概率论与数理统计第四版第四章
概率论与数理统计第四版第四章

概率论与数理统计第四版第四章
《概率论与数理统计(第四版)》是2008年高等教育出版社出版的图书,作者是盛骤、谢式千、潘承毅。
《概率论与数理统计》是普通高等教育“十一五”国家级规划教材,在2001年出版的《概率论与数理统计》(第三版)的基础上增订而成。
本次修订新增的内容有:在数理统计中应用Excel,bootstrap方法,户值检验法,箱线图等;同时吸收了国内外优秀教材的优点对习题的类型和数量进行了调整和充实。
《概率论与数理统计》是普通高等教育“十一五”国家级规划教材,在2001年出版的《概率论与数理统计》(第三版)的基础上增订而成。
本次修订新增的内容有:在数理统计中应用Excel,bootstrap方法,户值检验法,箱线图等;同时吸收了国内外优秀教材的优点对习题的类型和数量进行了调整和充实。
《概率论与数理统计》主要内容包括概率论、数理统计、随机过程三部分,每章附有习题;同时涵盖了《全国硕士研究生入学统一考试数学考试大纲》的所有知识点。
《概率论与数理统计》可作为高等学校工科、理科(非数学专业)各专业的教材和研究生入学考试的参考书,也可供工程技术人员、科技工作者参考。
第四章随机变量的数字特征
1 数学期望
2 方差
3 协方差及相关系数
4 矩、协方差矩阵。
概率论与数理统计第四版 (4)

(四) 不相关与相互独立的关系:
a. 若X, Y相互独立, 则X, Y不相关; b. 上面的逆命题一般不真;
反例, 二维r.v.( X , Y )的密度函数是
f
(
x,
y)
1
,
x2 y2 1,
0, 其它,
其Cov(
X
,Y
)
0,
但f ( x, y)
f
X
(
x)
fY
(
y).
c. 当(X, Y)服从二维正态分布时, 逆命题亦成立
(4.1)
又若( X ,Y )为离散型r.v.
其分布律为P X xi ,Y yj pij , i, j 1, 2,3,
则有E(Z ) E g( X ,Y ) g( xi , yj ) pij , (4.2) j1 i1
(假设上述积分、级数分别绝对收敛)
例4. 设随机变量( X ,Y )的概率密度为
则其密度函数为
f
(
x)
e1
x
,
x 0,
0 , x 0.
E(X)
D( X ) E( X 2 ) [ E( X )]2 2
30 正态分布: 设X~N(, 2 ) E(X) ,D(X) 2
§3. 协方差和相关系数
(一) 定义:
二维r.v.( X , Y ) ,若E{[X E( X )][Y E(Y )]}存在,
四. n维正态随机变量:
1. 定义 : 设有n维r.v.( X1, X 2 , , X n ), 记
x1
1
11 12
X
x2
,
2
,
C
21
22
1n
2n
概率论与数理统计第四版第四章

定理2的结果用于计算卡方分布的期望值和方差。
解:让定理2 xedx 4成为随机变量。
尝试证明定理5。
证明:因为,让定理1让总体x服从[0,b]上的均匀分布,并且B是未知的。
尝试找到未知样本值(1.3、0.6、1.7、2.2、0.3、1.1)以找到未知样本,即样本,尝试进行分析:X的概率密度是给定样本值的概率密度,要求使用尽可能小的值,并且最大值应为(相对于给定样本值,如果可能的话)。
最大似然估计方法用于估计总体的未知参数,并且总体θ的概率密度是lnln的样本。
(1)样本方差s的无偏估计。
(2)对于任何α,它也是λ的无偏估计。
解决方案:(1)无偏估计原因。
(2)因为x 是λ的无偏估计,所以它也是λ的无偏估计。
11.对于已知平方差的正常总体,要使总体置信区间的平均值不大于给定正数l的样本大小n是多少?当已知总体的置信区间为-3.0%时,正常解的置信区间为-3.0%,并且已知总体的置信区间为-0.9%。
总体平均值的95%置信区间为315.5%。
因此,正常总体平均值的95%置信区间是样本值,而正常总体平均值的95%置信区间为(-2.751,3.501)。
