(完整版)matlab模糊控制工具箱的使用

合集下载

模糊控制在matlab中的实例

模糊控制在matlab中的实例

模糊控制在matlab中的实例模糊控制(模糊逻辑控制)是一种基于模糊数学理论的控制方法,它可以用于控制系统的稳定性、精度和响应速度等方面的优化。

在MATLAB 中,可以使用模糊逻辑工具箱(FLUS)来应用模糊控制。

以下是一个简单的实例,展示了如何使用 MATLAB 中的模糊逻辑工具箱来对温度控制系统进行控制:首先,我们需要创建一个温度控制系统,该系统将使用模糊控制来控制传感器的读数。

假设我们有四个传感器,分别为温度传感器、湿度传感器、压力和传感器,每个传感器读数为实数。

```matlab% 创建模型T = [120 100 80 50]; % 温度控制器输出R1 = [1.2 0.8 0.4 0.2]; % 湿度控制器输出R2 = [0.9 0.1 0.3 0.5]; % 压力控制器输出R3 = [1.4 0.6 0.2 0.1]; % 传感器误差P1 = [125 125 125 125]; % 温度控制器输入P2 = [100 100 90 80]; % 湿度控制器输入P3 = [85 85 80 75]; % 压力控制器输入F1 = [0.3 0.2 0.1 0.1]; % 温度控制器输出F2 = [0.4 0.3 0.2 0.1]; % 湿度控制器输出F3 = [0.5 0.4 0.3 0.1]; % 压力控制器输出y1 = [100 85 75 60]; % 实际温度y2 = [120 95 80 70]; % 实际湿度y3 = [135 110 90 80]; % 实际压力% 创建模糊控制器go1 = @(t,u,v) if t > 100 then ((1-v)*F1 + v*R1 +(1+v)*R2)/(1-v)*y1 else 0;go2 = @(t,u,v) if t < 50 then ((1-v)*F3 + v*R1 +(1+v)*R2)/(1-v)*y2 else 0;go3 = @(t,u,v) if t == 0 then ((1-v)*F1 + v*R1 +(1+v)*R2)/(1-v)*y3 else 0;% 创建模糊控制器的优化器var = [0 0 0 0];go1(0,:,:) = var;matlab.模糊控制.优化器.LevenbergMarquardt(var,go1);% 运行模糊控制器[t,u,v] = ode45(go1,[0 1],[120 100 80 50],y1);% 输出结果disp(["实际温度:" num2str(t)]);disp(["实际湿度:" num2str(u)]);disp(["实际压力:" num2str(v)]);```在这个例子中,我们使用 MATLAB 中的 ode45 工具箱来拟合温度控制器和湿度控制器的输出响应函数。

Fuzzytoolbox4步教你学会使用matlab模煳控制工具箱共3页文档

Fuzzytoolbox4步教你学会使用matlab模煳控制工具箱共3页文档

4步教你学会使用matlab模糊控制工具箱(2008-09-2023:42:02)Matlab模糊控制工具箱为模糊控制器的设计提供了一种非常便捷的途径,通过它我们不需要进行复杂的模糊化、模糊推理及反模糊化运算,只需要设定相应参数,就可以很快得到我们所需要的控制器,而且修改也非常方便。

下面将根据模糊控制器设计步骤,一步步利用Matlab工具箱设计模糊控制器。

首先我们在Matlab的命令窗口(command window)中输入fuzzy,回车就会出来这样一个窗口。

下面我们都是在这样一个窗口中进行模糊控制器的设计。

1.确定模糊控制器结构:即根据具体的系统确定输入、输出量。

这里我们可以选取标准的二维控制结构,即输入为误差e和误差变化ec,输出为控制量u。

注意这里的变量还都是精确量。

相应的模糊量为E,EC和U,我们可以选择增加输入(Add Variable)来实现双入单出控制结构。

2.输入输出变量的模糊化:即把输入输出的精确量转化为对应语言变量的模糊集合。

首先我们要确定描述输入输出变量语言值的模糊子集,如{NB,NM,NS,ZO,PS,PM,PB},并设置输入输出变量的论域,例如我们可以设置误差E(此时为模糊量)、误差变化EC、控制量U的论域均为{-3,-2,-1,0,1,2,3};然后我们为模糊语言变量选取相应的隶属度函数。

在模糊控制工具箱中,我们在Member Function Edit中即可完成这些步骤。

首先我们打开Member Function Edit窗口.然后分别对输入输出变量定义论域范围,添加隶属函数,以E为例,设置论域范围为[-3 3],添加隶属函数的个数为7.然后根据设计要求分别对这些隶属函数进行修改,包括对应的语言变量,隶属函数类型。

3.模糊推理决策算法设计:即根据模糊控制规则进行模糊推理,并决策出模糊输出量。

首先要确定模糊规则,即专家经验。

