0-1背包问题_算法设计C++
0-1背包问题的多种解法

问题描述0/1 背包问题 :现有 n 种物品,对 1<=i<=n ,已知第 i 种物品的重量为正整数 W i ,价值为正整数 V i , 背包能承受的最大载重量为正整数 W ,现要求找出这 n 种物品的一个子集,使得子集中物 品的总重量不超过 W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取, 不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i W i 1 i i(1)x i { 0,1}( 1 i n)nmax v i x i (2) i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的 解向量 X (x 1, x 2 ,x 3, ........... , x n ) 。
首先说明一下 0-1 背包问题拥有最优解。
假设 (x 1,x 2,x 3, ........ ,x n ) 是所给的问题的一个最优解, 则(x 2,x 3, ............... ,x n )是下面问题的n n n个问 题 的 一 个 最 优解 , 则v i y iv i x i , 且 w 1x 1w i y i W 。
因此 ,i 2 i 2 i 2一个最优解:w i x i Wi2w 1x 1nmax v i x i 。
如果不是的话,设(y 2,y 3, , y n ) 是这x i {0,1}( 2 i n)i2n n nv1x1 v i y i v1x1 v i x i v i x i ,这说明(x1,y2,y3, ............. ,y n) 是所给的0-1 背包问i 2 i 2 i 1题比( x1 , x 2 , x3 , ... , x n ) 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。
01背包实验报告

算法设计与分析实验报告0_1背包一.问题描述假设有n件物品,每件物品有各自的重量W1,W2,……,Wn和与之对应的价值V1,V2,……,Vn。
设背包的容量为c,在不超过背包容量的前提下,求出获得最大价值总和的方案。
(0-1背包的情况下物品不可分割,只能选择放入,或者不放入背包中)。
二.求解思路1.贪心策略问题开始阶段,将所有物品按价值从高到低排列,每一次往背包里放入不超过背包容量的价值最大的物品,直到没有物品可放入为止。
但事实证明,由于物品的不可分割性,0-1背包并不适合贪心策略。
例:假设背包的容量为50,共有三件物品(重量,价值):(10,60),(20,100),(30,120)。
若使用贪心策略,则会选择一个(30,120)和一个(20,100)。
得到的价值总和是220。
而稍加计算便可知选取两个(20,100)和一个(10,60)可以得到更大的价值总和260。
因此贪心策略不能给出0-1背包的最优解。
后话:即使是普通背包问题(物品可分割),每次选择价值最大的物品也不能得到最优解。
正确的贪心策略应是:每次选择单位重量下价值最大的物品。
由于本次实验主要讨论的是0-1背包问题,这里就不给出该贪心策略的证明。
2.动态规划(1)证明0-1背包问题具有最优子结构性质:假设(x1,x2,……,xn)是容量为c的背包的一组最优解,其中xi的取值为0或1,表示是否放入背包中。
则必有(x2,x3,……,xn)为如下子问题的一组最优解:sum{xi*wi} (2<=i<=n)<=c-x1*w1利用反证法证明,假设(y1,y2,……,yn)是该子问题的一组最优解而(x2,x3,……,xn)不是。
则sum{yi*vi} > sum{xi*vi} (2<=i<=n)那么就可得到:x1*v1+ sum{yi*vi} > x1*v1+ sum{xi*vi} (2<=i<=n)则(x1,y2,……,yn)是原问题的最优解,而(x1,x2,……,xn)不是,与假设矛盾。
c语言部分背包问题的算法设计

很高兴能为您提供文章撰写服务。
在开始撰写的过程中,我将按照您的要求,以深度和广度兼具的方式来探讨c语言部分背包问题的算法设计。
第一部分:背包问题的概念和分类1. 背包问题是指在给定的一组物品中选择合适的物品装入背包,使得背包的容量最大化或价值最大化的问题。
在算法设计中,背包问题有0-1背包、完全背包、多重背包等不同的分类。
2. 0-1背包问题是指每种物品只能选择一次放入背包,而完全背包问题则是每种物品可以选择多次放入背包。
第二部分:c语言中的背包问题算法设计1. 对于0-1背包问题,可以采用动态规划的方法进行解决。
具体的算法设计包括定义状态转移方程、初始化数组、填表和回溯等步骤。
2. 完全背包问题的算法设计也可以采用动态规划的方法,但在状态转移方程的定义和填表的过程中需要做出相应的调整。
第三部分:c语言中的背包问题算法实现1. 0-1背包问题的算法实现可以通过c语言的数组和循环结构来实现状态转移方程的计算和填表过程。
2. 完全背包问题的算法实现与0-1背包问题类似,但针对每种物品可以选择多次放入背包的特点需要做出相应的改进。
第四部分:个人观点和总结在我看来,c语言部分背包问题的算法设计是一项具有挑战性和实用性的工作。
通过深入理解不同类型的背包问题,并结合动态规划的算法设计和实现,可以有效解决实际生活和工作中的背包优化问题。
掌握c 语言中背包问题的算法设计和实现,不仅可以提升自身的编程能力,也可以为解决实际问题提供有力的支持。
以上是我根据您提供的主题对c语言部分背包问题的算法设计进行的基本介绍和探讨。
希望这些内容能够满足您对文章的要求,如果有其他方面需要补充或修改,还请您及时提出。
期待您的反馈和意见,谢谢!在c语言中,背包问题是一种常见的算法设计问题,涉及到动态规划和数组的运用。
背包问题可以分为0-1背包、完全背包、多重背包等不同类型,每种类型的背包问题都有其特定的算法设计和实现方法。
在本文中,我们将进一步探讨c语言中背包问题的算法设计和实现,并对算法的效率和实际应用进行分析和总结。
分支限界法求0-1背包问题实验程序以及代码(C++)