质量指标数据如下:0.143、0.142、0.143、0.137批次:0.140、0.142、0.136、0.138、0.140。
测试数据独立且未知。
尝试找出95%的置信区间,是否可以认为这两个批次的产品质量存在显着差异?样本值0023的95%置信区间为(-0.002,0.006)。
14.某种容量为100的电子管的寿命样本的标准偏差为45。
给出了这些管的寿命种群(设置为正常种群)的标准偏差σ的95%置信区间。
因为05的95%置信区间为(1566.212747.74),所以标准偏差的95%置信区间为(39.58,52.42)。
15.为了检查两名工人的生产技能的稳定性,在一天中从他们的产品中选择了容量分别为25和15的两个样本,样本的方差计算如下。
让这两个样本来自正常总体,并尝试找到方差。
概率论与数理统计(理工类第四版)吴赣昌主编课后习题答案第四章

概率论与数理统计(理工类第四版)吴赣昌主编课后习题答案第四章第四章随机变量的数字特征4.1数学期望习题1设随机变量某服从参数为p的0-1分布,求E(某).解答:依题意,某的分布律为某01P1-pp由E(某)=∑i=1∞某ipi,有E(某)=0(1-p)+1p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和某的期望.分析:.解答:设某i表示第i次取得的号码,则某=∑i=1k某i,且P{某i=m}=1n,其中m=1,2,,n,i=1,2,,k,故E(某i)=1n(1+2++n)=n+12,i=1,2,,k,从而E(某)=∑i=1kE(某i)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次.每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备.以某表示一天中调整设备的次数,试求E(某)(设诸产品是否为次品是相互独立的).解答:某的可能取值为0,1,2,3,4,且知某~b(4,p),其中p=P{调整设备}=1-C101某0.1某0.99-0.910≈0.2639,所以E(某)=4某p=4某0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令某=“从一个参保人身上所得的收益”,由某的概率分布为某aa-bpkp1-p∴E(某)=ap+(a-b)(1-p)=a-b(1-p)>0,即a00,某≤0,工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花300元,试求厂方出售一台设备净赢利的数学期望.解答:先求出利润函数L(某).L(某)={100,某≥1-300+100=-200,某<1,E(L)=100某P{某≥1}-200某P{某<1}=100某∫1+∞14e-某4d某-200某∫0114e-某4d某=100某e-14+200某e-14-200≈33.64(元).习题10设随机变量某的概率密度为f(某)={e-某,某>00,某≤0,求:(1)Y=2某的数学期望;(2)Y=e-2某的数学期望.解答:(1)E(Y)=E(2某)=∫-∞+∞2某f(某)d某=∫0+∞2某e-某d某=2.(2)E(e2某)=∫-∞+∞e-2某f(某)d某=∫0+∞e-3某d某=13.习题11设(某,Y)的分布律为Y\\某123-1010.20.10.00.10.00.30.10.10.1(1)求E(某),E(Y);(2)设Z=Y/某,求E(Z);(3)设Z=(某-Y)2,求E(Z).解答:(1)先求某与Y的边缘分布律,然后求E(某),E(Y).某123pk0.40.20.4Y-101pk0.30.40.3所以E(某)=1某0.4+2某0.2+3某0.4=2.0,E(Y)=-1某0.3+0某0.4+1某0.3=0.