对于我们这个二维控制结构以及相应的输入模糊集,我们可以制定49条模糊控制规则(一般来说,这些规则都是现成的,很多教科书上都有),如图。

通过算例熟悉MATLAB模糊控制工具箱

通过算例熟悉MATLAB模糊控制工具箱

通过算例熟悉MATLAB模糊控制工具箱设计一个二维模糊控制器控制一个一阶被控对象1()1G sTs=+,然后改变控制对象参数的大小,观察模糊控制的鲁棒性。

1、模糊推理的五个步骤1)输入变量的模糊化这是模糊推理的第一步,是获取输入变量,并确定它们的隶属函数,从而确定属于每个模糊集合的隶属度。

2) 应用模糊算子完成了输入模糊化,就知道了对于每个模糊规则,前提中每一个部分被满足的程度。

如果一个给定规则的前提有多个部分,则要应用模糊算子来获得一个数值,这个数值表示前提对于该规则的满足程度。

3) 应用推理方法推理的类型有mamdani和sugeno 推理。

Mamdani推理法是一种在模糊控制中普遍使用的方法,它本质上仍然是一种合成推理方法,只不过对模糊蕴涵关系取不同的形式而已。

Mamdani型推理,从每个规则的结果中得到的模糊集通过聚类运算后得到结果模糊集,被反模糊化后得到系统输出。

Sugeon型推理:其中每个规则的结果是输入的线性组合,而输出是结果的加权线性组合。

4) 输出的聚类由于决策是在对模糊推理系统中所有规则进行综合考虑的基础上做出的,因此必须以某种方式将规则结合起来以做出决策。

聚类就是这样一个过程,它将表示每个规则输出的模糊集结合成一个单独的模糊集。

聚类方法有max,probor(概率乘),sum。

其中,sum执行的是各规则输出集的简单相加。

5) 解模糊化解模糊化过程也叫反模糊化过程,它的输入是一个模糊集,既上一步的聚类输出模糊集,其输出为一个单值。

模糊集的聚类中包含很多输出值,因此必须进行反模糊化,以从集合中解析出一个单输出值。

2、模糊逻辑工具箱的介绍模糊逻辑工具箱提供的图形用户界面(GUI)工具有五个:模糊推理系统(FIS)编辑器;隶属函数编辑器;模糊规则编辑器;模糊规则观察器;输出曲面观察器。

1)FIS编辑器:Matlab的FIS界面如图1所示。

FIS处理系统有多少个输入变量,输出变量,名称是什么,模糊算子“与”(min,prod乘积,custom自定义),“或”(max大,probor 概率统计方法,custom),推理方法(min,prod,custom),聚类方法(max,probor,sum,custom),解模糊的方法(centroid质心法,bisector中位线法,middle of maximum,largest of maximum,smallest of maximum)。

如何利用Matlab进行模糊逻辑控制

如何利用Matlab进行模糊逻辑控制

如何利用Matlab进行模糊逻辑控制Matlab是一种流行的数学软件,广泛应用于科学和工程领域。

其中一个强大的功能是模糊逻辑控制,它可以帮助人们解决模糊问题。

本文将介绍如何利用Matlab进行模糊逻辑控制,以及其在实际应用中的价值和局限性。

1. 什么是模糊逻辑控制?模糊逻辑控制是一种基于模糊推理的控制方法。

与传统的二值逻辑不同,模糊逻辑可以处理模糊的、不确定的信息。

它将模糊集合和模糊规则引入到控制系统中,使得系统能够根据输入数据和模糊规则进行推理,并输出相应的控制信号。

2. Matlab中的模糊逻辑工具箱Matlab提供了强大的模糊逻辑工具箱,可以用于模糊逻辑控制系统的设计和仿真。

该工具箱包含了模糊集合的定义、模糊规则的建立、模糊控制器的设计等功能。

用户可以通过简单的命令和图形界面进行操作,快速构建模糊逻辑控制系统。

3. 模糊集合的定义模糊集合是模糊逻辑的基础,它用来描述对于一个特定的输入值,它属于某个特定集合的程度。

在Matlab中,我们可以使用模糊集合来定义输入和输出的隶属度函数。

例如,对于一个温度控制系统,我们可以定义一个“冷”的模糊集合和一个“热”的模糊集合,它们分别代表了输入量的不同程度。

4. 模糊规则的建立在模糊逻辑控制系统中,模糊规则用于描述输入和输出之间的关系。

在Matlab 中,我们可以使用模糊规则来定义输入值和输出值之间的映射关系。

例如,对于一个简单的车速控制系统,我们可以定义一个模糊规则,如“如果车速较慢,则增加油门”的规则。

通过组合多个模糊规则,可以构建一个复杂的控制策略。

5. 模糊控制器的设计在Matlab中,我们可以使用模糊控制器对象来设计和实现模糊逻辑控制系统。

模糊控制器对象包含了输入集合、输出集合、模糊规则库等属性,以及推理和解糊过程的方法。

用户可以根据系统需求和实际问题,选择合适的模糊集合、模糊规则和解糊方法,设计出一个有效的模糊控制器。

6. 模糊逻辑控制的应用模糊逻辑控制在实际应用中具有广泛的应用价值。

matlab模糊控制工具箱

matlab模糊控制工具箱

第一章绪论1.1课题的提出和意义随着我国电力事业的发展,电网管理日趋现代化。

负荷预测问题的研究逐渐引起了人们的关注,在电力系统学科中占据了重要的地位,是一个重要的组成部分。

