背包问题算法设计

合集下载

背包问题实验报告

背包问题实验报告

背包问题实验报告1. 引言背包问题是一类经典的组合优化问题,在现实生活中有着广泛的应用。

背包问题可以描述为:有一个背包容量为W的背包和N个物品,每个物品有一定的重量和价值,要求将物品放入背包中使得背包的总价值最大。

本实验旨在通过比较不同的算法策略,找到解决背包问题的最佳方法,以提高背包问题的求解效率。

2. 实验环境•操作系统:Windows 10•编程语言:Python 3.8•开发环境:Visual Studio Code3. 实验过程3.1 暴力穷举法暴力穷举法是解决背包问题的一种基本策略。

该方法通过遍历所有可能的组合,计算每个组合的价值,并找到最大价值的组合作为最优解。

具体步骤如下:1.初始化最大价值max_value为0,最优解combo为空集。

2.遍历所有可能的物品组合:–将组合中的物品放入背包中,计算背包中物品的总价值。

–若背包总价值超过max_value,则更新max_value和combo。

3.输出最优解combo和最大价值max_value。

该方法的时间复杂度为O(2^N),其中N为物品的数量,在物品数量较大时效率较低。

3.2 动态规划法动态规划法是解决背包问题的一种高效策略。

该方法通过构建价值表,利用子问题的最优解来求解背包问题的最优解。

具体步骤如下:1.初始化一个二维数组value_table,其中value_table[i][j]表示前i个物品放入容量为j的背包中的最大价值。

2.根据以下递推关系来填充value_table的值:–若第i个物品的重量大于背包容量j,则value_table[i][j]等于value_table[i-1][j],表示第i个物品不能放入背包中。

–若第i个物品的重量小于等于背包容量j,则value_table[i][j]等于max(value_table[i-1][j], value_table[i-1][j-w[i]]+v[i]),表示第i个物品可以选取并放入背包中,或不选取第i个物品。

背包问题(修改)

背包问题(修改)
(5)可行函数feasible:检查解集合中加入一个候 选对象是否可行,即解集合扩展后是否满足约束条 件。例如,在付款问题中,可行函数是每一步选择 的货币和已付出的货币相加不超过应付款。
贪心法的一般过程
Greedy(C) //C是问题的输入集合即候选集合 {
S={ }; //初始解集合为空集 while (not solution(S)) //集合S没有构成问题的一个解 {
例:付款问题: 超市的自动柜员机(POS机)要找给顾客数量最少的现金。
假 定 POS 机 中 有 n 张 面 值 为 pi(1≤i≤n) 的 货 币 , 用 集 合 P={p1, p2, …, pn}表示,如果POS机需支付的现金为A,那么, 它必须从P中选取一个最小子集S,使得
m
pi S , pi = A (m =| S |) i =1
an=a×a×…×a n次
蛮力法所赖的基本技术——扫描技 术
关键——依次处理所有元素 基本的扫描技术——遍历
(1)集合的遍历 (2)线性表的遍历 (3)树的遍历 (4)图的遍历
虽然巧妙和高效的算法很少来自于蛮力法,基于 以下原因,蛮力法也是一种重要的算法设计技术:
(1)理论上,蛮力法可以解决可计算领域的各种问题。 (2)蛮力法经常用来解决一些较小规模的问题。 (3)对于一些重要的问题蛮力法可以产生一些合理的算 法,他们具备一些实用价值,而且不受问题规模的限制。 (4)蛮力法可以作为某类问题时间性能的底限,来衡量 同样问题的更高效算法。
减治法
普卢塔克说,萨特斯为了告诉他的士兵坚韧和 智慧比蛮力更重要的道理,把两匹马带到他们面前, 然后让两个人扒光马的尾毛.一个人是魁梧的大力 士,他抓住尾巴扒了又扒,但一点效果也没有;另 一个人是一个精明的、长相狡黠的裁缝,他微笑着, 每次扒掉一根毛,很快就把尾巴拔得光秃秃的。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