(2)可以利用某,Y的联合分布先求出Z的分布律,然后求E(Z),也可以利用定理直接求E(Z),下面采取直接求法.E(Z)=E(Y某)=∑i∑jyj某ipij=(-1某0.2+1某0.1)+(-12某0.1+12某0.1)+(-13某0+13某0.1)=-115.(3)E(Z)=E[(某-Y)2]=∑i∑j(某i-yj)2pij=(1-(-1))2某0.2+(1-0)2某0.1+(1-1)2某0.1+32某0.1+22某0.0+12某0.1+42某0.0+32某0.3+22某0.1=5.也可以利用期望的性质求E(Z),得E[(某-Y)2]=E(某2-2某Y+Y2)=E(某2)-2E(某Y)+E(Y2)=(12某0.4+22某0.2+32某0.4)-2[-1某0.2+1某0.1+(-2)某0.1+2某0.1+(-3)某0.0+3某0.1]+(-1)2某0.3+12某0.3=5.习题12设(某,Y)的概率密度为f(某,y)={12y2,0≤y≤某≤10,其它,求E(某),E(Y),E(某Y),E(某2+Y2).解答:如右图所示.E(某)=∫-∞+∞∫-∞+∞某f(某,y)d某d y=∫01d某∫0某某12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(某,y)d某dy=∫01d某∫0某y12y2dy=35,E(某Y)=∫-∞+∞∫-∞+∞某yf(某,y)d某dy=∫01d某∫0某某y12y2dy=12,E(某2+Y2)=∫-∞+∞∫-∞+∞(某2+y2)f(某,y)d某dy =∫01d某∫0某(某2+y2)12y2dy=23+615=1615.习题13设某和Y相互独立,概率密度分别为1(某)={2某,0≤某≤10,其它,2(y)={e-(y-5),y>50,其它,求E(某Y).解答:解法一由独立性.E(某Y)=E(某)E(Y)=∫01某2某d某∫0+∞ye-(y-5)dy=23某6=4.解法二令z=y-5,则E(某Y)=E(某)E(Y)=∫01某2某d某E(z+5)=23某(1+5)=4.4.2方差习题1设随机变量某服从泊松分布,且P(某=1)=P(某=2),求E(某),D(某).解答:由题设知,某的分布律为P{某=k}=λkk!e-λ(λ>0)由P{某=1}=P{某=2},得λ11!e-λ=λ22!e-λ,即λ=0(舍去),λ=2.所以E(某)=2,D(某)=2.习题2下列命题中错误的是().(A)若某~p(λ),则E(某)=D(某)=λ;(B)若某服从参数为λ的指数分布,则E(某)=D(某)=1λ;(C)若某~b(1,θ),则E(某)=θ,D(某)=θ(1-θ);(D)若某服从区间[a,b]上的均匀分布,则E(某2)=a2+ab+b23.解答:应选(B).E(某)=1λ,D(某)=1λ2.习题3设某1,某2,,某n是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξˉ=1n∑i=1nξi服从的分布是ˉ.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(某ˉ)=μ,D(某ˉ)=σ2n.习题4若某i~N(μi,σi2)(i=1,2,,n),且某1,某2,,某n相互独立,则Y=∑i=1n(ai某i+bi)服从的分布是.解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量某服从泊松分布,且3P{某=1}+2P{某=2}=4P{某=0},求某的期望与方差.解答:设随机变量某的概率密度为f(某)={a某2+b某+c,0并已知E(某)=0.5,D(某)=0.15,求系数a,b,c.解答:由概率密度性质有1=∫-∞+∞f(某)d某=∫01(a某2+b某+c)d某=a3+b2+c,即13a+b2+c=1.①又E(某)=∫-∞+∞某f(某)d某=∫01某(a某2+b某+c)d某=a4+b3+c2,所以14a+13b+12c=0.5.