在实际中,制定电力系统规划以及实现电力系统自动化这两项重要的工作,对它们进行应有的负荷预测都是基本要求。

众所周知,电力系统的作用应当是为各类的用户提供可靠而合乎质量要求的电能,使得各种客户的要求得到满足,而所有用户所使用的电能即为负荷。

负荷的大小与特性,对于系统的运行研究以及系统的设计,都是重中之中。

所以,对负荷的变化与特性,有一个事先的估计,是电力系统发展与运行研究的重要内容。

电力系统运行管理现代化中最看重的就是负荷预测,其水平决定了现代化的程度以及技术的高度,能够保证整个系统能够在正确的思维指导下调度和运行。

精准而优良的预测系统不仅在电力系统的安全、可靠、经济运行中起着支柱的作用,在节约能源方面也有着不俗的发挥。

负荷预测会受到很多方面的影响,不单单由以往的数据所决定,还要各方面非电力系统负荷的影响。

那整个系统为什么会要对将来的用电进行预测?因为系统内的可用发电容量,在正常运行的情况下,无论什么时候都要满足客户的需求,即满足所要提供的负荷。

发电容量一旦不够,则必须采取相应的措施来增加其发电容量,比如新增发电机组或从相邻的电网借来所差容量;反之,若发电容量过剩,则也应该采取必要的措施,如有选择性的止某台电机的运行或者向相邻的网络输出多余的电容量。

为了对选择对应的机组,确定所要具备的电源的结构,以及对于燃料的需求等,我们就应该要做到对负荷有一个准确的预测。

负荷曲线的预测可为研究电力系统的峰值、抽水蓄能电站的容量以及发输电设备的协调运行提供数据支持。

电力用户是电力工业的服务对象,电力负荷的不断增长是电力工业发展的根据。

正确地预测电力负荷,既是为了保证无条件供应国民经济各部门及人民生活以充足的电力的需要,也是电力工业自身健康发展的需要。

matlab 模糊工具箱操作

matlab 模糊工具箱操作

num=20;den=[8 6 1];[a1,b1,c1,d]=tf2ss(num,den); T=0.01;h=T;N=500;R=1.5*ones(1,N);%pide=0;de=0;ie=0;kp=4;ki=0.5;kd=1.5;x=[0;0];for k=1:Nu1=-(kp*e+ki*ie+kd*de);k0=a1*x+b1*u1;k1=a1*(x+h*k0/2)+b1*u1;k2=a1*(x+h*k1/2)+b1*u1;k3=a1*(x+h*k2)+b1*u1;x=x+(k0+2*k1+2*k2+k3)*h/6; y=c1*x+d*u1;e1=e;e=y-R(1,k);de=(e-e1)/T;ie=e*T+ie;yy2(1,k)=y;enda=newfis('simple1');a=addvar(a,'input','e',[-5 5]);a=addmf(a,'input',1,'NB','trapmf',[-5,-5,-5,-4]);a=addmf(a,'input',1,'NM','trapmf',[-5,-4,-3,-2]);a=addmf(a,'input',1,'NS','trapmf',[-3,-2,-1,0]);a=addmf(a,'input',1,'ZE','trimf',[-1,0,1]);a=addmf(a,'input',1,'PS','trapmf',[0,1,2,3]);a=addmf(a,'input',1,'PM','trapmf',[2,3,4,5]);a=addmf(a,'input',1,'PB','trapmf',[4,5,5,5]);a=addvar(a,'input','de',[-5 5]);a=addmf(a,'input',2,'NB','trapmf',[-5,-5,-5,-4]);a=addmf(a,'input',2,'NM','trapmf',[-5,-4,-3,-2]);a=addmf(a,'input',2,'NS','trapmf',[-3,-2,-1,0]);a=addmf(a,'input',2,'ZE','trimf',[-1,0,1]);a=addmf(a,'input',2,'PS','trapmf',[0,1,2,3]);a=addmf(a,'input',2,'PM','trapmf',[2,3,4,5]);a=addmf(a,'input',2,'PB','trapmf',[4,5,5,5]);a=addvar(a,'output','kp',[-5 5]);a=addmf(a,'output',1,'NB','trapmf',[-5,-5,-5,-4]);a=addmf(a,'output',1,'NM','trapmf',[-5,-4,-3,-2]);a=addmf(a,'output',1,'NS','trapmf',[-3,-2,-1,0]);a=addmf(a,'output',1,'ZE','trimf',[-1,0,1]);a=addmf(a,'output',1,'PS','trapmf',[0,1,2,3]);a=addmf(a,'output',1,'PM','trapmf',[2,3,4,5]);a=addmf(a,'output',1,'PB','trapmf',[4,5,5,5]);rulelist1=[1 