c语言部分背包问题的算法设计

c语言部分背包问题的算法设计

很高兴能为您提供文章撰写服务。

在开始撰写的过程中,我将按照您的要求,以深度和广度兼具的方式来探讨c语言部分背包问题的算法设计。

第一部分:背包问题的概念和分类1. 背包问题是指在给定的一组物品中选择合适的物品装入背包,使得背包的容量最大化或价值最大化的问题。

在算法设计中,背包问题有0-1背包、完全背包、多重背包等不同的分类。

2. 0-1背包问题是指每种物品只能选择一次放入背包,而完全背包问题则是每种物品可以选择多次放入背包。

第二部分:c语言中的背包问题算法设计1. 对于0-1背包问题,可以采用动态规划的方法进行解决。

具体的算法设计包括定义状态转移方程、初始化数组、填表和回溯等步骤。

2. 完全背包问题的算法设计也可以采用动态规划的方法,但在状态转移方程的定义和填表的过程中需要做出相应的调整。

第三部分:c语言中的背包问题算法实现1. 0-1背包问题的算法实现可以通过c语言的数组和循环结构来实现状态转移方程的计算和填表过程。

2. 完全背包问题的算法实现与0-1背包问题类似,但针对每种物品可以选择多次放入背包的特点需要做出相应的改进。

第四部分:个人观点和总结在我看来,c语言部分背包问题的算法设计是一项具有挑战性和实用性的工作。

通过深入理解不同类型的背包问题,并结合动态规划的算法设计和实现,可以有效解决实际生活和工作中的背包优化问题。

掌握c 语言中背包问题的算法设计和实现,不仅可以提升自身的编程能力,也可以为解决实际问题提供有力的支持。

以上是我根据您提供的主题对c语言部分背包问题的算法设计进行的基本介绍和探讨。

希望这些内容能够满足您对文章的要求,如果有其他方面需要补充或修改,还请您及时提出。

期待您的反馈和意见,谢谢!在c语言中,背包问题是一种常见的算法设计问题,涉及到动态规划和数组的运用。

背包问题可以分为0-1背包、完全背包、多重背包等不同类型,每种类型的背包问题都有其特定的算法设计和实现方法。

在本文中,我们将进一步探讨c语言中背包问题的算法设计和实现,并对算法的效率和实际应用进行分析和总结。

动态规划求解01背包问题

动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。

如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。

动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。

思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。

ACM背包问题

ACM背包问题
第4 章
背包问题
如果给你一个背包,要你从许多东西里选择一些装进来,只要这个包装得下,你就可 以将包里的东西全部拿走了,那么你会如何选择物品呢?这里你需要考虑的是背包的体积 和承重限制,当然最重要的是你拿走的东西的总价值最大。这样的问题就是背包问题,许 多问题都可以转化为背包问题来考虑。背包问题是一个在运筹学领域里常见的典型 NP-C 难题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有一定的意义。
while (goods[0].flag<goods[i].flag) {
goods[i+1]=goods[i]; i--; } goods[i+1]=goods[0]; } ///////////////////////////////////////////
·78·
第 4 章 背包问题
cout<<"最优解为:"<<endl; for(i=1;i<=n;i++) {
4.3.1 〖案例 2〗0/1 背包
需对容量为 c 的背包进行装载。从 n 个物品中选取装入背包的物品,每件物品 i 的重 量为 wi,价值为 pi。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最 佳装载是指所装入的物品价值最高。限制:每个物品不能被分割,要不被装载,要不不被 装载。
第一行物品个数,接下来分别为物品价值,再接下来分别为物品的价值。再接下来分 别为物品的重量,最后为背包的容量。
数据结构与算法: 不需要特殊的数据结构 算法采用贪婪法 首先输入物品信息和背包容量,然后每次选比重最大的装载。
struct goodinfo
{ float p; float w; float X; int flag;

背包问题的算法设计与分析研究

背包问题的算法设计与分析研究

1引 言
算 法 是 计 算 机 科 学 的 核 心 , 是 程 序 设 计 的 关 键 , 算 法 的研 究 是 通 过 程 序 来 实 践 的 . 法 + 据 结 构 = 序 . 经 典 公 式 表 明 也 对 算 数 程 此
有 了算 法 , 上 合 适 的 数据 结 构 , 高 级 语 言 进行 实现 就 可 以得 到 程 序 。那 么 要 解 决 背 包 问题 , 加 用 首要 的前 提 就 是 设 计 出好 的算 法 , 想 求得 背包 问题 的解 , 要 先设 计 出算 法 。 本 文采 用 三 种 方法 来 对 背 包 问题 进 行 算 法设 计 , 分析 其 时 间复 杂 度 , 而 得 出结论 。 就 并 进
A s a t T ek as kpo l i ac scl u so ea ao grh ds nadaa s,ntipp r reyme o ,h y bt c: h npa rb m ls a q e ni t r floi m eg n nl i i hs ae ged t d ted— r c e s ai  ̄ nh e a t i ys h
l SSN 1 0 — 0 4 9 3 4 0
E—ma l du @c e . t n i:e f c cne. e
C m u r n we g n e h o g o p t K o l eA d T c n l y电脑 知 识 与技术 e d o
Vo . , ., e t mb r2 0 , .5 4 5 5 13 No7 S p e e 0 8 PP 1 3 —1 3
2背 包 问题描述
背包 问题 是 整 数规 划 中 的一 类 特殊 问题 , 现 实 生 活 中具 有 广 泛 应 用 , 能 提 出 求 解 此 问 题 的 有 效算 法 , 具 有 很 好 的 经 济 价 在 如 则 值 和 决策 价 值 , 物 流 公 司 的货 物发 配 问 题 , 装 箱 的运 载 问题 , 如 集 如何 才 能 获 得 最 大 利 润 。 问题 的一 般 描 述是 : 行 者 背包 登 山 , 包 的 最 大 承重 为 M, 有 n 物 品可 供 选 择 装 入 背 包 , i 物 品重 量为 , 旅 背 现 个 第 个 价值 为 p, i

