光耦器件详解

合集下载

常用光耦器件

常用光耦器件

常用光耦器件
光耦器件是一种将输入信号转换为输出信号的电子元器件。

它广泛用
于高速通讯、光电控制、工业自动化等领域。

常见光耦器件有:
1. 光电耦合器件:它由光电转换器件和光耦合器件组成,通过光电转
换器件将输入信号转换为光信号,光信号通过光耦合器件传输到输出端,再利用光电转换器件将光信号转换为电信号输出。

它常常用于隔离、抑制干扰等场合,如隔离开关、传感器等。

2. 双向可控硅光耦:它属于半导体触发器件,用于控制直流或交流负载。

它具有触发电流小、开关速度快、控制范围广等特点,被广泛应
用于电力电子中,如速调电压器、直流变流器等。

3. 光敏三极管:它是一种将光信号转换为电信号的电子元器件,通过
光在PN结上的生电效应,将光转换为电信号输出。

它具有高灵敏度、快速响应的特点,被广泛用于光电传感、光电测量等领域。

4. 光电二极管:它是一种将光信号转换为电信号的电子元器件,通过
光在PN结上的光生电效应,将光转换为电信号输出。

它具有快速响应、可靠稳定的特点,被广泛用于光通讯、光电测量等领域。

5. 光电晶体管:它是一种将光信号转换为电信号的电子元器件,通过
光在PN结上的光生电效应,将光转换为电信号输出。

它具有高速、
高灵敏度、低噪声等特点,被广泛应用于光电通讯、光电测量、光电
控制等领域。

总之,光耦器件是一类重要的电子元器件,被广泛地应用于各个领域。

不同种类的光耦器件具有不同的特点和应用范围,我们需要根据实际
需求进行选型与应用。

光耦器件的工作原理

光耦器件的工作原理

光耦器件的工作原理光耦器件,也被称为光电耦合器件或光电耦合器,是一种将光信号转换为电信号的装置。

它是光电子器件的一种重要形式,主要由光发射器件和光接收器件组成。

光耦器件的工作原理可以分为两个方面,即光发射部分和光接收部分。

光发射部分的工作原理:光发射部分通常由光二极管(LED)组成,其工作原理是通过直接电流作用下的注入复合效应。

当正向电压施加在LED上时,电子从N型区域注入到P型区域,而空穴从P型区域注入到N型区域。

由于N型区域和P 型区域之间参杂了杂质,形成了PN结。

当电子和空穴在PN结相遇时,会发生复合效应,产生光子并释放能量。

这些发射的光子经过反射或折射,最终从LED的透镜发射出去。

光接收部分的工作原理:光接收部分通常由光敏二极管(光电二极管)或光电晶体管(光敏三极管)组成。

这些器件基于内照光效应或外光效应原理工作。

内照光效应是指当光子射到PN结上时,会激发PN结上的载流子,在电场的作用下产生电流。

外光效应是指当光子照射到半导体晶体管的基区(基极),由于此时静漏极电流Ico很小,射过来的光子就可能改变集电区(集电极)的电流,即将光信号转化为电信号。

光耦器件通过光发射部分和光接收部分之间的物理分离,实现了电与光的隔离,从而具有以下几个特点:1.隔离性能:光耦器件可以将输入与输出之间进行电-光-电的隔离,有效地防止输入端电信号对输出端的干扰。

