用分式解决实际问题的能力。

教材内容由浅入深,循序渐进,符合学生的认知规律。

二. 学情分析八年级的学生已经具备了一定的代数基础,对实数、代数式、方程等知识有了一定的了解。

但是,对于分式这一概念,学生可能较为陌生,需要通过实例来引导学生理解和掌握。

此外,学生对于分式的运算可能存在一定的困难,需要通过大量的练习来巩固。

三. 教学目标1.理解分式的定义,掌握分式的基本性质。

2.学会分式的运算,能够熟练运用分式解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.分式的定义和基本性质。

2.分式的运算方法。

五. 教学方法采用问题驱动法、实例教学法、小组合作法等教学方法,引导学生自主探究,合作交流,从而达到理解分式知识,提高解决问题的能力。

六. 教学准备1.PPT课件2.教学实例七. 教学过程1.导入(5分钟)通过问题驱动,引导学生思考:在实际生活中,我们经常会遇到一些与比例有关的问题,如何用数学知识来表示和解决这些问题呢?从而引入本节内容——分式。

2.呈现(10分钟)通过PPT课件,展示分式的定义和基本性质,让学生初步理解分式的概念。

同时,通过实例,让学生掌握分式的基本性质。

3.操练(10分钟)让学生分组合作,进行分式的基本运算练习,教师巡回指导,及时纠正学生在运算中出现的错误。

4.巩固(10分钟)出示一些分式的应用题,让学生独立解答,从而巩固所学知识。

5.拓展(10分钟)引导学生思考:分式在实际生活中有哪些应用呢?让学生举例说明,从而提高学生运用分式解决实际问题的能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,加深学生对分式的理解。

新苏科版八年级数学下册《10章 分式 10.1 分式》教案_14

新苏科版八年级数学下册《10章 分式 10.1 分式》教案_14

课题:10.1分式教材:苏科版八年级下册教学目标:1.了解分式的概念,会判断一个代数式是否是分式.2.会判断一个分式何时有意义、无意义;会根据已知条件求分式的值.3. 能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景和意义.4.在探究分式概念的过程中,学会类比的数学思想.教学重点、难点:1.探究分式的概念.2.分式的求值,分式何时有意义、无意义、分式的值为0的判断.教学方法与教学手段:1. 教学方法:学生通过熟悉的现实生活情景,发现有些数量关系仅用整式来表示是不够的,引发认知冲突,提出需要学习新知识的强烈愿望.引导学生类比分数,探究分式的概念,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.2. 教学手段:多媒体、实物投影.教学过程:一、导入丹阳——“中国眼镜之都”,眼镜产业是丹阳的一张名片.下面我们就一起去参观“中国丹阳眼镜城” .二、情境引入1、句容市崇明中学到丹阳眼镜城的距离是53千米,汽车平均每小时行70千米,坐车需 小时到达.2、眼镜城有3个车辆出入口,每天进出的车辆共有a 台,平均每个出入口每天进出的车辆有 台.3、眼镜城总共有商铺800个,分)1(+x 个片区,平均每个片区有 个商铺.4、同学们配了a 副100元/副的眼镜, b 副150元/副的眼镜,配眼镜共需 元; 平均每副眼镜 元.5、在眼镜城里,有n 位同学们买了些纪念品,总共花了m 元,平均每人花了 元.三、探究活动[活动一] 在所列的式子: 、 、 、 、 、 中,哪些式子是我们熟悉的、学过的?没学过的: 、 、问题:这些式子有什么共同特点?① 分母中都含有字母;1800+x b a b a ++150100n m 1800+x b a b a ++150100n m 7053b a 150100+3a② 都具有分数的形式:分数的分子、分母都是一些具体的整数,这一类式子 、 、 中,分子可以是具体的整数,也可以是用含字母的整式表示的数,所以分子是一个整式,用A 表示这些一般的整式.分母都是用 含字母的整式表示的数,也是一个整式,用B 表示这些整式.类似于分数,我们给这类式子命名为分式.(板书:10.1分式)建构概念:如果A 、B 表示两个整式,并且B 中含有字母,那么代数式B A叫做分式(fraction ),其中A 是分式的分子,B 是分式的分母.【学以致用】1、试一试:下列代数式,哪些是分式?、 、 、 、 、 、 、[活动二]前面我们在学习整式时,知道了如何求整式的值,你会求分式的值吗?求代数式的值,填写表格:问题:分式的值随什么的变化而变化?分式的值随分式中字母取值的变化而变化. 用具体的数值代替分式中的字母,按照式子中的运算关系计算,就能得到相应的分式的值..结论:35b a 2a +b x x 41+-23+πx 22+x 22+x 33y x + 150100b a b a ++n m 1800+x 有意义;分式BA 0)2(≠B 分母0)1(=B 分母无意义;分式B A【学以致用】2、比一比: 谁做得又快又正确!(1)当x 时,分式 有意义?(2)当x 时,分式 无意义?(3)当x 时,分式 的值为0?(4)当为任意实数时,下列分式一定有意义的是( )[活动三]某校八年级学生步行到距学校12千米的郊外野炊,一班学生组成的前队步行速度为b 千米/时,一班到达目的地需要 小时.若二班学生组成后队, 速度比一班每小时快2千米,则二班到达目的地需要 小时. 思考:(1)若三班学生到达目的地需要 小时, 试说明三班怎样行进的? (2)若给定分式 ,你能再编一个符合的实际问题吗?【学以致用】 3、小组合作:请你在分式 、 中选择一个分式,写出一道符合生活实际的问题.结论:一个分式可以表示不同的实际意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.1 分式
教学目标1、经历“列分式”的过程,理解分式的意义,会确定分式何时有意义;
2、能分析出一个简单分式有、无意义的条件;
3、经历“分式与分数的比较”过程,体验分式与分数的联系与区别,加深对分式的理解,了解类比的数学思想.
重点分式的有关概念.难点怎样确定分式何时有意义.
教法教具自主先学当堂检测交流展示检测反馈小结反思教具:多媒体等
教学过程
教学内容个案调整教师主导活动
学生主体活

