《直线与圆的位置关系》典型例题

合集下载

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题一、点与圆的位置关系结合图形认识直线与圆的位置关系,比较OA 与r 的大小关系若点A 在⊙O 内OA r 若点A 在⊙O 上OA r 若点A 在⊙O 外OA r小练习:1.在△ABC 中,90C ∠=︒,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A,那么斜边中点D 与⊙A 的位置关系是()(A)D 在圆外(B)D 在圆上(C)D 在圆内(D)无法确定二、直线与圆的位置关系(1)实验创境:用移动的观点认识如果我们把太阳看作一个圆,那么太阳在升起的过程中,太阳和海平面就有图中的几种位置关系。

(可让学生用硬币自己操作演示)根据直线与圆公共点的个数可以得到三种位置关系:、、。

(2)用数量关系判断从以上的一个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:若要判断圆与直线的位置关系,可以将______与_____进行比较大小,由比较的结果得出结论。

典型例题:例1、已知圆的半径等于5厘米,圆心到直线MN 的距离是:(1)4厘米;(2)5厘米;(3)6厘米。

分别说出直线MN 与圆的位置关系以及直线MN 和圆分别有几个公共点?例2.Rt △ABC 中,∠C=90°,AC=3,BC=4,若以C 为圆心,r 为半径作圆,当3,4.2,2===r r r 时,⊙C 与直线AB 分别是怎样的位置关系?★①直线l 和⊙O 相交d r ②直线l 和⊙O 相切d r ③直线l 和⊙O 相离d r1、如果⊙O 的直径为10厘米,圆心O 到直线AB 的距离为10厘米,那么⊙O 与直线AB有怎样的位置关系是2、已知:⊙A 的直径为6,点A 的坐标为)4,3(--,则⊙A 与x 轴的位置关系是;⊙A 与y 轴的位置关系是。

三、切线的判定实验探究:在练习纸上画⊙O ,在⊙O 上任取一点A ,连结OA ,过A 点作直线l ⊥OA ,判断直线l 是否与⊙O 相切?为什么?当直线和圆有唯一公共点时,直线是圆的切线;当直线和圆的距离等于该圆半径时,直线是圆的切线;那么,直接从直线和圆的位置上观察,具备什么条件的直线也是圆的切线呢?两个条件缺一不可(1)经过半径外端(2)垂直于这条半径切线判定定理:经过直径外端并且于这条直径的直线是圆的切线。

2.5 直线与圆、圆与圆的位置关系(精练)(解析版).

2.5 直线与圆、圆与圆的位置关系(精练)(解析版).