1 7 1 1;1 2 7 1 1;1 3 6 1 1;1 4 6 1 1;1 5 5 1 1;1 6 4 1 1;1 7 4 1 1;2 1 7 1 1;2 2 7 1 1;23 6 1 1;245 1 1;2 5 5 1 1;26 4 1 1;2 73 1 1;3 1 6 1 1;3 2 6 1 1;3 3 6 1 1;345 1 1;3 5 4 1 1;36 3 1 1;3 7 3 1 1;4 1 6 1 1;4 2 6 1 1;4 35 1 1;4 4 4 1 1;4 5 3 1 1;46 2 1 1;4 7 2 1 1;5 1 5 1 1;5 2 5 1 1;5 3 4 1 1;5 4 3 1 1;5 5 3 1 1;56 2 1 1;5 7 2 1 1;6 1 5 1 1;6 2 4 1 1;6 3 3 1 1;6 4 2 1 1;6 5 2 1 1;6 6 2 1 1;6 7 1 1 1;7 1 4 1 1;7 2 4 1 1;7 3 2 1 1;7 4 2 1 1;7 5 2 1 1;7 6 1 1 1;7 7 1 1 1]; a=addrule(a,rulelist1);b=newfis('simple2');b=addvar(b,'input','e',[-5 5]);b=addmf(b,'input',1,'NB','trapmf',[-5,-5,-5,-4]);b=addmf(b,'input',1,'NM','trapmf',[-5,-4,-3,-2]);b=addmf(b,'input',1,'NS','trapmf',[-3,-2,-1,0]);b=addmf(b,'input',1,'ZE','trimf',[-1,0,1]);b=addmf(b,'input',1,'PS','trapmf',[0,1,2,3]);b=addmf(b,'input',1,'PM','trapmf',[2,3,4,5]);b=addmf(b,'input',1,'PB','trapmf',[4,5,5,5]);b=addvar(b,'input','de',[-5 5]);b=addmf(b,'input',2,'NB','trapmf',[-5,-5,-5,-4]);b=addmf(b,'input',2,'NM','trapmf',[-5,-4,-3,-2]);b=addmf(b,'input',2,'NS','trapmf',[-3,-2,-1,0]);b=addmf(b,'input',2,'ZE','trimf',[-1,0,1]);b=addmf(b,'input',2,'PS','trapmf',[0,1,2,3]);b=addmf(b,'input',2,'PM','trapmf',[2,3,4,5]);b=addmf(b,'input',2,'PB','trapmf',[4,5,5,5]);b=addvar(b,'output','ki',[-5 5]);b=addmf(b,'output',1,'NB','trapmf',[-5,-5,-5,-4]);b=addmf(b,'output',1,'NM','trapmf',[-5,-4,-3,-2]);b=addmf(b,'output',1,'NS','trapmf',[-3,-2,-1,0]);b=addmf(b,'output',1,'ZE','trimf',[-1,0,1]);b=addmf(b,'output',1,'PS','trapmf',[0,1,2,3]);b=addmf(b,'output',1,'PM','trapmf',[2,3,4,5]);b=addmf(b,'output',1,'PB','trapmf',[4,5,5,5]);rulelist2=[1 1 1 1 1;1 2 1 1 1;1 3 2 1 1;1 4 2 1 1;1 5 3 1 1;1 6 4 1 1;1 7 4 1 1;2 1 1 1 1;2 2 1 1 1;23 2 1 1;24 3 1 1;25 3 1 1;26 4 1 1;2 7 4 1 1;3 1 1 1 1;3 2 2 1 1;3 3 3 1 1;34 3 1 1;35 4 1 1;36 5 1 1;3 7 5 1 1;4 1 2 1 1;4 2 2 1 1;4 3 3 1 1;4 4 4 1 1;45 5 1 1;46 6 1 1;4 7 6 1 1;5 1 2 1 1;5 2 3 1 1;5 3 4 1 1;5 4 5 1 1;5 5 5 1 1;56 6 1 1;5 7 7 1 1;6 1 4 1 1;6 2 4 1 1;6 3 5 1 1;6 4 5 1 1;6 5 6 1 1;6 67 1 1;6 7 7 1 1;7 1 4 1 1;7 2 4 1 1;7 3 5 1 1;7 4 6 1 1;7 5 6 1 1;7 6 7 1 1;7 7 7 1 1]; b=addrule(b,rulelist2);c=newfis('simple3');c=addvar(c,'input','e',[-5 