2.电隔离:通过光电转换技术,光耦器件可以在信号传输过程中实现电隔离,避免了不同电源之间的干扰和循环接地引起的回路故障。

3.传输速率:光耦器件的光敏器件可以实现高速信号传输,其响应速度可达几十兆赫兹甚至更高。

4.噪声抑制:由于光耦器件的输入端和输出端之间被电隔离,能够有效抑制输入信号中的干扰噪声,提高系统的信噪比。

5.安全性:光耦器件能够隔离高电压与低电压之间的危险信号,提高系统的安全性和稳定性。

总结而言,光耦器件通过光发射部分将电信号转换为光信号,再通过光接收部分将光信号转换为电信号,实现了无接触传输和电光隔离。

光耦的作用及工作原理光耦发光试验

光耦的作用及工作原理光耦发光试验

光耦的作用及工作原理光耦发光试验
光耦(Optocoupler),又称光电耦合器件,是一种能够实现输入和输出电气信号之间隔离的电子元件。

在电子器件和系统中,光耦器件常被用作隔离输入和输出,以保护电路不受外界干扰或减小电气噪声对系统的影响。

光耦的作用
光耦器件利用光电效应的原理,将输入端的电信号转换为光信号,再由光信号转换为输出端的电信号,从而实现了输入和输出之间的隔离。

这种隔离方式避免了电路间的直接连接,起到了隔离和保护的作用,同时有助于提高系统的稳定性和可靠性。

光耦的工作原理
光耦器件通常由发光二极管(LED)和光敏电晶体管(光电二极管)组成。

当LED 端施加电压时,LED会发光;发光的光束穿过绝缘层,照射到光敏电晶体管上,激发光敏电晶体管的物理特性,产生有效的电信号输出。

光耦发光试验
为了验证光耦器件的工作原理,可以进行光耦发光试验。

首先,将光耦器件的LED 端连接至电源,而光敏电晶体管端则接入示波器或数字电压表。

当LED端加电后,观察在光敏电晶体管端是否能够检测到电信号的变化,从而确定光耦器件是否正常工作。

结语
光耦器件作为一种重要的电子元件,在电子领域中具有广泛的应用。

通过实现输入和输出信号的隔离,光耦器件可以在不同电路间传递信号并保持电路间的隔离性,从而提高了系统的稳定性和可靠性。

通过光耦发光试验可以验证其工作原理,进一步了解光耦器件的性能和特点。

1。

常用光耦器件

常用光耦器件

常用光耦器件一、光耦器件概述光耦器件,也称为光电耦合器件,是一种能够实现光电转换的组件。

它通过光电二极管、发光二极管及隔离器件的组合,能够将输入端的电信号转换为输出端的光信号或将输入端的光信号转换为输出端的电信号。

常用的光耦器件有光耦隔离器、光耦继电器、光耦运算放大器等。

二、光耦隔离器1. 概述光耦隔离器是一种将输入端和输出端通过光电转换进行隔离的器件。

它具有输入端和输出端完全电气隔离的特点,能够有效地隔离输入端和输出端之间的电气信号,避免电气噪声和干扰的影响。

光耦隔离器主要由光电二极管和发光二极管组成,工作原理是输入端的电信号驱动发光二极管发出光信号,然后由光电二极管将光信号转换为输出端的电信号。

2. 组成及工作原理光耦隔离器由光电二极管、发光二极管及电气隔离器件组成。

•光电二极管:将输入端的光信号转换为电信号的组件。

•发光二极管:将输入端的电信号转换为光信号的组件。

•隔离器件:保证输入端和输出端实现电气隔离的组件,如隔离介质,隔离电源等。

工作原理: 1. 输入端的电信号驱动发光二极管发出光信号。

2. 光信号经过隔离器件传输到光电二极管。

3. 光电二极管将光信号转换为电信号,输出到输出端。

3. 应用领域光耦隔离器具有电气隔离、抗干扰能力强等特点,广泛应用于以下领域:1.工业控制:用于隔离工业设备中的高电压和低电压电路,保护低电压电路免受高电压干扰。

2.通信设备:用于隔离通信设备中的输入端和输出端,提高系统的稳定性和可靠性。

3.医疗设备:用于隔离医疗设备中的输入端和输出端,确保患者和操作人员的安全。

4.动力电子:用于隔离控制信号和功率电子设备,提高系统的稳定性和可靠性。

三、光耦继电器1. 概述光耦继电器是一种将输入端的电信号转换为输出端的光信号,实现电气隔离和信号放大的器件。

它可以用于驱动高电压负载,同时具有电气隔离的特点,适用于各种需要信号隔离和放大的应用场景。

2. 组成及工作原理光耦继电器由光电二极管、发光二极管和继电器组成。

电路入门基础知识之:光耦(OCEP)

电路入门基础知识之:光耦(OCEP)