2.5直线与圆、圆与圆的位置关系(精练)1直线与圆的位置关系1.(2022·山东滨州)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是()A .相离B .相切C .相交D .不确定【答案】D【解析】直线()22:1(32)250l m m x m y m +++---=,即2(2)(2)(35)0x m x y m x y -+-++-=,由2020350x x y x y -=⎧⎪-=⎨⎪+-=⎩解得21x y =⎧⎨=⎩,因此,直线l 恒过定点(2,1)A ,又圆22:20C x y x +-=,即22(1)1x y -+=,显然点A 在圆C 外,所以直线l 与圆C 可能相离,可能相切,也可能相交,A ,B ,C 都不正确,D 正确.故选:D2(2021·黑龙江)直线43110x y -+=与圆()()22114x y +++=的位置关系是()A .相离B .相切C .相交D .不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110x y -+=与圆()()22114x y +++=相切.故选:B3.(2022·辽宁·瓦房店市高级中学高二期末)直线()1R y kx k =+∈与圆22(1)(1)4x y -+-=的位置关系是()A .相交B .相切C .相离D .不确定【答案】A【解析】直线()1R y kx k =+∈恒过定点()0,1,又22(01)(11)14-+-=<,即点()0,1在圆22(1)(1)4x y -+-=内部,所以直线与圆相交;故选:A4.(2022·湖北省武汉市汉铁高级中学高三阶段练习)直线230kx y k +--=与圆22450x y x +--=的位置关系是()A .相离B .相切C .相交D .相交或相切【答案】C【解析】直线230kx y k +--=即()()320k x y -+-=,过定点()3,2,因为圆的方程为22450x y x +--=,则223243540+-⨯-=-<,所以点()3,2在圆内,则直线与圆相交.故选:C5.(2021·重庆市两江中学校高二阶段练习)已知过点(3,1)P 的直线与圆22(1)(2)5x y -+-=相切,且与直线10x my --=垂直,则m =()A .12-B .12C .2-D .2【答案】C【解析】设过点(3,1)P 的直线为l .(1)当l 的斜率不存在时,直线l :3x =.圆22(1)(2)5x y -+-=的圆心到l 的距离为312-=≠,所以不是圆的切线,不合题意.(2)当l 的斜率存在时,直线l :()13y k x -=-.=k =2.因为l 与直线10x my --=垂直,所以121m⨯=-,解得:m =-2.故选:C6.(2022·全国·高二课时练习)若直线:420l kx y k -++=与曲线y =有两个交点,则实数k 的取值范围是()A .{}1k k =±B .3{|}4k k <-C .3{|1}4k k -≤<-D .3{|1}4k k -≤<【答案】C【解析】由题意,直线l 的方程可化为(2)40x k y +-+=,所以直线l 恒过定点(2,4)A -,y =可化为224(0)x y y +=≥其表示以(0,0)为圆心,半径为2的圆的一部分,如图.当l 与该曲线相切时,点(0,0)到直线的距离24221kd k +==+,解得34k =-.设(2,0)B ,则40122AB k -==---.由图可得,若要使直线l 与曲线24y x =-314k -≤<-.故选:C.7.(2022·贵州遵义·高二期末(文))若直线():100l ax by ab +-=>始终平分圆()()22:124C x y -+-=的周长,则11a b+的最小值为()A .322+B .6C .7D .32+【答案】A【解析】圆C 的圆心为()1,2C ,由题意可知,直线l 过圆心C ,则21a b +=,因为0ab >,则0a >且0b >,因此,()1111222332322b a b a a b a b a ba b a b ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭当且仅当2a b 时,等号成立,故11a b+的最小值为322+.故选:A.8.(2022·广西梧州·高二期末(文))已知对任意的实数k ,直线l :0kx y k t --+=与圆C :2210x y +=有公共点,则实数t 的取值范围为()A .[3,0)-B .[3,3]-C .(,3](0,3]-∞-D .(,3)[0,3]-∞-【答案】B【解析】由直线0kx y k t --+=可化为(1)-=-y t k x ,则直线l 过定点(1,)t ,因为直线l :kx y k t --+0=与圆C :2210x y +=有公共点,所以定点(1,)t 在圆C 上或圆C 内,可得22110t +≤,解得33t -≤≤,故选:B9.(2022·江西上饶·高二期末(文))已知直线2y kx =-与圆22(1)1x y -+=相交,则实数k 的取值范围是()A .3,4⎛⎤-∞ ⎥⎝⎦B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由题意,圆心()1,0到直线20kx y --=1,即22441k k k -+<+,解得34k >故选:D10.(2022·浙江·温州中学高二期末)已知直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,则实数k 的取值范围是()A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎛⎫ ⎪⎝⎭C .30,4⎡⎤⎢⎥⎣⎦D .3,04⎛⎫- ⎪⎝⎭【答案】B【解析】因为直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,1<,即2860k k -<,解得304k <<,所以实数k 的取值范围是30,4⎛⎫⎪⎝⎭,故选:B.2直线与圆的弦长1.(2021·浙江高二期末)已知过点()1,3P 的直线l 被圆()2224x y -+=截得的弦长为l 的方程是()A.43130x y +-=B.34150x y +-=C.34150x y +-=或1x =D.43130x y +-=或1x =【答案】D【解析】圆()2224x y -+=的圆心为点()2,0,半径为2r =,圆心到直线l 的距离为1d ==.①若直线l 的斜率不存在,则直线l 的方程为1x =,此时圆心到直线l 的距离为1,合乎题意;②若直线l 的斜率存在,可设直线l 的方程为()31y k x -=-,即30kx y k -+-=,圆心到直线l的距离为1d ==,解得43k =-.此时直线l 的方程为43130x y +-=.综上所述,直线l 的方程为43130x y +-=或1x =.故选:D.2(2022·贵溪市)直线y kx =被圆222x y +=截得的弦长为()A.B.2C.D.与k 的取值有关【答案】A【解析】由于圆222x y +=的圆心在直线y kx =上,所以截得弦为圆222x y+=,故截得的弦长为.故选:A 3.(2022·江苏·高二)过点(-2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的弦最长的直线的方程是()A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0【答案】A【解析】由题意得,圆的方程为()221(2)5x y -++=,∴圆心坐标为()1,2-.∵直线被圆截得的弦长最大,∴直线过圆心()1,2-,又直线过点(-2,1),所以所求直线的方程为211221y x +-=+--,即10x y ++=.故选:A .4.(2022·全国·模拟预测)(多选)已知直线l :()()121740m x m y m ---+-=,圆C :2224200x y x y +---=,则()A .直线l 恒过定点()1,3B .直线l 与圆C 相交C .圆C 被x 轴截得的弦长为D .当圆C 被直线l 截得的弦最短时,34m =【答案】BD【解析】依题意,直线l :()()121740m x m y m ---+-=可化为()2740x y m x y --+++-=,由27040x y x y --+=⎧⎨+-=⎩解得3x =,1y =,即直线l 过定点()3,1P ,A 不正确;圆C :22(1)(2)25x y -+-=的圆心(1,2)C ,半径=5r ,||PC r =<,即点P 在圆C 内,直线l 与圆C 恒相交,B 正确;圆心C 到x 轴的距离2d =,则圆C 被x 轴截得的弦长为==C 不正确;由于直线l 过定点()3,1P ,圆心(1,2)C ,则直线PC 的斜率121312k -==--,当圆C 被直线l 截得的弦最短时,由圆的性质知,l PC ⊥,于是得1221m m -=-,解得34m =,D 正确.故选:BD5.(2022·湖北恩施·高二期末)(多选)已知直线l :()()221310m x m y m ++---=与圆C :()()222116x y -++=交于A ,B 两点,则弦长|AB |的可能取值是()A .6B .7C .8D .5【答案】BC【解析】由()()221310m x m y m ++---=,得()23210x y m x y +-+--=,令230210x y x y +-=⎧⎨--=⎩解得1,1,x y =⎧⎨=⎩故直线l 恒过点(1,1)M .圆心(2,1)C ,半径4r =,CM ==,则2AB r ≤≤,即8AB ≤≤.故选:BC.6.(2022·辽宁辽阳市·高二期末)已知圆22:4850C x y x y +-+-=,直线:20l mx y m --=.(1)证明:直线l 与圆C 相交.(2)设l 与圆C 交于,M N 两点,若MN =,求直线l 的倾斜角及其方程.【答案】(1)证明见解析;(2)答案见解析.