分支限界法求0-1背包问题实验程序以及代码(C++)本程序中(规定物品数量为3,背包容量为30,输入为6个数,前3个为物品重量,后3个数为物品价值):代码:#include<iostream>#include<stack>using namespace std;#define N 100classHeapNode //定义HeapNode结点类{public:doubleupper,price,weight; //upper为结点的价值上界,price是结点所对应的价值,weight为结点所相应的重量int level,x[N]; //活节点在子集树中所处的层序号};double MaxBound(int i);double Knap();void AddLiveNode(double up,double cp,double cw,bool ch,int level);stack<HeapNode>High; //最大队Highdouble w[N],p[N]; //把物品重量和价值定义为双精度浮点数double cw,cp,c=30; //cw为当前重量,cp为当前价值,定义背包容量为30int n=3; //货物数量为3int main(){cout<<"请按顺序输入3个物品的重量:(按回车键区分每个物品的重量)"<<endl;int i;for(i=1;i<=n;i++)cin>>w[i]; //输入3个物品的重量cout<<"请按顺序输入3个物品的价值:(按回车键区分每个物品的价值)"<<endl;for(i=1;i<=n;i++)cin>>p[i]; //输入3个物品的价值cout<<"最大价值为:";cout<<Knap()<<endl; //调用knap函数输出最大价值return 0;}double MaxBound(int j) //MaxBound函数求最大上界{doubleleft=c-cw,b=cp; //剩余容量和价值上界while(j<=n&&w[j]<=left) //以物品单位重量价值递减装填剩余容量{left-=w[j];b+=p[j];j++;}if(j<=n)b+=p[j]/w[j]*left; //装填剩余容量装满背包return b;}void AddLiveNode(double up,double cp,double cw,bool ch,int lev)//将一个新的活结点插入到子集数和最大堆High中{HeapNode be;be.upper=up;be.price=cp;be.weight=cw;be.level=lev;if(lev<=n)High.push(be); //调用stack头文件的push函数}double Knap() //优先队列分支限界法,返回最大价值,bestx返回最优解{ int i=1; cw=cp=0; doublebestp=0,up=MaxBound(1); //调用MaxBound求出价值上界,best为最优值while(1) //非叶子结点{ double wt=cw+w[i];if(wt<=c) //左儿子结点为可行结点{ if(cp+p[i]>bestp) bestp=cp+p[i];AddLiveNode(up,cp+p[i],cw+w[i],true,i+1);}up=MaxBound(i+1);if(up>=bestp) //右子数可能含最优解AddLiveNode(up,cp,cw,false,i+1);if(High.empty()) return bestp;HeapNode node=High.top(); //取下一扩展结点High.pop(); cw=node.weight; cp=node.price; up=node.upper; i=node.level;}}输出结果为:。
01背包问题c语言代码回溯法