电路入门基础知识之:光耦(OCEP)
1.什么是光耦?
光耦(光耦合器,opticalcoupler equipment),也称光电隔离器或光电耦合器。

它是以光为媒介来传输电信号的器件,把发光器(红外线发光二极管LED)与受光器(光敏半导体管,光敏电阻)封装在同一管壳内。

当输入端加电信号时发光器发光,受光器接收光之后就会导通产生光电流,从输出端流出,从而实现了“电—光—电”控制。

2.光耦的特点与应用
(1)单向传输
由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。

(2)隔离
由于光耦完全实现了电气的隔离,所以能够进行完全隔离。

常用在电路模块的输入端,用来隔离电信号对电路的影响。

(3)信号电压转换
输入端与输出端上拉电阻采用不同的电压,可以实现电压转换。

通过控制
是否发光,也能进行信号电平的转换。

比如把地/开信号转换为3.3V/地。

光耦资料总结

光耦资料总结

有篇关于光耦的小文章推荐你看看:光电耦合器(简称光耦)是开关电源电路中常用的器件。

光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。

常用的4N系列光耦属于非线性光耦常用的线性光耦是PC817A—C系列。

非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。

线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。

开关电源中常用的光耦是线性光耦。

如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。

由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。

同时电源带负载能力下降。

在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。

常用的4脚线性光耦有PC817A--——C。

PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。

常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。

以下是目前市场上常见的高速光藕型号:100K bit/S:6N138、6N139、PS87031M bit/S:6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL—2503、HCPL—4502、HCPL—2530(双路)、HCPL—2531(双路)10M bit/S:6N137、PS9614、PS9714、PS9611、PS9715、HCPL—2601、HCPL—2611、HCPL—2630(双路)、HCPL-2631(双路)光耦合器的增益被称为晶体管输出器件的电流传输比(CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。