一、情境引入
1、计算玻璃的长.
一块长方形玻璃的面积为2m2,如果长是3m,那么
宽是
2
3
m.
如果它的宽是a m,那么这块玻璃的长是
2
a
m.
2、小丽买瓜子的情境.
小丽用n元人民币买了m袋相同包装的瓜子,
你能写出每袋瓜子的价格吗?
(是(n÷m)元,通常用
n
m
元来表示.)
二、自主先学
1、自学内容:P98--99
2、自学指导:
(1)分式的形式。

(2)分式有无意义的情况。

(3)分式的值为零的情况。

3、自学检测:
思考回顾。

教学(1)、下列各式哪些是分式,哪些是整式?

3
8n
m+
+m2②1+x+y2-
z
1

π2
1
3-
x

x
1
分式有,整式有。

(2)、当x= 时,分式
1
3
5
-
+
x
x
无意义。

(3)、当x= 时,分式
1
2
3
-
+
x
x
的值为零;
当分式
2
3
+
-
x
x
=0时,x= 。

(4)、当x 时,分式
1
2
1
+
-
x
x
有意义。

三、交流展示
(一)展示一
分组展示自主先学中的问题,归纳所学知识。

讲清:
1、如果A、B表示两个整式,并且B中含有字母,
那么代数式
A
B
叫做分式(fraction),其中A是分式
的分子,B是分式的分母.
2、赋予a与b不同的含义,
a
b-1
可以表示不同的
意义.
(二)展示二(例题)
例1.试解释分式
2
a
b+
所表示的实际意义.
例2.求分式
3
2
a
a
-
+
的值:
(1)1
a=-;(2)3
a=;(3)
2
3
a=.
例3.当x取什么值时,分式
24
1
x
x
+
-
(1)没有意义?
(2)有意义?
(3)值为零.
自学教材内

完成检测题
交流问难
过程
教学(三)展示
代数式
4
m−1
(1)当m为何值时,式子有意义?
(2)当m为何值时,该式的值大于零?
(3)当m为何整数时,该式的值为正整数?
四、检测反馈
1.课本P100练习第1、2、3题.
2.下列各式:
x
2

2
2
+
x

x
xy
x-

3
3
y
x+、
2
3
+
π
x

5.0
4
32-
x
中,分式有( )
A.1个
B.2个
C.3个
D.4个
3.x为何值时,分式
2
1
2
2
-
+
+
x
x
x
的值为负数?
4.当x取何值时,分式
24
2
x
x
-
-
的值为零?
5.当x为何整数时,分式
4
4
x-
的值是整数?
五、小结反思
1、有什么收获?有什么疑惑和遗憾?
2、(1)什么是分式?
(2)如何求分式的值?
(3)分式何时有意义?何时无意义?
分组展示板
演并讲解学
生讲解
试试看。

过程3名同学展示。

独立完成。

小结归纳。

板。

相关文档
最新文档