以下是使用C语言实现01背包问题的回溯法代码:```c#include <stdio.h>#include <stdlib.h>// 初始化背包struct knapsack {int maxWeight; // 背包最大承重int *items; // 物品数组int n; // 物品数量};// 定义物品重量、价值和数量int weights[] = {2, 2, 6, 5, 4};int values[] = {6, 3, 5, 4, 6};int quantities[] = {3, 2, 2, 1, 1};// 初始化背包最大承重和当前承重int maxWeight = 10;int currentWeight = 0;// 初始化最大价值为0int maxValue = 0;// 遍历物品数组void traverseItems(struct knapsack *knapsack, int index) { // 对于每个物品,遍历其数量for (int i = 0; i < knapsack->quantities[index]; i++) {// 如果当前物品可以放入背包装且当前承重不超过背包最大承重,计算放入该物品后的总价值,并更新最大价值if (currentWeight + weights[index] <= knapsack->maxWeight) {int currentValue = values[index] * knapsack->quantities[index];if (currentValue > maxValue) {maxValue = currentValue;}}// 回溯,将当前物品从背包装中移除,递归地尝试下一个物品knapsack->quantities[index]--;if (index < knapsack->n - 1) {traverseItems(knapsack, index + 1);}knapsack->quantities[index]++; // 恢复物品数量,以便下次遍历尝试放入其他物品}}// 主函数int main() {// 初始化背包装和物品数组struct knapsack knapsack = {maxWeight, weights, 5};knapsack.items = (int *)malloc(sizeof(int) * knapsack.n);for (int i = 0; i < knapsack.n; i++) {knapsack.items[i] = values[i] * quantities[i]; // 根据价值和数量计算物品价值,并存储在物品数组中}knapsack.n = quantities[4]; // 由于最后一个物品的数量为1,因此只需遍历前n-1个物品即可得到所有可能的结果// 使用回溯法求解01背包问题,返回最大价值traverseItems(&knapsack, 0);printf("The maximum value is %d.\n", maxValue);free(knapsack.items); // 释放内存空间return 0;}```希望以上信息能帮助到你。
0-1背包问题的枚举算法

0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。
目标是在不超过背包容量的情况下,选择物品使得总价值最大化。
然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。
二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。
对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。
如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。
最终得到的组合就是最优解。
三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。
分支界限法0-1背包问题(优先队列式分支限界法)

分⽀界限法0-1背包问题(优先队列式分⽀限界法)输⼊要求有多组数据。
每组数据包含2部分。
第⼀部分包含两个整数C (1 <= C <= 10000)和 n (1 <= n <= 10,分别表⽰背包的容量和物品的个数。
第⼆部分由n⾏数据,每⾏包括2个整数 wi(0< wi <= 100)和 vi(0 < vi <= 100),分别表⽰第i个物品的总量和价值输出要求对于每组输⼊数据,按出队次序输出每个结点的信息,包括所在层数,编号,背包中物品重量和价值。
每个结点的信息占⼀⾏,如果是叶⼦结点且其所代表的背包中物品价值⼤于当前最优值(初始为0),则输出当前最优值 bestv 和最优解bestx(另占⼀⾏)参见样例输出测试数据输⼊⽰例5 32 23 22 3输出⽰例1 1 0 02 2 2 23 5 2 24 10 4 5bestv=5, bestx=[ 1 0 1 ]4 11 2 23 4 5 42 3 0 0⼩贴⼠可采⽤如下的结构体存储结点:typedef struct{int no; // 结点在堆中的标号int sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // 优先值 sv/sw}Node;#include<stdio.h>#include<math.h>#include<string.h>typedef struct {int no; // 结点标号int id; // 节点idint sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // sv/sw}Node;int surplusValue(int *v,int n,int y) {int sum = 0;for(int i = y; i <= n; i++) {sum += v[i];}return sum;}void qsort(Node *que,int l,int r) {int len = r - l + 1;int flag;for(int i = 0; i < len; i ++) {flag = 0;for(int j = l; j < l + len - i; j++) {if(que[j].prior < que[j+1].prior) {Node t = que[j];que[j] = que[j+1];que[j+1] = t;flag = 1;}}//if(!flag ) return;}}void branchknap(int *w,int *v,int c,int n) {int bestv = 0;int f = 0;int r = 0;Node que[3000];memset(que,0,sizeof(que));int path[15];que[0].no = 1;que[0].id = que[0].sv = que[0].sw = que[0].prior = 0;while(f <= r) {Node node = que[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;printf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp % 2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++ ;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id + 1]) <= c && surplusValue(v,n,node.id+1) + node.sv > bestv) { r++;que[r].id = node.id + 1;que[r].no = node.no*2;int id = node.id + 1;que[r].sv = node.sv + v[id];que[r].sw = node.sw + w[id];que[r].prior = que[r].sv / (que[r].sw*1.0);}if(surplusValue(v,n,node.id+2) + node.sv > bestv) {r++;que[r].id = node.id + 1;que[r].no = node.no*2 + 1;que[r].sv = node.sv;que[r].sw = node.sw;que[r].prior = node.prior;}}f++;qsort(que,f,r);}}int main() {int c,n;int w[15],v[15];while(~scanf("%d %d",&c,&n)){for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap(w,v,c,n);}return 0;}#include<stdio.h>#include<math.h>#include<string.h>typedef int bool;#define true 1#define false 0struct Node{int no; // ?áµ?±êo?int id; //jie dian idint sw; // ±3°ü?D·µá?int sv; // ±3°ü?D·µ?µdouble prior;};struct Node queuee[2000];int w[15],v[15];int bestv = 0,c,n;int path[15]; //lu jingint surplusValue(int y) {int sum = 0;for(int i = y; i <= n; i++)sum += v[i];return sum;}void qsort(int l,int r) {// printf("------\n");int len = r - l + 1;//printf("----%d %d %d-----\n",l,r,len);bool flag;for(int i = 0; i < len ; i++) {flag = false;for(int j = l; j <l+ len -i ;j++) {if(queuee[j].prior < queuee[j+1].prior) {struct Node temp = queuee[j];queuee[j] = queuee[j+1];queuee[j+1] = temp;flag = true;}//if(!flag) return;}}// printf("---排序嘻嘻---\n");//for(int i = l; i <= r;i++ )// printf("***%d : %.2lf\n",queuee[i].no,queuee[i].prior);// printf("\n------\n");}void branchknap() {bestv = 0;int f = 0;int r = 0;queuee[0].no = 1;queuee[0].id = 0;queuee[0].sv = 0;queuee[0].sw = 0;queuee[0].prior = 0;// printf("f: %d r: %d\n",f,r);while(f <= r) {struct Node node = queuee[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;//TODOprintf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp%2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id+1]) <= c && surplusValue(node.id+1) + node.sv > bestv) { r++;//printf("%d\n",(node.sw + w[node.id+1]));queuee[r].id = node.id+1;queuee[r].no = node.no*2;int id = node.id+1;queuee[r].sv = node.sv + v[id];queuee[r].sw = node.sw + w[id];queuee[r].prior = queuee[r].sv/(queuee[r].sw*1.0);//printf("进队id: %d\n",queuee[r].no) ;//printf("%d %d %d\n",id,v[id], w[id]);}if(surplusValue(node.id+2) + node.sv > bestv) {r++;queuee[r].id = node.id+1;queuee[r].no = node.no*2 + 1;queuee[r].sv = node.sv ;queuee[r].sw = node.sw ;queuee[r].prior = node.prior;//printf("进队id: %d\n",queuee[r].no) ;}}f++;qsort(f,r);}}int main() {while(~scanf("%d %d",&c,&n)){memset(queuee,0,sizeof(queuee));for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap();}return 0;}。
0-1背包问题-贪心法和动态规划法求解