5]);c=addmf(c,'input',1,'NB','trapmf',[-5,-5,-5,-4]);c=addmf(c,'input',1,'NM','trapmf',[-5,-4,-3,-2]);c=addmf(c,'input',1,'NS','trapmf',[-3,-2,-1,0]);c=addmf(c,'input',1,'ZE','trimf',[-1,0,1]);c=addmf(c,'input',1,'PS','trapmf',[0,1,2,3]);c=addmf(c,'input',1,'PM','trapmf',[2,3,4,5]);c=addmf(c,'input',1,'PB','trapmf',[4,5,5,5]);c=addvar(c,'input','de',[-5 5]);c=addmf(c,'input',2,'NB','trapmf',[-5,-5,-5,-4]);c=addmf(c,'input',2,'NM','trapmf',[-5,-4,-3,-2]);c=addmf(c,'input',2,'NS','trapmf',[-3,-2,-1,0]);c=addmf(c,'input',2,'ZE','trimf',[-1,0,1]);c=addmf(c,'input',2,'PS','trapmf',[0,1,2,3]);c=addmf(c,'input',2,'PM','trapmf',[2,3,4,5]);c=addmf(c,'input',2,'PB','trapmf',[4,5,5,5]);c=addvar(c,'output','kd',[-5 5]);c=addmf(c,'output',1,'NB','trapmf',[-5,-5,-5,-4]);c=addmf(c,'output',1,'NM','trapmf',[-5,-4,-3,-2]);c=addmf(c,'output',1,'NS','trapmf',[-3,-2,-1,0]);c=addmf(c,'output',1,'ZE','trimf',[-1,0,1]);c=addmf(c,'output',1,'PS','trapmf',[0,1,2,3]);c=addmf(c,'output',1,'PM','trapmf',[2,3,4,5]);c=addmf(c,'output',1,'PB','trapmf',[4,5,5,5]);rulelist3=[1 1 1 1 1;1 2 1 1 1;1 3 1 1 1;1 4 1 1 1;1 5 1 1 1;1 6 1 1 1;1 7 1 1 1;2 1 2 1 1;2 2 2 1 1;23 2 1 1;24 2 1 1;25 2 1 1;26 2 1 1;2 7 2 1 1;3 1 3 1 1;3 2 3 1 1;3 3 3 1 1;34 3 1 1;35 3 1 1;36 3 1 1;3 7 3 1 1;4 1 4 1 1;4 2 3 1 1;4 3 3 1 1;4 4 3 1 1;45 3 1 1;46 3 1 1;4 7 4 1 1;5 1 4 1 1;5 2 4 1 1;5 3 4 1 1;5 4 4 1 1;5 5 4 1 1;56 4 1 1;5 7 4 1 1;6 1 5 1 1;6 2 5 1 1;6 3 5 1 1;6 4 5 1 1;6 5 5 1 1;6 6 5 1 1;6 7 4 1 1;7 1 6 1 1;7 2 6 1 1;7 3 6 1 1;7 4 6 1 1;7 5 6 1 1;7 6 6 1 1;7 7 6 1 1]; c=addrule(c,rulelist3);figure(2);gensurf(c)e=0;de=0;ie=0;x=[0;0];ke=30;kd=20;kup=5;kui=0.3;kud=0.7;for k=1:Ne1=ke*e;de1=kd*de;if e1>=5e1=5;elseif e1<=-5e1=-5;endif de1>=5de1=5;elseif de1<=-5de1=-5;endin=[e1 de1];u1=evalfis(in,a);u2=evalfis(in,b);u3=evalfis(in,c);kp=u1/10+kup;ki=u2/10+kui;kd=u3/10+kud;u=-(kp*e+ki*ie+kd*de);k0=a1*x+b1*u;k1=a1*(x+h*k0/2)+b1*u;k2=a1*(x+h*k1/2)+b1*u;k3=a1*(x+h*k2)+b1*u;x=x+(k0+2*k1+2*k2+k3)*h/6; y=c1*x+d*u;yy(1,k)=y;e1=e;e=y-R(1,k);de=(e-e1)/T;ie=ie+T*e;endkk=[1:N]*T;figure(1);plot(kk,R,'k',kk,yy(1,:),'r',kk,yy2(1,:),'g'); gtext('FSA-PID');gtext('PID');num=20;den=[1.6,4.4,1];[a1,b,c,d]=tf2ss(num,den);x=[0;0];T=0.01;h=T;N=1000;%PID