【解析】(1)证明:直线:2()0l m x y --=过定点()2,0,因为224250-⨯-<,所以点()2,0在圆C 的内部,故直线l 与圆C 相交.(2)圆C 的标准方程为()2225()42x y -++=,则圆C 的圆心坐标为4(2,)C -,半径为5,且圆心C 到直线l 的距离()22242411m md m m ---==++因为2225213MN d =-=,所以23d =由24231m =+,得33m =±当33m =时﹐直线l 的方程为()323y x =-,倾斜角为6π当33m =-时﹐直线l 的方程为()323y x =--,倾斜角为56π3圆与圆的位置关系1.(2022·西藏)圆x 2+y 2-2x +4y =0与直线2x +y +1=0的位置关系为()A .相离B .相切C .相交D .以上都有可能【答案】C【解析】圆x 2+y 2-2x +4y =0的圆心坐标为(1,2)-,半径5r =圆心(1,2)-到直线2x +y +1=0的距离2221(2)15521d ⨯+-+==+由555d r =<=,可得圆与直线的位置关系为相交.故选:C2.(2022·陕西渭南)已知圆1C :()()22321x y -++=与圆2C :()()227150x y a -+-=-,若圆1C 与圆2C 有且仅有一个公共点,则实数a 等于()A .14B .34C .14或45D .34或14【答案】D【解析】圆1C :()()22321x y -++=的圆心为()113,2,1C r -=,圆2C :()()227150x y a -+-=-的圆心为()227,1,50C r a =-()()221237215C C -+--=,因为圆1C 与圆2C 有且仅有一个公共点,故圆1C 与圆2C 相内切或外切,故215r -=或215r +=,从而26=r 或24r =,所以2506r a =-=或2504r a =-=,解得:34a =或14a =所以实数a 等于34或14故选:D3.(2022广东)圆2220x y x +-=与圆22(1)(2)9x y -++=的位置关系为()A.内切B.相交C.外切D.相离【答案】A【解析】圆221:20C x y x +-=,即22(1)1x y -+=,表示以1(1,0)C 为圆心,半径等于1的圆.圆222:(1)(2)9C x y -++=,表示以2(1,2)C -为圆心,半径等于3的圆.∴两圆的圆心距|20|2d =--=,231=-,故两个圆相内切.故选:A.4.(2022·江西)已知圆()221:210C x y x my m R +-++=∈关于直线210x y ++=对称,圆2C 的标准方程是()()222316x y ++-=,则圆1C 与圆2C 的位置关系是()A.相离B.相切C.相交D.内含【答案】B【解析】22210x y x my +-++=即()222124m m x y 骣琪-++=琪桫,圆心1,2m ⎛⎫- ⎪⎝⎭,因为圆1C 关于直线210x y ++=对称,所以圆心1,2m ⎛⎫- ⎪⎝⎭在直线210x y ++=上,即12102m ⎛⎫+⨯-+= ⎪⎝⎭,解得2m =,()()22111x y -++=,圆心()1,1-,半径为1,()()222316x y ++-=,圆心()2,3-,半径为4,5=,因为圆心间距离等于两圆半径之和,所以圆1C 与圆2C 的位置关系是相切,故选:B.5.(2022云南)已知圆1C 的标准方程是()()224425x y -+-=,圆2C :22430x y x my +-++=关于直线10x +=对称,则圆1C 与圆2C 的位置关系为()A.相离B.相切C.相交D.内含【答案】C【解析】由题意可得,圆()()221:4425C x y -+-=的圆心为()4,4,半径为5因为圆222:430C x y x my +-++=关于直线10x ++=对称,所以2102m-+=(),得m =,所以圆()(222:24C x y -++=的圆心为(2,,半径为2,则两圆圆心距12C C =1252725C C -<<=+,所以圆1C 与圆2C 的位置关系是相交,故选:C .6.(2022·上海中学东校高二期末)已知圆22:28M x y ax +-=截直线:0l x y -=所得的弦长M 与圆22:(1)4N x y +-=的位置关系是()A .内切B .相交C .外切D .相离【答案】B【解析】由22:28M x y ax +-=,即()2228y a x a +=+-,故圆心(),0M a ,半径M r =所以点M 到直线:0l x y -=的距离d =故解得:1a =±;所以()1,0M ±,3M r =;又22:(1)4N x y +-=,圆心()0,1N ,2N r =,所以MN ==,且15M N M N r r r r -=<<=+,即圆M 与圆N 相交,故选:B.7.(2022·湖南岳阳·高二期末)圆221:1O x y +=与圆222:680O x y x y m +-++=外切,则实数m =_________.【答案】9【解析】圆1O 的圆心()10,0O ,半径11r =,圆2O 的圆心()23,4O -,半径2r =125O O =根据题意可得:1212O O r r =+,即51=9m =故答案为:9.8.(2022·上海徐汇·高二期末)已知圆221:(2)(2)1C x y -+-=和圆2222:()(0)C x y m m m +-=>内切,则m 的值为___________.【答案】72【解析】圆1C 的圆心为()2,2,半径为11r =,圆2C 的圆心为()0,m ,半径为2r m =,所以两圆的圆心距()()22202d m =-+-,又因为两圆内切,有()()222021d m m =-+-=-,解得72m =.故答案为:72.9.(2023·全国·高三专题练习)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________.【答案】34【解析】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m 由两圆向外切可知()()224030225-+--=+-m ,解得16m =所以2:C ()()22439x y -++=2C 到直线的距离为22431211-==+d ,设圆2C 的半径为R则直线:0l x y +=被圆2C 所截的弦长为221229342-=-=R d 故答案为:344圆与圆的弦长1.(2021·辽宁高三其他模拟)圆O :229x y +=与圆1O :()()222316x y -+-=交于A 、B 两点,则AB =()A.6B.5C.67813D.123913【答案】D【解析】圆O 的半径3r =,圆1O 的半径14r =,113OO =故在1AOO中,22211111cos sin21313r OO rAOO AOOr OO+-∠===⇒∠=⋅,故1sin21313ABr AOO AB=∠=⇒=.故选:D2.(2021·山东济南市·高二期末)(多选)已知圆221:1C x y+=和圆222:40C x y x+-=的公共点为A,B,则()A.12||2C C=B.直线AB的方程是14x=C.12AC AC⊥D.||2AB=【答案】ABD【解析】圆1C的圆心是()0,0,半径11r=,圆()222:24C x y-+=,圆心()2,0,22r=,122C C∴=,故A正确;两圆相减就是直线AB的方程,两圆相减得1414x x=⇒=,故B正确;11AC=,22AC=,122C C=,2221212AC AC C C+≠,所以12AC AC⊥不正确,故C不正确;圆心()0,0到直线14x=的距离14d=,2AB===,故D正确.故选:ABD3.(2021·全国高二课时练习)(多选)圆221:20x y xO+-=和圆222:240O x y x y++-=的交点为A ,B ,则有()A.公共弦AB 所在直线方程为0x y -=B.线段AB 中垂线方程为10x y +-=C.公共弦AB的长为2D.P 为圆1O 上一动点,则P 到直线AB 距离的最大值为212+【答案】ABD【解析】对于A,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确;对于C,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==,故C 不正确;对于D,P 为圆1O 上一动点,圆心1O ()1,0到0xy -=的距离为2d =,半径1r =,即P 到直线AB 距离的最大值为12+,故D 正确.故选:ABD4.(2022·全国·高二专题练习)已知圆22110C x y +=:与圆22222140C x y x y +++-=:.(1)求证:圆1C 与圆2C 相交;(2)求两圆公共弦所在直线的方程;(3)求经过两圆交点,且圆心在直线60x y +-=上的圆的方程.【答案】(1)证明见解析(2)20x y +-=(3)226620x y x y +--+=【解析】(1)证明:圆2C :2222140x y x y +++-=化为标准方程为()()221116x y +++=,()21,1C ∴--,4r =圆221:10C x y +=的圆心坐标为()10,0C ,半径为=R,12C C ∴44<,∴两圆相交;(2)解:由圆221:10C x y +=与圆222:22140C x y x y +++-=,将两圆方程相减,可得2240x y +-=,即两圆公共弦所在直线的方程为20x y +-=;(3)由22222214010x y x y x y ⎧+++-=⎨+=⎩,解得3113x x y y ==-⎧⎧⎨⎨=-=⎩⎩或,则交点为()3,1A -,()1,3B -,圆心在直线60x y +-=上,设圆心为()6,P n n -,则AP BP ==3n =,故圆心()3,3P ,半径4r AP ==,∴所求圆的方程为()22(3)316x y -+-=.5.(2021·湖南·嘉禾县第一中学高二阶段练习)已知圆1C :222220x y x y +++-=,圆2C :22410x y y +--=.