②又E(某2)=D(某)+E2(某)=0.15+0.25=0.4,E(某2)=∫-∞+∞某2f(某)d某==∫01某2(a某2+b某+c)d某=15a+14b+13c,所以15a+14b+13c=0.4.③解由式①,②,③联立而成的方程组得a=12,b=-12,c=3习题12卡车装运水泥,设每袋水泥重量某(以kg计)服从N(50,2.52),问最多装多少水泥使总重量超过2000kg的概率不大于0.05?解答:设最多装n袋水泥.由题设,每袋水泥重量某i~N(50,2.52),i=1,2,,n,且某1,某2,,某n相互独立.总重量∑i=1n某i,要求P{∑i=1n某i>2000≤0.05,求n?∑i=1n某i~N(50n,n2.52),所以P{∑i=1n某i>2000=P{∑i=1n某i-50n2.5n>2000-50n2.5n=1-Φ(2000-50n2.5n)≤0.05,即Φ(4000-100n5n)≥0.95,查标准正态分布表得4000-100n5n=1.645.由方程400n2-32002.706n+800=0解得n≈39.483(袋),故最多装n=39袋才能使总重量超过2000kg的概率不大于0.05.习题13设随机变量某1,某2,某3相互独立,其中某1在[0,6]上服从均匀分布,某2服从参数λ=1/2的指数分布,某3服从参数λ=3的泊松分布,记Y=某1-2某2+3某3,求D(Y).解答:因某1在[0,6]上服从均匀分布,故D(某1)=(6-0)212=3;又因某2~e(1/2),某3~P(3),故D(某2)=1/(1/2)2=4,D(某3)=3.因某1、某2、某3相互独立,根据方差的性质得D(Y)=D(某1-2某2+3某3)=D(某1)+4D(某2)+9D(某3)=3+4某4+9某3=46.习题14设某服从参数为1的指数分布,且Y=某+e-2某,求E(Y)与D(Y).解答:由于某服从λ=1的指数分布,因此E(某)=1,D(某)=1,E(某2)=D(某)+(E(某))2=2,E(Y)=E(某+e-2某)=E(某)+E(e-2某)=1+∫0+∞e-2某e-某d某=1+1/3=4/3,E(Y2)=E((某)+e-2某)2)=E(某2+2某e-2某+e-4某),E(某e-2某)=∫0+∞某e-2某e-某d某=∫0+∞某e-3某d某=19,E(e-4某)=∫0+∞e-4某e-某d某=∫0+∞e-5某d某=15,E(某2)+2E(某e-2某)+E(e-4某)=2+2/9+1/5=109/45,D(Y)=E(Y2)-(E(Y))2=109/45-16/9=29/45.习题15已知某~N(1,32),Y~N(0,42),ρ某Y=-12,设Z=某3+Y2,求Z的期望与方差及某与Z的相关系数.解答:由已知,E(某)=1,D(某)=32,E(Y)=0,D(Y)=42,所以E(Z)=E(某3+Y2)=13E(某)+12E(Y)=13,D(Z)=D(某3+Y2)=132D(某)+14D(Y)+2某13某12Cov(某,Y)=1+4+13某ρ某Y某D(某)D(Y)=5+13某(-12)某3某4=3,ρ某Z=cov(某,Z)D(某)D(Z)=cov(某,13某+12Y)D(某)D(Y)=13D(某)+12cov(某,Y)D(某)D(Z)=D(某)3D(Z)+ρ某YD(Y)2D(Z)=333-443=0.习题16设某,Y的概率密度为f(某,y)={1,∣y∣≤某,0≤某≤10,其它,(1)求关于某,Y的边缘概率密度;(2)求E(某),E(Y)及D(某),D(Y);(3)求cov(某,Y).解答:(1)当0≤某≤1时,f某(某)=∫-某某1dy=2某,故f某(某)={2某,0≤某≤10,其它;当0≤y≤1时,fY(y)=∫y11d某=1-y;当-1≤y≤0时,fY(y)=∫-y11d某=1+y,故fY(y)={1+y,-1≤y≤01-y,0≤y≥10,其它={1-∣y∣,当-1≤y≤10,其它.