CONTROLe=0;de=0;ie=0;kp=5;ki=1.3;kd=0.1;for k=1:Nuu(1,k)=-(kp*e+ki*de+kd*ie); u=uu(1,k);k0=a1*x+b*u;k1=a1*(x+h*k0/2)+b*u;k2=a1*(x+h*k1/2)+b*u;k3=a1*(x+h*k2)+b*u;x=x+(k0+2*k1+2*k2+k3)*h/6;y=c*x+d*u;t(1,k)=k*T;if k<=300R(1,k)=t(1,k)/3;elseif k<=700R(1,k)=1.0;elseif k<=1000R(1,k)=(10-t(1,k))/3;ende1=e;e=y-R(1,k);de=(e-e1)/T;ie=e*T+ie;yy1(1,k)=y;enda=newfis('simple');a=addvar(a,'input','e',[-6 6]);a=addmf(a,'input',1,'NB','trapmf',[-6,-6,-5,-3]); a=addmf(a,'input',1,'NS','trapmf',[-5,-3,-2,0]);a=addmf(a,'input',1,'ZR','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trapmf',[0,2,3,5]);a=addmf(a,'input',1,'PB','trapmf',[3,5,6,6]);a=addvar(a,'input','de',[-6 6]);a=addmf(a,'input',2,'NB','trapmf',[-6,-6,-5,-3]); a=addmf(a,'input',2,'NS','trapmf',[-5,-3,-2,0]);a=addmf(a,'input',2,'ZR','trimf',[-2,0,2]);a=addmf(a,'input',2,'PS','trapmf',[0,2,3,5]);a=addmf(a,'input',2,'PB','trapmf',[3,5,6,6]);a=addvar(a,'output','u',[-3 3]);a=addmf(a,'output',1,'NB','trapmf',[-3,-3,-2,-1]); a=addmf(a,'output',1,'NS','trimf',[-2,-1,0]);a=addmf(a,'output',1,'ZR','trimf',[-1,0,1]);a=addmf(a,'output',1,'PS','trimf',[0,1,2]);a=addmf(a,'output',1,'PB','trapmf',[1,2,3,3]);rr=[5 5 4 4 3;5 4 4 3 3;4 4 3 3 2;4 3 3 2 2;3 3 2 2 1]; r1=zeros(prod(size(rr)),3);k=1;for i=1:size(rr,1)for j=1:size(rr,2)r1(k,:)=[i,j,rr(i,j)];k=k+1;endend[r,s]=size(r1);r2=ones(r,2);rulelist=[r1,r2];a=addrule(a,rulelist);e=0;de=0;ke=40;kd=1.5;ku=1;for k=1:Ne1=ke*e;de1=kd*de;if e1>=6e1=6;elseif e1<=-6e1=-6;endif de1>=6de1=6;elseif de1<=-6de1=-6;endin=[e1 de1];uu(1,k)=ku*evalfis(in,a); u=uu(1,k);k0=a1*x+b*u;k1=a1*(x+h*k0/2)+b*u;k2=a1*(x+h*k1/2)+b*u;k3=a1*(x+h*k2)+b*u;x=x+(k0+2*k1+2*k2+k3)*h/6; y=c*x+d*u;t(1,k)=k*T;if k<=300R(1,k)=t(1,k)/3;elseif k<=700R(1,k)=1.0;elseif k<=1000R(1,k)=(10-t(1,k))/3;ende1=e;e=y-R(1,k);de=(e-e1)/T;yy(1,k)=y;endkk=[1:N]*T;figure(1);plot(kk,R,'k',kk,yy,'k',kk,yy1,'r'); gtext('FUZZY');gtext('n');gtext('PID');。

模糊控制介绍及Matlab模糊控制工具箱使用

模糊控制介绍及Matlab模糊控制工具箱使用

模糊控制介绍及Matlab模糊控制工具箱使用目录•一、模糊控制的产生•二、模糊逻辑的理论基础•三、模糊控制Matlab工具箱示例•四、模糊控制的基本思想•五、模糊控制器的基本结构•六、模糊控制器的优缺点一、模糊控制的产生在传统控制领域,对于明确系统有强而有力的控制能力,即被控系统的动态信息越详细,越能达到精确控制的目的。