(1)证明:圆1C 与圆2C 相交;(2)若圆1C 与圆2C 相交于A ,B 两点,求AB .【答案】(1)证明见解析;【解析】(1)圆1C 的标准方程为()()22114x y +++=,圆心为()1,1--,半径为2,圆2C 的标准方程为()2225x y +-=,圆心为()0,2∴圆1C 和圆2C =22<,可知:圆1C 和圆2C 相交,得证.(2)由(1)结论,将圆1C 与圆2C 作差,得:直线AB 的方程为2610x y +-=,圆2C 的圆心()0,2到直线AB=,∴AB =6.(2022·江苏·高二单元测试)已知圆221:210240 C x y x y +-+-=和圆222:2280C x y x y +++-=.(1)试判断两圆的位置关系;(2)求公共弦所在直线的方程;(3)求公共弦的长度.【答案】(1)相交(2)240x y -+=(3)【解析】(1)将两圆方程化为标准方程为221:(1)(5)50C x y -++=,222:(1)(1)10C x y +++=,则圆1C 的圆心为(1,5)-,半径1r =圆2C 的圆心为(1,1)--,半径2r =12C C =12r r +=12r r -=121212r r C C r r ∴-<<+,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线的方程为240x y -+=.(3)由22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,解得40x y =-⎧⎨=⎩或02x y =⎧⎨=⎩,∴两圆的交点坐标为(4,0)-和(0,2).∴=5切线问题1.(2022·全国·高二课时练习)设圆221:244C x y x y +-+=,圆222:680C x y x y ++-=,则圆1C ,2C 的公切线有()A .1条B .2条C .3条D .4条【答案】B【解析】由题意,得圆()()2212:312C x y -+=+,圆心()11,2C -,圆()()2222:534C x y ++=-,圆心()23,4C -,∴125353C C -<=+,∴1C 与2C 相交,有2条公切线.故选:B .2.(2022·全国·高二课时练习)(多选)已知圆()221:9C x y a +-=与圆()222:1C x a y -+=有四条公切线,则实数a 的取值可能是()A .-4B .-2C .D .3【答案】AD【解析】圆心()10,C a ,半径13r =,圆心()2,0C a ,半径21r =.因为两圆有四条公切线,所以两圆外离.又两圆圆心距d =31>+,解得a <-或a >3.(2022·全国·高二课时练习)(多选)已知圆()()22:211M x y -+-=,圆()()22:211N x y +++=,则下列是M ,N 两圆公切线的直线方程为()A .y =0B .3x -4y =0C.20x y -=D.20x y -=【答案】ACD【解析】圆M 的圆心为M (2,1),半径11r =.圆N 的圆心为N (-2,-1),半径21r =.圆心距2d =>,两圆相离,故有四条公切线.又两圆关于原点O 对称,则有两条切线过原点O ,设切线方程为y =kx1=,解得k =0或43k =,对应方程分别为y =0,4x -3y =0.另两条切线与直线MN 平行,而1:2MN l y x =,设切线方程为12y x b =+1=,解得2b =±,切线方程为20x y -+=,20x y --=.故选:ACD .4.(2022·全国·高二专题练习)过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故答案为:1x =或3450x y -+=5.(2022·全国·高二专题练习)求过点()13M -,的圆224x y +=的切线方程__________.【答案】326122633y x ++=+或326122633y x --=+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:326122633y x ++=+或326122633y x --=+.6(2022·广东·中山一中高三阶段练习)已知圆22:240C x y x y m +--+=.若圆C 与圆22:(2)(2)1D x y +++=有三条公切线,则m 的值为___________.【答案】11-【解析】由22240x y x y m +--+=,得22(1)(2)5x y m -+-=-,所以圆C 的圆心为()1,2C 因为圆22:(2)(2)1D x y +++=,所以圆D 的圆心为()22D ,--,半径为1,因为圆C 与圆D 有三条公切线,所以圆C 与圆D 相外切,即1CD ==+,解得11m =-,所以m 的值为11-.故答案为:11-.7.(2022·全国·高二课时练习)已知圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=,若圆1C 与圆2C 有且仅有一个公共点,则实数a 的值为___________.【答案】34或14【解析】设圆1C ,圆2C 的半径分别为1r ,2r .圆1C 的方程可化为22(3)(2)1x y -++=,圆2C 的方程可化为22(7)(1)50x y a -+-=-.由两圆相切,得1212C C r r =+或1212C C r r =-.因为11r =,125C C ==,所以215r +=或215r -=,可得24r =或26=r 或24r =-(舍去),因此5016a -=或5036a -=,解得34a =或14a =.故答案为:34或148.(2022·贵州黔东南·高二期末(理))若圆221x y +=与圆()()22416x a y -+-=有3条公切线,则正数a =___________.【答案】35=∴3,0,3a a a =±>∴=又6最值问题1.(2022·广东·高三阶段练习)已知C :222220x y x y +---=,直线l :220x y ++=,M 为直线l 上的动点,过点M 作C 的切线MA ,MB ,切点为A ,B ,当四边形MACB 的面积取最小值时,直线AB 的方程为____.【答案】210x y ++=【解析】C :222220x y x y +---=的标准方程为22(1)(1)4x y -+-=,则圆心()11C ,,半径2r =.因为四边形MACB 的面积2•2CAMS SCA AM AM ====,要使四边形MACB 面积最小,则需CM 最小,此时CM 与直线l 垂直,直线CM 的方程为()121y x -=-,即21y x =-,联立21220y x x y =-⎧⎨++=⎩,解得()0,1M -.则CM =则以CM 为直径的圆的方程为221524x y ⎛⎫-+= ⎪⎝⎭,与C 的方程作差可得直线AB 的方程为210x y ++=.故答案为:210x y ++=.2.(2021·广东·南海中学高二阶段练习)已知圆22:(4)(3)1C x y -++=和两点(,0)A a -、(,0)(0)B a a >,若圆C 上存在点P ,使得90APB ∠=︒,则a 的最小值为()A .1B .6C .3D .4【答案】D【解析】由90APB ∠=︒得点P 在圆222x y a +=上,所以,点P 在圆222x y a +=上,又在圆C 上,所以,两圆有交点,因为圆222x y a +=的圆心为原点O ,半径为a ,圆C 的圆心为()4,3-,半径为1.所以,|1|1a OC a -≤≤+,即|1|5146a a a -≤≤+⇒≤≤所以,a 的最小值为4.故选:D3.(2021·吉林油田高级中学高二开学考试)已知圆P 的方程为22680x y x y ++-=,过点()1,2M -的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A .B .10C .D .5【解析】圆P 的方程可化为()()223425x y ++-=,则(3,4),5P r -=,因为()()22132425-++-<,故点()1,2M -在圆内,过点()1,2M -的最长弦一定是圆P 的直径,当AB PM ⊥时,AB 最短,此时PM =则AB ==故选:A .4.(2022·浙江·杭州市富阳区场口中学高二期末)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是()A .()()22515x y -++=B .()()225113x y -+-=C .()()224413x y -++=D .()()221652x y -++=【答案】B【解析】过点()7,2A -作直线2360x y -+=的垂线,垂足为B ,则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,其中AB =(),B a b ,则221732360b a a b +⎧⨯=-⎪-⎨⎪-+=⎩,解得:34a b =⎧⎨=⎩,故AB 的中点,即圆心为7342,22+-⎛⎫ ⎪⎝⎭,即()5,1,故该圆为()()225113x y -+-=故选:B5.(2022·江苏·高二专题练习)已知M 是圆22:1C x y +=上一个动点,且直线1:310(R)l mx y m m --+=∈与直线2:310(R)l x my m m +--=∈相交于点P ,则||PM 的取值范围是()A.1,1⎤⎦B.1⎤⎦C.1,1⎤⎦D.1⎤⎦【答案】B【解析】直线1:310(R)l mx y m m --+=∈整理可得,(3)(1)0m x y ---=,即直线1l 恒过(3,1),同理可得,直线2l 恒过(1,3),又()110m m ⨯+-⨯=,∴直线1l 和2l 互相垂直,∴两条直线的交点P 在以(1,3),(3,1)为直径的圆上,即P 的轨迹方程为22(2)(2)2x y -+-=,设该圆心为M ,圆心距||1MC =>,∴两圆相离,1||1PM ∴-+ ,||PM ∴的取值范围是1].故选:B .。