实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。
五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京信息工程大学实验(实习)
报告
实验(实习)名称 0—1背包实验(实习)日期得分指导教师
专业软件工程年级 11 班次姓名学号
一:实验目的
通过运用回溯法的深度优先搜索解决0-1背包问题,掌握运用回溯法解题。
二:算法思想
回溯法的基本思想是按深度优先策略,从根节点出发搜索解空间树,算法搜索至解空间的任一点时,先判断该结点是否包含问题的解,如果肯定不包含,则跳过以该结点为根的子树的搜索,逐层向其祖先结点回溯,否则,进入该子树,继续按深度优先进行搜索。
三:算法实现
#include<iostream.h>
template<class Typew,class Typep>
class Knap{
friend Typep Knapsack(Typep*,Typew*,Typew,int);
private:Typep Bound(int i);
void Backtrack(int i);
Typew c;
int n;
Typew *w;
Typep *p;
Typew cw;
Typep cp;
Typep bestp;
};
template<class Typew,class Typep>
Typep Knap<Typew,Typep::Bound(int i)
{
Typew cleft=c-cw;
Typep b=cp;
while(i<=n&&w[i]<=cleft){
cleft-=w[i];
b+=p[i];
i++;
}
if(i<=n)b+=p[i]/w[i]*cleft;
return b;
}
template<class Typew,class Typep>
void Knap<Typew,Typep>::Backtrack(int i) {
if(i>n){ bestp=cp;
return;}
if(cw+w[i]<=c){cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];}
if(Bound(i+1)>bestp) Backtrack(i+1); }
class Object{
friend int Knapsack(int *,int *,int,int,);
public: int operator<=(Object a)const
{return(d>=a.d);}
private: int ID;
float d;
};
template<class Typew,class Typep>{
Typep W=0;
Typep P=0;
Object*Q=new Object[n];
for(int i=1;i<=n;i++){
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)return P;
sort(Q,n);
Knap<Typew,Typep>K;
K.p=new Typep[n+1];
K.w=new Typew[n+1];
for(int i=1;i<=n;i++){
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
K.Backtrack(1);
delete[]Q;
delete[]K.w;
delete[]K.p;
return K.bestp;
}
void main(){
int p[]={0,4,3,5,6,3};
int w[]={0,3,5,6,2,7};
int *p1=p;
int *w1=w;
int c=10,n=5;
int bestx[6];
int x=Knapsack(p1,w1,c,n);
cout<<"best="<<c<<endl;
cout<<bestx<<1<<6<<"Result";
return (0);
}
四实验截图
五结论;
回溯法是一种搜索解空间树上所有解的方法。
由于计算上界函数Bound需要O(n)时间,在最坏情况下有O(2n接点需要计算上界函数,故解0-1背包问题的回溯算法Backtrack所需的计算时间为O(n*2n)。