然而,在多变量、非线性的复杂系统中,往往难以完全描述系统的动态信息。

此时,传统的控制理论则显得无能为力,而有经验的专家或工作人员仍能根据长期实践观察和操作经验进行有效控制。

据此引申,是否可将人的操作经验总结为若干条控制规则以避开复杂模型的建立过程?模糊控制最重要的特征是反应人们的经验及推理规则,而这些经验和推理规则是通过自然语言来表达的,如“水温上升过快,则关小燃气阀”。

在控制系统初期,由于对系统缺乏了解,控制效果可能不好,但若干次探索后终能实现预期的控制,这就是经验对模糊控制系统的重要性。

由于模糊控制实质上是用计算机去执行人的控制策略,因而可以避开复杂模型的建立,对人们关于某个控制问题的成功和失败经验加工,总结出知识,从中提炼出控制规则,实现复杂系统的控制。

PS:“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。

“模糊”比“清晰”所拥有的信息量更大,更符合客观世界。

二、模糊逻辑的理论基础模糊逻辑是指模仿人脑不确定性的概念判断和推理思维,对于定性的知识和经验,借助隶属度概念、模糊集合,来处理模糊关系。

模糊逻辑实质上是要对模糊性对象进行精确描述和处理。

模糊逻辑的目的是将一个输入空间映射到一个输出空间,主要要靠一系列的if-then规则。

这些规则包含变量和描述这些变量的形容词,被平行评估,因此它们的顺序不重要。

在进行模糊推理之前,先要定义好输入和输出变量以及描述它们的形容词。

模糊推理的流程如下图所示。

模糊推理流程2.1、模糊集合普通情况下,元素a属于集合A(1)或不属于集合A(0),如下图所示,星期一和星期三都是工作日,而苹果和星星则不是。

Matlab-的-Fuzzy-工具箱实现模糊控制(rulelist的确定)

Matlab-的-Fuzzy-工具箱实现模糊控制(rulelist的确定)

引用如何在MATLAB下把模糊推理系统转化为查询表(原创)Matlab 2009-12-26 22:05:01 阅读161 评论0 字号:大中小订阅引用foundy的如何在MATLAB下把模糊推理系统转化为查询表(原创)李会先摘要:该文论述了将MATLAB下调试成功的模糊逻辑转换为查询表的一种技巧,这种技巧不直接使用MATLAB的矩阵计算方法,操作者多数情况下只需点击鼠标就可完成任务,效率比较高,该方法使用MATLAB下的系统测试工具,收集构造查询表所需的数据资料,文中以MATLAB中的水位模糊控制演示模型为例,把该系统的模糊控制推理模块用在其基础上生成的查询表代替后再进行水位控制仿真,控制效果与模糊推理模块在线推理控制是一致的。

关键词:模糊控制;查询表;MATLAB;Simulink; 系统测试Abstract:This article discuss a skill that make a translation from fuzzy logic system to Lookup Table in Matlab,It doesn't use matrix computing, user need only to drag and draw the mouse completing this task,It's a efficiency method which to collect data for Lookup Table construction from a fuzzy controller by SystemTest Toolbox in Matlab,in the article,I will discuss the skill by a demo which is the Water Level Control in Tank in the Fuzzy logic Toolbox,at last,I simulate the Water Control in Tank instead of the Fuzzy Controller with the Lookup Table which I have constructed,the test results is verywell.Keywords: Fuzzy Logic, Matlab,Simulink,Lookup Table,SystemTest1. 引言在MATLAB/Simulink下,构建模糊逻辑系统模型和调试其推理规则都是很方便的[3][4],我们当然不希望在MATLAB下的仿真工作仅仅用于仿真目的,如果实际产品设计能继承仿真的工作成果,将事半功倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab模糊控制工具箱的使用
本学期选修了周川老师的智能控制及应用这门课程,大三时候曾上过周老师的英文版的控制工程基础这门课程,比较喜欢周老师上课的风格,智能控制这门课也收获不小,模糊控制是课程中讲到的第一个智能控制算法。

模糊不是真的模糊,模糊是为了精确。

模糊控制中涉及到一个隶属度的概念,通常我们认为一个事物属于一个概念与否是确定的,比如数字电路的0与1,但是实际情况或者人们的思维习惯却不是这样的。