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。

解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。

点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。

因为 distance = 5 > 4,所以点A在圆外。

初中直线与圆的位置关系经典练习题

初中直线与圆的位置关系经典练习题

圆与直线的基本性质一、定义[例1]在ABCRt∆中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm。

[例2]在ABC∆中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?[变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】A.相切B.相离C.相离或相切D.相切或相交二、性质例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】A.30B.45C.60D.67.5例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】A.80° B.110°C.120° D.140°变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC =°.1 / 4例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.2 / 4三、切线的判定定理:例1:如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=3,求AB的长.例2:如图,已知AB=AC,∠BAC=120º,在BC上取一点O,以O 为圆心OB为半径作圆,①且⊙O过A点,过A作AD∥BC交⊙O于D,求证:(1)AC是⊙O的切线;(2)四边形BOAD是菱形。

直线与圆的位置关系练习题(含答案)

直线与圆的位置关系练习题(含答案)

4题 5题 《直线与圆的位置关系》练习题1.R t △ABC 中,∠C=90°,AC=6,BC=8,以C 为圆心, 为半径的⊙C 与直线AB 相切;以C 为圆心半径为4作⊙C ,则⊙C 与直线AB 的位置关系为 ;若⊙C 与直线AB 相交,则⊙C 的半径R 的取值范围为 。

2.一条直线到半径为3的圆的圆心距为方程x 2-4x+3=0的一个根,则这条直线与这个圆的位置关系是 。

3.已知∠AOB 的边OB 上有一点M ,⑴若∠AOB=45°,OM=6,①则以M 为圆心,4为半径的⊙M 与OA 的位置关系是 ;②若以M 为圆心的⊙M 与OA 相切,则半径R= ;③若以M 为圆心的⊙M 与OA 相交,则半径R 的取值范围为 。

⑵若∠AOB=60°,以M 为圆心,4cm 长为半径的⊙M 恰好与OA 相切,则OM= 。

⑶若∠AOB=30°,OM=1,⊙M 的半径R=4,⊙M 的圆心M 沿射线OB 方向移动,当移动的距离 为 时,⊙M 与直线OA 恰好相切。

⑷若∠AOB=20°,OM=4,以M 为圆心,2 3 为半径作⊙M ,此时⊙M 与直线OA ,若射线OA 绕点O 顺时针方向旋转,当旋转角度为 时,⊙M 与直线OA 第一次相切。

4.如图,⊙O 的半径为4cm,点O 到直线l 的距离为6cm,直线l 从右向左以1cm/s 的速度平移①当平移的时间t=8s 时,⊙O 与直线l 的位置关系为 ;②当平移的时间t= 时,⊙O 与直线l 相切; ③若⊙O 与直线l 有交点,则移动的时间t 的取值范围为 。

5.如图,直线AB 、CD 交于点O ,M 为CD 上一点,MO=10cm, ∠AOC=30°,⊙M的半径R=2cm ,⊙M 沿着CD 方向以2cm/s 的速度运动,①当运动时间t 为 秒时,⊙M 与直线AB 相切;②若⊙M 与直线AB 相交,则运动时间t 的取值范围为 。

直线与圆的位置关系经典例题(有详解)

直线与圆的位置关系经典例题(有详解)