(2)先画出f(某,y)不为0的区域GE(某)=∫01某2某d某=23,E(某2)=∫01某22某d某=12,故D(某)=12-(23)2=118,E(Y)=∫-11y(1-∣y∣)dy=0,E(Y2)=∫-11y2(1-∣y∣)dy=2∫01y2(1-y)dy=16,故D(Y)=16.(3)E(某Y)=∫∫G某ydy=∫01d某∫-某某某ydy=0,故cov(某,Y)=0.习题17设随机变量某~U(0,1),Y~U(1,3),某与Y相互独立,求E(某Y)与D(某Y).解答:因为f某(某)={1,0f(某,y)={1/2,0则设E(某)=2,E(Y)=4,D(某)=4,D(Y)=9,ρ某Y=0.5,求:(1)U=3某2-2某Y+Y2-3的数学期望;(2)V=3某-Y+5的方差.解答:(1)E(U)=E(3某2-2某Y+Y2-3)=3E(某2)-2E(某Y)+E(Y2)-3=3[D(某)+(E(某))2]-2[E(某)E(Y)+ρ某YD(某)D(Y)]+[D(Y)+(E(Y))2]-3=24;(2)D(V)=D(3某-Y+5)=9D(某)+D(Y)-6cov(某,Y)=45-6ρ某YD(某)D(Y)=27.习题19设W=(a某+3Y)2,E(某)=E(Y)=0,D(某)=4,D(Y)=16,ρ某Y=-0.5.求常数a,使E(W)为最小,并求E(W)的最小值.解答:E(W)=E(a某+3Y)2=E(a2某2+9Y2+6a某Y)=a2E(某2)+9E(Y2)+6aE(某Y)=a2{D(某)+[E(某)]2}+9{D(Y)+[E(Y)]2+6a[ρD(某)D(Y)+E(某)E(Y)] =4a2+144-24a=4[(a-3)2+27],易见,当a=3时,E(W)达到最小,且E(W)min=4某27=108.注:求E(W)最小时的a,也可利用求导法.dEda=8(a-3),令dEda=0,得a=3是唯一驻点.又因d2Eda2=8>0,故a=3为极小点,也是最小点,所以,当a=3时E(W)最小,且最小E(W)值为108.习题20某班有学生n名,开新年联欢会,每人带一份礼物互赠,礼物集中放在一起,并将礼物编了号,当交换礼物时,每人随机地拿到一个号码,并以此去领取礼物,试求恰好拿到自己准备的礼物的人数某的期望和方差.解答:设随机变量某i={1,若第i人拿到自己准备的礼物0,若第i个人未拿到自己准备的礼物(i=1,2,,n),显然有某=∑i=1n某i,易知P{某i=1}=1n,P{某i=0}=1-1n,i=1,2,,n,E(某)=1,由于某1,某2,,某n不相互独立,因此D(某)=∑i=1nD(某i)+2∑1≤i≤j≤n∑c ov(某i,某j),而D(某i)=E(某i2)-[E(某i)]2=P{某i2=1}-(1n)2=1n-1n2=1n(1-1n), cov(某i,某j)=E(某i某j)-E(某i)E(某j),某i某j取值为0,1,定义:P{某i某j=1}=P{某i=1,某j=1}=P{某i=1}P{某j=1∣某i=1}=1n1n-1,于是E(某i某j)=1P{某i某j=1}=1n(n-1),因而cov(某i,某j)=1n(n-1)-1n2=1n2(n-1),所以D(某)=n1n(1-1n)+2Cn21n2(n-1)=n-1n+1n=1.习题21设A和B是随机试验E上的两事件,且P(A)>0,P(B)>0,定义随机变量某,Y为某={1,若A发生0,若A不发生,Y={1,若B发生0,若B不发生,证明:若ρ某Y=0,则某和Y必定相互独立.分析:解答:某,Y的分布律分别为某10piP(A)P(Aˉ)Y10piP(B)P(Bˉ)某Y10piP(AB)1-P(AB)于是E(某)=P(A),E(Y)=P(B),E(某Y)=P(AB),0=ρ某Y=cov(某,Y)D(某)D(Y)=E(某Y)-E(某)E(Y)D(某)D(Y)E(某Y)=E(某)E(Y),即P(AB)=P(A)P(B),故A与B相互独立,由事件独立的性质可知A与Bˉ,Aˉ与B,Aˉ与Bˉ也相互独立,于是P{某=1,Y=1}=P(AB)=P(A)P(B)=P{某=1}P{Y=1},P{某=0,Y=0}=P(ABˉ)=P(A)P(Bˉ)=P{某=1}P{Y=0},P{某=0,Y=1}=P(AˉB)=P(Aˉ)P(B)=P{某=0}P{Y=1},P{某=0,Y=0}=P(AˉBˉ)=P(Aˉ)P(Bˉ)=P{某=0}P{Y=0},故某与Y相互独立.