比如规定18到30岁为青年,那么还差一天到18岁的人算不算青年呢?照规定看不算,但是如果我们加入概率的概念,比如说这个人90%属于青年人,可能更符合人们的思维习惯。

L.A.Zadeh在其《不相容原理》所述:“随着系统的复杂程度不断提高,人们对其精确而有意义地描述的能力不断的降低,以致在达到某一个阈值之后,系统的精确性和复杂性之间呈现出几乎是相互完全排斥的性质”。

我们通常所用的控制算法一般是建立在模型比较确定的情况下,而模糊控制不依赖于对象的模型就可以进行控制决策,而且对系统参数变化具有较强的适应性。

对于模糊控制的原理,我不是很清楚,也没有这个心情去搞清楚,感觉知道大概怎么用就可以了。

Matlab中集成了模糊控制工具箱,可以使用图像界面进行模糊控制器的设计,极大的简化了设计过程。

下面介绍利用模糊工具箱进行控制系统设计的过程。

在matlab的主窗口中输入fuzzy即可调出模糊工具箱界面,退出界面的时候会提示保存,保存格式为fis,如果我们将文件保存为njust.fis,那么下次使用这个文件的时候在主窗口中输入fuzzy njust即可。

模糊控制器的建立过程如下:(1)设定误差E、误差变化率EC和控制量U的论域为,一般为[-6 6]。

(2)设定E、EC、U的模糊集。

一般可设为{NB、NM、NS、ZO、PS、PM、PB}。

(3)设定隶属度函数。

有高斯型隶属度函数、三角型隶属度函数等。

(4)设定模糊控制规则。

常用的模糊控制规则如图1所示,当然可以根据特定的控制对象和要求进行相应的调整。

图1 常用模糊控制规则
图2 添加变量
点击Edit->Add Variable即可进行变量的添加,在右下方可以进行名称的修改,左下方是与或运算方式、去模糊化方式等的选择,一般可以使用默认方式即可。

图3 添加论域与隶属度函数
双击图2中左右两侧的矩形图像即可进行论域与隶属度函数编辑,点击Edit->Add MFs即可进行隶属度函数的添加,右下方可以选择隶属度函数类型,左下方可以修改论域以及显示范围。

图4 添加控制规则
双击图2中中间的矩形图像即可进行模糊控制规则的编辑,根据if e or(and) ec then u的形式进行添加规则,可以修改规则权重。

点击下方的Add rule和Delete rule即可进行规则添加和删除。

至此完成模糊控制器的搭建。

使用菜单栏中的View->Rules即可观察设计规则,如图5所示。

拖动输入变量中间的竖直线,可以看到控制量的变化情况。

图5 观察设计规则
使用菜单栏中的View->Surface即可观察输入变量输出变量的三维曲面,如图6所示。

图6 输入输出曲面
模糊控制系统的框图如图7所示,其中虚线内即为建立好的模糊控制器。

图8为在matlab 中建立的某模糊控制系统实例。

其中的fuzzy logic controller模块在simulink中的Fuzzy Logic Toolbox内,若是找不到的话可以使用搜索功能即可。

若我们保存的模糊控制器文件为njust.fis,那么双击图8中的模糊控制器模块,输入njust即可。

一般来说这个模糊控制器模块是两输入一输出的,所在输入前要添加一个向量组合工具mux。

图7 模糊控制系统结构框图
图8 matlab模糊控制系统实例
我们看到图7中有Ke、Kec和Ku三个权系数,查阅文献可知ke和kec对系统的动态性能影响较大,它们的大小意味着对输入误差和误差变化的不同加权程度,ke变大缩短上升时间,但是增大系统超调;kec变大减小系统超调,但是响应速率变慢。

输出比例因子ku也影响模糊控制系统的性能,ku过小,系统的动态响应过程变长,ku过大会导致系统震荡。

综合调整以上三个因子,获得所需要的控制性能。

当然它们有一定的计算方法,没有深入研究过,不过所谓的计算方法好像也是存在问题的。

这里特别要注意的是饱和模块的上下限就是我们设定的论域范围。

最后进行模糊控制系统仿真的时候有两点需要注意:一是仿真算法的设置。

如果使用默认的算法,会发现速度很慢,几乎没有进度,需要在Simulation->Configuration Parameters中对取消过零点的限制。

如图9所示。

图9 仿真算法的修改
另外需要注意的一点是模糊控制器的加载。

看到论坛上很多人问为什么会报错,很大程度上原因是因为模糊控制文件fis没有加载到空间中。

在主窗口中调出所保存的fis文件,进行File->Export->To Workspace即可。

当然了,也可以使用文件形式进行模糊控制器的设计,这里不讨论了,很多参考书上都有相应的函数介绍或者程序。

2010年8月18日下午njust 电工楼204房间
参考文献
[1] 刘金琨.智能控制[M].北京: 电子工业出版社,2009.
[2] 李国勇.智能控制及其Matlab实现[M].北京: 电子工业出版社,2005.
[3] 张国良,曾静,柯熙政等.模糊控制及其Matlab应用[M].西安: 西安交通大学出版社,2002.。

相关文档
最新文档