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

背包问题算法设计
题目描述:
有n个物品,每个物品的重量为w[i],取物品则效益增加p[i],对于给定的一个能容纳重量为M的背包,怎样装包才能使获得的效益最大?每个物品的取值为x[i],x[i]=0/1,0表示该物品不装包,1表示将该物品装入包中。

以上描述就是一个经典的0/1背包问题。

输入输出:
输入一个n,然后输入w[1,2,...,n],p[1,2,...,n]
输出最大效益值和x[1,2,...,n]用0/1表示
sampleinput
3//n
234//w[i]
125//p[i]
sampleoutput
6//最大效益值
101//x[i]
解题思路:
假定决策次序为x[n],x[n-1],...,x[1]。

在对x[n]做出决策之后,问题处于下列两种状态之一:
背包的剩余容量为M,没有产生任何效益;
剩余容量是M-w,效益增长了p。

显然,余下来的x[n-1],x[n-2],..,x[1]的决策相对于x所产生的问题状态应该是最优的,否则x[n],x[n-1],...,x[1]就不能是最优决策序列。

设f[j][x]是从物品1-j,背包容量为x的最优解
则最优序列的解f[n][m]
对于任意的f[i][x]=max{f[i-1][x],f[i-1][x-wi]+pi}---------------------------(1)
为了能向后递推而最后求出f[n][m],需要从f[0][x]开始。

对于所有x>=0,有f[0][x]=0,
当x<0时,有f[0][x]=负无穷。

根据(1)马上可解出0<=x<w1,x>=w1的情况下f[1][x]的值。

接着又可以不断递推出f[2],f[3],...,f[n]在x相应的取值范围内的值。

于是有求f[n][m]的算法:
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(j-w[i]>=0)
f[i][j]=MAX(f[i-1][j],f[i-1][j-w[i]]+p[i]);
else
f[i][j]=f[i-1][j];
}
一般而言,背包问题是要求一个最优值,如果要求输出这个最优值的方案,可以参照一般动态规划问题输出方案的方法:记录下每个状态的最优值是由状态转移方程的哪一项推出来的,换句话说,记录下它是由哪一个策略推出来的。

便可根据这条策略找到上一个状态,从上一个状态接着向前推即可。

设g[i][v]=0表示推出f[i][v]的值时是采用了方程的前一项(也即f[i][v]=f[i-1][v]),g[i][v]表示采用了方程的后一项。

注意这两项分别表示了两种策略:未选第i个物品及选了第i个物品。

于是改写求f[n][m]的过程为:
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(j-w[i]>=0)
{
f[i][j]=MAX(f[i-1][j],f[i-1][j-w[i]]+p[i]);
if(f[i][j]==f[i-1][j-w[i]]+p[i])
g[i][j]=1;
}
else
f[i][j]=f[i-1][j];
}
}
那么求方案的向量的伪代码可以这样写i=n;
j=m;
while(i>0)
{
if(g[i][j]==0)
x[i]=0;
else
{
x[i]=1;
j=j-w[i];
}
i--;
}
最后输出向量x和f[n][m]既可。

算法空间分析:
时间复杂度O(n*m)
时间复杂度O(n*m)
代码设计:
#include<iostream> usingnamespacestd;
#defineN200
#defineMAX(a,b)(a>b?a:b) intmain()
{
intn,m,i,j;
intw[N],p[N],x[N];
intf[N][N],g[N][N]; freopen("in.txt","r",stdin); while(cin>>n>>m)
{
for(i=1;i<=n;i++)
cin>>w[i];
for(i=1;i<=n;i++)
cin>>p[i];
memset(f,0,sizeof(f)); memset(g,0,sizeof(g));
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(j-w[i]>=0)
{
f[i][j]=MAX(f[i-1][j],f[i-1][j-w[i]]+p[i]); if(f[i][j]==f[i-1][j-w[i]]+p[i])
g[i][j]=1;
}
else
f[i][j]=f[i-1][j];
}
}
i=n;
j=m;
while(i>0)
{
if(g[i][j]==0)
x[i]=0;
else
{
x[i]=1;
j=j-w[i];
}
i--;
}
for(i=1;i<=n;i++) cout<<x[i]<<"";
cout<<endl;
cout<<f[n][m]<<endl; }
return0;
}。

相关文档
最新文档