光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。

光耦参数详解

光耦参数详解

光耦参数详解光耦(Optocoupler),也被称为光电隔离器或光电耦合器,是一种常用的电气隔离元件。

它由发光二极管(LED)、光敏晶体管(光敏三极管)和光电耦合器件组成。

光耦器件可将输入电信号转换为光信号,再将光信号转换为输出电信号,实现输入与输出之间的电气隔离。

在实际应用中,光耦器件的参数非常重要,在选型和设计过程中需要充分了解光耦参数的含义与特性。

本文将对光耦参数进行详解。

一、LED电流(IF)LED电流是指通过发光二极管的电流。

较大的LED电流可以提高器件的输出响应速度和增大耦合光功率。

通常,我们应选择适当的LED电流,确保LED工作在额定电流范围内,以提供合适的光照强度。

二、输出电压(VCEsat)输出电压指的是光敏晶体管或光敏三极管的饱和电压。

当输入光强度与电流满足一定条件时,光敏晶体管或光敏三极管的输出电压将保持在较低的水平。

输出电压越小,表示光耦器件的开关速度越快。

三、耐压(BVCEO)耐压是指光敏晶体管或光敏三极管的耐受反向电压。

它是光耦器件能够工作的最大反向电压。

在选择光耦器件时,应确保其耐压大于实际工作电压,以保证其正常、稳定的工作。

四、光电流传输比(CTR)光电流传输比是衡量光耦器件性能的重要指标。

它定义了光信号与输入电信号之间的转换效率。

光电流传输比越大,表示器件对输入光信号的转换效率越高。

五、工作温度范围(Topr)工作温度范围是指光耦器件能够正常工作的环境温度范围。

在实际应用中,应确保光耦器件的使用环境温度在工作温度范围内。

光耦参数的选择与应用需求密切相关。

在选型时,我们应根据具体使用情况,合理选择合适的光耦器件,并对参数进行综合考虑。

同时,由于光耦器件的参数与性能之间存在一定关系,对于不同的应用场景,也需要灵活调整参数,以满足特定的电路要求。

需要注意的是,在设计电路时,也需要充分考虑光耦器件周围的光电磁环境,合理布局电路板,以减少光耦器件与外界的电磁干扰,确保其正常工作。

光耦的作用及工作原理输入电压和输出电压

光耦的作用及工作原理输入电压和输出电压

光耦的作用及工作原理输入电压和输出电压光耦,也称为光电耦合器,是一种利用光学和电学相结合的器件,用于实现光和电信号之间的隔离和转换。

光耦常用于电路的隔离、抑制噪声、电气绝缘等应用中。

其工作原理基于光伏效应和光导效应,能够将输入端的光信号转换为输出端的电信号,实现信号的隔离传递。

在光耦的内部结构中,通常包含一个发光二极管和一个光敏三极管。

当输入电压施加在发光二极管上时,发光二极管会发出一束光线,照射到光敏三极管上。

光敏三极管在光照射下会发生电导率变化,从而产生输出电压。

这种通过光信号控制电信号的转换方式,实现了输入与输出之间的电气隔离。

光耦在电子电路中广泛应用,特别是在需要进行隔离传递信号的场合。

通过光耦器件可以实现输入端与输出端的电气隔离,有效地防止信号传递过程中的干扰和噪声,提高了系统的稳定性和可靠性。

此外,光耦还可以在不同电压级别之间传递信号,将高压电路和低压电路有效隔离,确保电路的安全性。

在工业控制系统、通信设备、电源管理等领域,光耦器件被广泛应用。

它能够有效地传递信号,保证各部分之间的隔离,防止电气干扰和电路损坏,为整个系统的运行提供保障。

光耦器件不仅能够实现电气隔离,还能够传递各种类型的信号,包括模拟信号和数字信号。

总的来说,光耦作为一种重要的光电器件,在现代电子电路中发挥着关键作用。

它通过光学和电学的结合,实现了输入信号到输出信号的转换,保证了信号的传递稳定性和可靠性。

同时,光耦还能够隔离各部分之间的电气连接,防止电路间的相互干扰,提高了系统的整体性能。

在未来的发展中,光耦器件将继续扮演重要角色,为各种电子设备和系统的运行提供支持和保障。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光耦器件详解
一、电路中为什么要使用光耦器件?
强电与弱电的隔离需求。

A与B电路之间,要进行信号的传输,弱电控制强电,但两电路之间由于供电电压过于悬殊,一路高到数百伏,另一路为仅为几伏;两种差异巨大的供电系统,无法将电源共用,需要隔离;
当A电路与强电有联系,人体接触有触电危险,需予以隔离。

而B线路板为人体经常接触的部分,也不应该将危险高电压混入到一起。

两者之间,既要完成控制信号传输,就必须进行电气隔离;
除了考虑人体接触的安全,又必须考虑到电路中弱电压器件的安全,当光电耦合器件输入侧受到强电压(场)冲击损坏时,因光耦的隔离作用,控制输出电路却能安全无恙。

以上三个方面的原因,促成了光耦器件的研制、开发和实际应用。

光耦的基本作用,是将输入、输出侧电路进行有效的电气上的隔离;能以光形式传输信号;有较好的抗干扰效果;输出侧电路能在一定程度上得以避免强电压的引入和冲击。

二、光电耦合器件的一般属性:
1、结构特点:输入侧一般采用发光二极管,输出侧采用光敏晶体管、集成电路等多种形式,对信号实施电-光-电的转换与传输。

2、输入、输出侧之间有光的传输,而无电的直接联系。

输入信号的有无和强弱控制了发光二极管的发光强度,而输出侧接受光信号,据感光强度,输出电压或电流信号。

3、输入、输出侧有较高的电气隔离度,隔离电压一般达2000V以上。

能对交、直流信号进行传输,输出侧有一定的电流输出能力,有的可直接拖动小型继电器。

特殊型光耦器件能对毫伏,甚至微伏级交、直流信号进行线性传输。

4、因光耦的结构特性,输入、输出侧需要相互隔离的独立供电电源,即需两路无“共地”点的供电电源。

下述一、二类光耦输入侧由信号电压提供了输入电流通路,但实质上输入信号回路,也是有一个供电支路的;而线性光耦,则输入侧与输出侧一样,是直接接有两种相隔离的供电电源的。

三、在变频器电路及驱动电路中,经常用到的光电耦合器件,有三种类型:
1、一种为三极管型光电耦合器,如PC816、PC817、4N35等,常用于开关电源电路的输出电压采样和误差电压放大电路,也应用于变频器控制端子的数字信号输入回路。

结构最为简单,输入侧由一只发光二极管,输出侧由一只光敏三极管构成,主要用于对开关量信号的隔离与传输;
2、第二种为集成电路型光电耦合器,如6N137、HCPL2601等,输入侧发光管采用了延迟效应低微的新型发光材料,输出侧为门电路和肖基特晶体管构成,使工作性能大为提高。

其频率响应速度比三极管型光电耦合器大为提高,在变频器的故障检测电路和开关电源电路中也有应用;
3、第三种为线性光电耦合器,如A7840。

结构与性能与前两种光耦器件大有不同。

在电路中主要用于对mV级微弱的模拟信号进行线性传输,在变频器电路中,往往用于输出电
流的采样与放大处理、主回路直流电压的采样与放大处理。

下图为三类光耦器件的引脚、功能原理图:
三种光耦合器电路图
四、第一类光耦器件的测量与在线检测:
第一类型的光电耦合器,输入端工作压降约为1.2V,输入最大电流50mA,典型应用值为10 mA;输出最大电流1A左右,因而可直接驱动小型继电器,输出饱合压降小于0.4V。