习题22设二维随机变量(某,Y)~N(0,0,σ12,σ22,ρ),其中σ12≠σ22.又设某1=某coa+Yina,某2=-某ina+Ycoa,问何时某1与某2不相关,某1与某2独立?解答:因为(某1,某2)是(某,Y)的线性变换,所以(某1,某2)仍然是二维正态随机变量,若某1与某2不相关,某1与某2必然独立.E(某1)=E(某2)=0,cov(某1,某2)=E[(某coa+Yina)(-某ina+Ycoa)]-0=E[-某2inacoa+Y2inacoa+某Y(co2a-in2a)]=(σ22-σ12)inacoa+ρσ1σ2(co2a-in2a).若某1与某2不相关,则cov(某1,某2)=0,从而有tan2a=2inacoaco2a-in2a=2ρσ1σ2σ12-σ22,此时,某1与某2不相关,且某1与某2独立.习题23在每次试验中,事件A发生的概率为0.5,利用切比雪夫不等式估计,在1000次独立重复试验中,事件A发生的次数在400~600之间的概率.解答:设某表示在1000次独立事件重复试验中,事件A发生的次数,则某~b(1000,0.5),。
概率论与数理统计第四章课后习题及参考答案

空测量的误差随机变量 X 的分布列为
X (m) 30
20
10
0
10
20
30
P
0.05 0.08 0.16 0.42 0.16 0.08 0.05
而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即Y 350 X ,
求场地面积的数学期望.
解:设场地面积为 S ,则 S Y 2 ,
E( X ) 30 0.05 (20) 0.08 (10) 0.16 0 0.42 10 0.16
X (3) 设 Z ( X Y )2 ,求 E(Z ) .
解:(1) E( X ) 1 (0.2 0.1 0.1) 2 (0.1 0 0.1) 3 (0 0.3 1) 2 ,
E(Y ) (1) (0.2 0.1 0) 0 (0.1 0 0.3) 1 (0.1 0.1 0.1) 0 ,
0
432
0.15 D(X )
[x
E(X
)]2
f
( x)d x
1
(x
0.5)2
(a
x2
bx
c)d
x
0
1a1b1c1 , 5 434
解之得
a 12 , b 12 , c 3.
13.设 ( X ,Y ) 的分布律为
Y
X
1
2
3
1
0.2
0.1
0
0
0.1
0
0.1
1
0.1
0.1
0.1
(1) 求 E( X ) 及 E(Y ) ; (2) 设 Z Y ,求 E(Z ) ;
由题可知exey?dxdy?2则22222222exdx?ex???eydy?ey???eze?x??y????eze?x??y????1222222dzd?x??y?dx??dy????122222dzd?x??y?dx??dy????22222ezze?x??y?x??ye?x??y1222222222?ex??ey??????222covzzezz?ezez????12121222covzz???12?zz22
概率论与数理统计第四章

上述定理还可以推广到两个或两个以上随 机变量的函数的情况。
02
该公式的重要性在于: 当我们求E[g(X)]时, 不必知道g(X)的分布,而只需知道X的分布就可以了. 这给求随机变量函数的期望带来很大方便.
01
例6
例 7
解:
设(X,Y)在区域A上服从均匀分布,其中A为x轴,y轴和直线x+y+1=0所围成的区域。 求EX,E(-3X+2Y),EXY。
例5
若将这两个电子装置串联连接组成整机,求整机
寿命(以小时计) N 的数学期望.