直线与圆的位置关系一.选择题(共9小题)1.(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.2.(2013•济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4B.C.6D.3.(2013•贵阳)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈B.2圈C.3圈D.4圈4.(2013•杭州)给出下列命题及函数y=x,y=x2和y=的图象:①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③5.(2014•广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次6.(2014•长春)如图,在平面直角坐标系中,点A、B均在函数y=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A.(2,2)B.(2,3)C.(3,2)D.(4,)7.(2014•武汉)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.8.(2014•湖州)如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E 重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是()A.S1>S2+S3B.△AOM∽△DMN C.∠MBN=45°D.M N=AM+CN9.(2014•绵阳)如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是()A.=B.=C.=D.=二.填空题(共8小题)10.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________.11.(2013•晋江市)如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C 重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=_________;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=_________时,⊙C与直线AB相切.12.(2013•杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC 的边相切(切点在边上),请写出t可取的一切值_________(单位:秒)13.(2014•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是_________.14.(2014•宝应县二模)如图,以数轴上的原点O为圆心,6为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,10为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是_________.15.(2014•苏州模拟)如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点,设PO=dcm,则d的范围是_________.16.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是_________米.17.已知一个三角形的周长和面积分别是84、210,一个单位圆在它的内部沿着三边匀速无摩擦地滚动一周后回到原来的位置(如图),则这个三角形的内部以及边界没有被单位圆滚过的部分的面积是_________(结果保留准确值).三.解答题(共3小题)18.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O 的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.19.(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.20.(2013•岳阳)如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.(1)求A,B,C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;(3)已知M为抛物线上一动点(不与C点重合),试探究:①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.参考答案与试题解析一.选择题(共9小题)1.(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.考点:弧长的计算;多边形内角与外角;圆周角定理;切线的性质;切线长定理.专题:压轴题.分析:点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y°;然后在四边形BDPE中,求出∠B;最后利用弧长公式计算出结果.解答:解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y°.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y°+90°=360°,解得:∠B=180°﹣2y°.∴的长度是:=.故选B.点评:本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y°.2.(2013•济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4B.C.6D.考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.专题:计算题;压轴题.分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.解答:解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选B点评:此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.3.(2013•贵阳)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈B.2圈C.3圈D.4圈考点:切线的性质;弧长的计算.专题:压轴题.分析:根据题意易证四边形OEAF是正方形,则AF=OE=1.所以硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的路程是:2(AB+BC)﹣8AF=20﹣8=12,依此可求硬币自身滚动的圈数大约是:12÷硬币的周长≈2(圈).解答:解:如图,连接AD、AB与⊙O的切点E、F,则OE⊥AD,OF⊥AB.易证四边形OEAF是正方形,则AF=OE=1.∵⊙O的周长=2π×1=2π,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的路程是:2(AB+BC)﹣8AF=20﹣8=12,又因为在每个角硬币滚动一段弧,四个角的弧就是一个整圆,∴硬币自身滚动的圈数大约是:12÷2π≈2(圈).故选B.点评:本题考查了切线的性质、弧长的计算.理清“硬币自身滚动的圈数=(矩形ABCD的周长﹣8AF)÷硬币的周长”是解题的关键.4.(2013•杭州)给出下列命题及函数y=x,y=x2和y=的图象:①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1,故①正确;②如果,那么a>1或﹣1<a<0,故②错误;③如果,那么a值不存在,故③错误;④如果时,那么a<﹣1,故④正确.综上所述,正确的命题是①④,错误的命题是②③.故选:A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.5.(2014•广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次考点:直线与圆的位置关系.专题:分类讨论.分析:根据题意作出图形,直接写出答案即可.解答:解:如图,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选:B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.6.(2014•长春)如图,在平面直角坐标系中,点A、B均在函数y=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A.(2,2)B.(2,3)C.(3,2)D.(4,)考点:切线的性质;反比例函数图象上点的坐标特征.专题:数形结合.分析:把B的坐标为(1,6)代入反比例函数解析式,根据⊙B与y轴相切,即可求得⊙B的半径,则⊙A的半径即可求得,即得到B的纵坐标,代入函数解析式即可求得横坐标.解答:解:把B的坐标为(1,6)代入反比例函数解析式得:k=6,则函数的解析式是:y=,∵B的坐标为(1,6),⊙B与y轴相切,∴⊙B的半径是1,则⊙A是2,把y=2代入y=得:x=3,则A的坐标是(3,2).故选:C.点评:本题考查了待定系数法求函数的解析式,以及斜线的性质,圆的切线垂直于经过切点的半径.7.(2014•武汉)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义.专题:几何图形问题.分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.解答:解:连接OA、OB、OP,延长BO交PA的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=.