可用于几十kHz较低频率信号和直流信号的传输。

对输入电压/电流有极性要求。

当形成正向电流通路时,输出侧两引脚呈现通路状态,正向电流小于一定值或承受一定反向电压时,输出侧两引脚之间为开路状态。

测量方法:
数字表二极管档,测量输入侧正向压降为1.2V,反向无穷大。

输出侧正、反压降或电阻值均接近无穷大;
指针表的x10k电阻档,测其1、2脚,有明显的正、反电阻差异,正向电阻约为几十kΩ,反向电阻无穷大;3、4脚正、反向电阻无穷大;
两表测量法。

用指针式万用表的x10k电阻档(能提供15V 或9V、几十μA的电流输出),正向接通1、2脚(黑笔搭1脚),用另一表的电阻档用x1k测量3、4脚的电阻值,当1、2脚表笔接入时,3、4脚之间呈现20kΩ左右的电阻值,脱开1、2脚的表笔,3、4脚间电阻为无穷大。

可用一个直流电源串入电阻,将输入电流限制在10mA以内。

输入电路接通时,3、4脚电阻为通路状态,输入电路开路时,3、4脚电阻值无穷大。

3、4种测量方法比较准确,如用同型号光耦器件相比较,甚至可检测出失效器件(如输出侧电阻过大)。

上述测量是新器件装机前的必要过程。

对上线不便测量的情况下,必要时也可将器件从电路中拆下,离线测量,进一步判断器件的好坏。

在实际检修中,离线电阻测量不是很便利,上电检测则较为方便和准确。

要采取措施,将输入侧电路变动一下,根据输出侧产生的相应的变化(或无变化),测量判断该器件的好坏。

即打破故障电路中的“平衡状态”,使之出现“暂态失衡”,从而将故障原因暴露出来。

光耦器件的输入、输出侧在电路中串有限流电阻,在上电检测中,可用减小(并联)电阻和加大电阻的方法(将其开路)等方法,配合输出侧的电压检测,判断光耦器件的好坏。

部分
电路中,甚至可用直接短接或开路输入侧、输出侧,来检测和观察电路的动态变化,利于判断故障区域和检修工作的开展。

测量时的注意事项:光耦器件的一侧可能与“强电”有直接联系,触及会有触电危险,建议维修过程中为机器提供隔离电源!
下图为常见三极管光耦器件的应用电路图。

光电耦合器在线检测示意图
上图中的(1)电路,为变频器控制端子电路的数字信号输入电路,当正转端子FWD 与公共端子COM短接时,PC817的1、2脚之间的电压由0V变为1.2V,4脚电压由5V变为0V。

同理,当控制端子呈开路状态时,PC817的1、2脚之间电压为0V,而3、4脚之间电压为5V。

图(1)电路可以看出光耦器件的各脚电压值,故障或正常状态测量输入、输出脚电压即可得出判断。

上图(2)电路,测量1、2之间为0.7V(交流信号平均值),3、4脚之间为3V ,说明光电耦合器有了输入信号,但光耦器件本身是否正常?用金属镊子短接PC817的1、2脚,测量4脚的电压由原3V上升为5V(或有明显上升),说明光耦器件是好的。

若电压不变,说明光耦损坏。

五、第二类光耦器件的测量与在线检测:
第二种类型的光电耦合器(6N137),输入端工作压降约为1.5V左右,但输入、输出最大电流仅为mA级,只起到对较高频率信号的传输作用,电路本身不具备电流驱动能力,可用于对MHz级信号进行有效的传输。

同第一类光耦器件一样,对输入电压/电流有极性要求。

当形成正向电流通路时,输出侧两引脚呈现通路状态,正向电流小于一定值或承受一定反向电压时,输出侧两引脚之间为开路状态。

此种类型光耦器件的构成电路,同第一类光耦器件构成的电路形式相类似,但电路传输的信号频率较高。

其测量与检查方法也基本上是相似的。

如果说第一类光耦为低速和普通光耦,那么第二类光耦合器,可称之为高速光耦,二者的区别,只是对信号响应速度的不同,在电路形式上则是相同的。

在线测量,1、可用短接或开路2、3输入脚,同时测量输出6、5脚的电压变化;2、减小或加大输入脚外接电阻,测量输出脚电压有无相应变化;3、从+5V供电或其它供电串限流电阻引入到输入脚,检测输出脚电压有无相应变化。

来判断器件是否正常;。

相关文档
最新文档