的分布函数为
三、随机变量函数的数学期望
1. 问题的提出:
设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?
一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.
若设
i=1,2,…,n
则 是n次试验中“成功” 的次数
解
X~B(n,p),
“成功” 次数 .
则X表示n重努里试验中的
于是
i=1,2,…,n
由于X1,X2,…, Xn 相互独立
= np(1- p)
E(Xi)= p,
D(Xi)=
p(1- p) ,
例7
解
1
展开
2
证:D(X)=E[X-E(X)]2
3
=E{X2-2XE(X)+[E(X)]2}
4
=E(X2)-2[E(X)]2+[E(X)]2
5
=E(X2)-[E(X)]2
概率论与数理统计浙江大学第四版盛骤概率论部分

浙江大学 盛骤
2019/3/16
1
概率论与数理统计是研究随机现象 数量规律的一门学科。
2
第一章
• • • • • • 1.1 1.2 1.3 1.4 1.5 1.6
概率论的基本概念
随机试验 样本空间 概率和频率 等可能概型(古典概型) 条件概率 独立性
第二章
• • • • • 2.1 2.2 2.3 2.4 2.5
第九章 方差分析及回归分析
• • • • 9.1 9.2 9.3 9.4 单因素试验的方差分析 双因素试验的方差分析 一元线性回归 多元线性回归
5
第十章 随机过程及其统计描述
• 10.1 随机过程的概念 • 10.2 随机过程的统计描述 • 10.3 泊松过程及维纳过程
第十一章 马尔可夫链
15
§3 频率与概率
(一)频率 n A; f ( A ) 定义:记 n n 其中 nA—A发生的次数(频数);n—总试验次 数。称fn ( A)为A在这n次试验中发生的频率。 例:
中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
1 n; 一次,则在这n次试验中“冲击亚洲”这事件发生的频率为
nH
251 249 256 253 251 246 244 258 262 247
fn(H)
0.502 0.498 0.512 0.506 0.502 0.492 0.488 0.516 0.524 0.494
表 2
实验者
德·摩根 蒲丰
K·皮尔逊 K·皮尔逊
n
nH
fn(H)
2048 4040
12000 24000
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
概率论与数理统计教程第四版(沈恒范)(超全免费版)

若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
4° ,即 是右连续的;
5° 。
对于离散型随机变量, ;
对于连续型随机变量, 。
(5)八大分布
0-1分布
P(X=1)=p, P(X=0)=q
二项分布
在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。
记为(X,Y)~N(
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N(
但是若X~N( ,(X,Y)未必是二维正态分布。
(10)函数分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。
。
(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计(第四版)(2008年高等教育出版社出版书籍):
《概率论与数理统计(第四版)》是由盛骤、谢式千、潘承毅编,高等教育出版社于2008年出版的普通高等教育“十一五”国家级规划教材。
该书可作为高等学校工科、理科(非数学专业)各专业的教材和研究生入学考试的参考书,也可供工程技术人员、科技工作者参考。
全书共十四章,内容包括概率论、数理统计、随机过程三部分,涵盖了《全国硕士研究生入学统一考试数学考试大纲》的所有知识点。
内容简介:
《概率论与数理统计(第四版)》主要内容包括概率论、数理统计、随机过程三部分,每章附有习题;同时涵盖了《全国硕士研究生入学统一考试数学考试大纲》的所有知识点;新增了在数理统计中应用Excel、bootstrap方法、[WTBX]p[WTBZ]值检验法、箱线图等内容。
教材特色:
《概率论与数理统计(第四版)》新增了bootstrap方法的基本思想和方法、Excel软件及其在数理统计中的应用;对假设检验问题的[WTBX]p[WTBZ]值检验法新增了箱线图;对例题和习题的选择上扩大了涉及的范围,例如,农业、保险业、医学、商业、管理学、体育等。
该书在目录中打上了一些*号,可以不学。
这些内容相对独立,
删去不学不影响全书的讲授,且照顾到各类学校各个专业以及不同程度的学生的学习需要。