在Rt△PBF和Rt△OAF中,,∴Rt△PBF∽Rt△OAF(HL).∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(PA+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.8.(2014•湖州)如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是()A.S1>S2+S3B.△AOM∽△DMN C.∠MBN=45°D.M N=AM+CN考点:切线的性质;正方形的性质;相似三角形的判定与性质.分析:(1)如图作MP∥AO交ON于点P,当AM=MD时,求得S1=S2+S3,(2)利用MN是⊙O的切线,四边形ABCD为正方形,求得△AOM∽△DMN.(3)作BP⊥MN于点P,利用Rt△MAB≌Rt△MPB和Rt△BPN≌Rt△BCN来证明C,D成立.解答:解:(1)如图,作MP∥AO交ON于点P,∵点O是线段AE上的一个动点,当AM=MD时,S梯形ONDA=(OA+DN)•ADS△MNO=S△MOP+S△MPN=MP•AM+MP•MD=MP•AD,∵(OA+DN)=MP,∴S△MNO=S梯形ONDA,∴S1=S2+S3,∴不一定有S1>S2+S3,(2)∵MN是⊙O的切线,∴OM⊥MN,又∵四边形ABCD为正方形,∴∠A=∠D=90°,∠AMO+∠DMN=90°,∠AMO+∠AOM=90°,∴∠AOM=∠DMN,在△AMO和△DMN中,,∴△AOM∽△DMN.故B成立;(3)如图,作BP⊥MN于点P,∵MN,BC是⊙O的切线,∴∠PMB=∠MOB,∠CBM=∠MOB,∵AD∥BC,∴∠CBM=∠AMB,∴∠AMB=∠PMB,在Rt△MAB和Rt△MPB中,∴Rt△MAB≌Rt△MPB(AAS)∴AM=MP,∠ABM=∠MBP,BP=AB=BC,在Rt△BPN和Rt△BCN中,∴Rt△BPN≌Rt△BCN(HL)∴PN=CN,∠PBN=∠CBN,∴∠MBN=∠MBP+∠PBN,MN=MN+PN=AM+CN.故C,D成立,综上所述,A不一定成立,故选:A.点评:本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.9.(2014•绵阳)如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是()A.=B.=C.=D.=考点:切线的性质;平行线的判定与性质;三角形中位线定理;垂径定理;相似三角形的判定与性质.专题:探究型.分析:(1)连接AQ,易证△OQB∽△OBP,得到,也就有,可得△OAQ∽OPA,从而有∠OAQ=∠APO.易证∠CAP=∠APO,从而有∠CAP=∠OAQ,则有∠CAQ=∠BAP,从而可证△ACQ∽△ABP,可得,所以A正确.(2)由△OBP∽△OQB得,即,由AQ≠OP得,故C不正确.(3)连接OR,易得=,=2,得到,故B不正确.(4)由及AC=2OQ,AB=2OB,OB=OR可得,由AB≠AP得,故D不正确.解答:解:(1)连接AQ,如图1,∵BP与半圆O切于点B,AB是半圆O的直径,∴∠ABP=∠ACB=90°.∵OQ⊥BC,∴∠OQB=90°.∴∠OQB=∠OBP=90°.又∵∠BOQ=∠POB,∴△OQB∽△OBP.∴.∵OA=OB,∴.又∵∠AOQ=∠POA,∴△OAQ∽△OPA.∴∠OAQ=∠APO.∵∠OQB=∠ACB=90°,∴AC∥OP.∴∠CAP=∠APO.∴∠CAP=∠OAQ.∴∠CAQ=∠BAP.∵∠ACQ=∠ABP=90°,∴△ACQ∽△ABP.∴.故A正确.(2)如图1,∵△OBP∽△OQB,∴.∴.∵AQ≠OP,∴.故C不正确.(3)连接OR,如图2所示.∵OQ⊥BC,∴BQ=CQ.∵AO=BO,∴OQ=AC.∵OR=AB.∴=,=2.∴≠.∴.故B不正确.(4)如图2,∵,且AC=2OQ,AB=2OB,OB=OR,∴.∵AB≠AP,∴.故D不正确.故选:A.点评:本题考查了切线的性质,相似三角形的判定与性质、平行线的判定与性质、垂径定理、三角形的中位线等知识,综合性较强,有一定的难度.二.填空题(共8小题)10.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.考点:正方形的性质.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“边角边”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.解答:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)故答案为:﹣1.点评:本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.11.(2013•晋江市)如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C 重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=或时,⊙C与直线AB相切.考点:切线的性质;含30度角的直角三角形;勾股定理;三角形中位线定理.专题:压轴题.分析:(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.12.(2013•杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC 的边相切(切点在边上),请写出t可取的一切值t=2或3≤t≤7或t=8(单位:秒)13.(2014•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是2.考点:切线的性质.专题:几何图形问题.分析:作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.解答:解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.点评:此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.14.(2014•宝应县二模)如图,以数轴上的原点O为圆心,6为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,10为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣8≤a≤﹣4.考点:圆与圆的位置关系.分析:两扇形的圆弧相交,介于D、A两点重合与C、B两点重合之间,分别求出此时PD的长,PC的长,确定a 的取值范围.解答:解:当A、D两点重合时,PO=PD﹣OD=10﹣6=4,此时P点坐标为a=﹣4,当B在弧CD时,由勾股定理得,PO===8,此时P点坐标为a=﹣8,则实数a的取值范围是﹣8≤a≤﹣4.故答案为:﹣8≤a≤﹣4.点评:本题考查了圆与圆的位置关系,实数与数轴的关系.关键是找出两弧相交时的两个重合端点.15.(2014•苏州模拟)如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点,设PO=dcm,则d的范围是2cm≤d<3cm或d>5cm.考点:圆与圆的位置关系.分析:根据两圆内切和外切时,求出两圆圆心距,进而得出d的取值范围.解答:解:连接OP、OA,∵⊙O的半径为4cm,1cm为半径的⊙P,⊙P与⊙O没有公共点,∴d>5时,两圆外离,当两圆内切时,过点O作OD⊥AB于点D,OP′=4﹣1=3cm,OD==2(cm),∴以1cm为半径的⊙P与⊙O没有公共点时,2≤d<3,故答案为:2cm≤d<3cm或d>5cm.点评:此题主要考查了圆与圆的位置关系,根据图形进行分类讨论得出是解题关键.16.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是米.考点:相切两圆的性质.专题:压轴题.分析:连接三个圆的圆心,构造等边三角形.根据等边三角形的性质进行求解.解答:解:连接三个圆的圆心,构造等边三角形,则等边三角形的边长是1.根据等边三角形的三线合一和勾股定理,得等边三角形的高是.则其最高点与地面的距离是(1+)米.点评:此题主要是构造等边三角形,根据等边三角形的性质进行计算.17.已知一个三角形的周长和面积分别是84、210,一个单位圆在它的内部沿着三边匀速无摩擦地滚动一周后回到原来的位置(如图),则这个三角形的内部以及边界没有被单位圆滚过的部分的面积是84﹣π(结果保留准确值).考点:切线的性质.分析:由图知,要求的面积有两部分:①三角形的内部被圆滚过的部分是个三角形,且与原三角形相似,已知了原三角形的周长和面积,可求得原三角形的内切圆半径,进而可得三角形内部被圆滚过部分的三角形的内切圆半径,即可得到两个三角形的相似比,根据相似三角形的性质可求得此三角形的周长和面积;②三角形边界的三个角的面积;连接单位圆的圆心和原三角形的三顶点,先求得构成的6个小直角三角形的面积,而3个扇形正好构成一个圆,由此可得原三角形边界三个角的面积;综合①②的面积,即可得所求的值.解答:解:如图;设△ABC的内切圆半径为R,△DEF的内切圆半径为r;依题意有:×84×R=210,即R=5;易知:△DEF∽△ABC,且r:R=4:5,∴C△DEF=C△ABC=67.2;易知:被圆滚过的三角形内部的三角形也和△ABC相似;且其内切圆半径为:R﹣2=3,即其面积=S△ABC=75.6;由图知:S四边形AHDG=2S△AGD=AG•1=AG,同理S四边形PEQB=BQ,S四边形CNFM=CM;∴S四边形AHDG+S四边形PEQB+S四边形CNFM=AG+CM+BQ=(C△ABC﹣C△DEF)=8.4;而S扇形DHG+S扇形PEQ+S扇形FMN=S单位圆=π,∴所求的面积=75.6+8.4﹣π=84﹣π.点评:此题主要考查的是图形面积的求法,涉及到切线的性质、扇形面积的计算方法、相似三角形以及三角形内切圆半径的求法等知识;需要注意的有两点:①被圆滚过的三角形内部的三角形与原三角形相似,②原三角形边界的三个扇形正好构成一个单位圆.。

九年级数学直线与圆的位置关系练习题及答案

九年级数学直线与圆的位置关系练习题及答案

九年级数学直线与圆的位置关系练习题及答案一、单选题1. 给定直线l :3x-4y=12,圆C:(x-1)^2+(y+3)^2=25,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点2. 若直线l的方程为x-2y+1=0,圆C的方程为(x-3)^2+(y+4)^2=16,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点3. 在直角坐标系中,直线l:y=2x+1与圆C:(x-4)^2+(y+2)^2=36的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点二、填空题1. 直线y=3x+2与圆(x-1)^2+(y-3)^2=16的位置关系可以用___________表示。

2. 若直线l :2x+3y=6与圆C:(x-2)^2+(y-3)^2=9相交于点A(1,2),则点A到直线l的距离为_________。

三、解答题1. 已知直线l的方程为y=2x-1,圆C的方程为(x-2)^2+(y-1)^2=r^2,求当r=3时,l与C的位置关系。

2. 某圆C的圆心坐标为(3,-2),半径为4,直线l的方程为2x-y=5,则求l与C的位置关系并证明。

答案:一、单选题1. C2. A3. D二、填空题1. 相交于两点2. 3三、解答题1. 当r=3时,圆C的方程为(x-2)^2+(y-1)^2=9。

将直线l的方程代入圆C的方程,得到4x^2-4x+1+4x-4+y^2-2y+1=9,简化后为4x^2+y^2-2y-3=0。

该方程与圆C相交于两个点,故位置关系为相交于两点。

2. 圆C的圆心坐标为(3,-2),半径为4。

直线l的斜率为2,l的方程可以改写为y=2x-5,将直线l的方程代入圆C的方程,得到(x-3)^2+(2x-5+2)^2=16。

化简后得到5x^2-35x+60=0,解得x=2和x=6。

将x的值代入直线l的方程,得到相应的y值,分别为y=-1和y=7。

典例精析1(直线和圆的位置关系)

典例精析1(直线和圆的位置关系)

《直线与圆的位置关系》典例精析1【例1】如图,a、b是两条公路相交于点O,∠POB=30°,P为公路旁的一所学校且PO= 250米,一拖拉机从A出发沿AB方向行驶,距离拖拉机 150米的范围内会受到噪声的影响,请问在拖拉机行驶过程中,学校是否会受到拖拉机噪声的影响.【分析】距离拖拉机 150米的范围内会受到噪声的影响,即在学校周围 150米的范围是否有拖拉机经过,也就是判断直线AB与以P为圆心 150米为半径的圆的位置关系是什么.【解】如图,过P作PC⊥AB于点C,在Rt△POC中,∵∠POB=30°,∴PC= PO= 125米,又125<150,即d<r,直线与圆相交,学校会受到噪声的影响.【例2】如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.【分析】这个问题中CD与圆没有确定的公共点,要证明CD是圆的切线,需要过O 作CD的垂线段,再证明直线与圆心O的距离等于圆的半径.另外此题中用到了一个重要的辅助线:过切点的半径.【证明】连结OE、过O作OF⊥CD,垂足为F.∵AB是⊙O的切线,∴OE⊥AB.又AB=CD,∴OE=OF.∴CD是小圆的切线.【例3】如图,PA、PB是⊙的两条切线,A、B为切点,CD切⊙O于E,交PA、PB 于C、D,若PA= 6cm,求△PCD的周长.【分析】此题中有三个切线长定理的基本图形,即由P、C、D各引出了圆的两条切线,只要我们用切线长定的性质,就能得出PA=PB=6,CA=CE,DE=DB.【解】∵PA、PB是⊙的两条切线∴PA=PB=6 同理CA=CE,DE=DB∴△PCD的周长= PC+CE+DE+PD = PA+PB= 12cm.【例4】如图,已知Rt△ABC的三边长为6、8、10,求这个三角形的内切圆半径.【分析】由切线的性质可得四边形CFOD是正方形,由切线长定理可得AD=AE,BF=BE,CF=CD,可列出方程解题.【解】∵OF⊥BC、OD⊥AC、AC⊥BC,∴四边形CFOD是矩形.∵OD=OF∴四边形CFOD是正方形.∴设OF=OD=CD=CF=x∵AD=AE,BF=BE,∴BF+AD=BE+AE=AB.则有(6-x)+ (8-x) = 10∴x = 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线与圆的位置关系》典型例题
例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?
(1)r=1cm;(2)r=cm;(3)r=2.5cm.
例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值.
例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?
例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切.
例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.
参考答案
例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.
解:过C点作CD⊥AB于D,
在R t△ABC中,∠C=90°,AB=4,BC=2,
∴AC=2

∴AB·CD=AC·BC,
∴,
(1)当r =1cm时CD>r,∴圆C与AB相离;
(2)当r=cm时,CD=r,∴圆C与AB相切;
(3)当r=2.5cm时,CD<r,∴圆C与AB相交.
说明:从“数”到“形”,判定圆与直线位置关系.
例2 解:过C点作CD⊥AB于D,
在R t△ABC中,∠C=90°,AB=4,BC=2,
∴AC=2

∴AB·CD=AC·BC,
∴,
(1)∵直线AB与⊙C相离,∴0r<CD,即0<r<;
(2)∵直线AB与⊙C相切,∴r =CD,即r=;
(3)∵直线AB与⊙C相交,∴r>CD,即r>.
说明:从“形”到“数”,由圆与直线位置关系来确定半径.
例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,
所以存在一点P,使R t△PBC∽R t△APD.
解:设以AB为直径的圆为⊙O,OP⊥DC,则:
OP为直角梯形ABCD的中位线,
∴OP=(AD+BC)/2=(4+2)/2=3,又∵OA=OB=AB/2=3,
∴OP=OA,∴⊙O与DC相切,
∴∠APB=90°,∴∠APD+∠BPC=90°.又∵∠PBC+∠BPC=90°,
∴∠APD=∠PBC,又∵∠C=∠D=90°,∴R t△PBC∽R t△APD.
因此,DC上存在点P,使R t△PBC∽R t△APD.
说明:①直线与圆位置关系的应用;②此题目可以变动数值,使DC与⊙O 相交、相离.
例4 分析:要证以为直径的圆与相切,只需证明的中点到
的距离等于.
证明:过点作于,
同理可证:
为的中点,
即:以为直径的圆与相切.
说明:在判定直线是圆的切线时,若条件没有告诉它们有公共点,常用的方法就是“距离判定”法,即先由圆心到该直线作垂线,证明圆心到该直线的距离恰好等于半径,从而得出直线是圆的切线的结论.
例5 分析:欲证直线和⊙相离,只需计算点到的距离的长,若,则判定与⊙相离(如图)
证明于,
是圆心到的距离
∽.

⊙的半径为,
故与⊙相离.。

相关文档
最新文档