0-1背包问题四种不同算法的实现要点

合集下载

0_1背包问题的多种解法

0_1背包问题的多种解法

一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x Wx w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+ni iiW yw x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

浅谈0-1背包问题的常用算法

浅谈0-1背包问题的常用算法
消 费 电子 Байду номын сангаас
2 0 1 3年 1 0月下 C o n s u me r E l e c t r o n i c s Ma g a z i n e 技 术 交 流
浅谈 0 - 1 背包问题的常用算法
汤赫 男
( 吉林工商学院信息工程学院,长春 1 3 0 0 6 2) 摘 要 :0 -1 背 包问题是典型的 NP ~完全问题 ,无论从 理论 上还是 实践上都有一定的研究意义。本文综述 了几 种0 — 1背包问题的 常用算法 ,分析算法的优劣 ,预 测 0 - 1背包问题的发展方向。 关键 词 :0 — 1背包问题 ;动 态规划法 ;贪心法 ;分支界限法


∑w ,
l {
㈠ { “ } m a x ∑
{ j
二 、常用 的 0 - 1 背 包问题算法 ( 一) 蛮力法。 蛮 力法又称穷举法或枚举法,是一种简单、 直接、有效的方法,是初学者入 门的方法 。蛮力法要求遍历所 有可能情 况一次且仅一次 ,筛选 出符合要求 的解。应用蛮力法 求解 0 - 1 背包 问题, 需要考虑给定的 n 个物品集合的所有子集, 找出所有总重量不超过背包容量的子集 ,计算每个可能子集的 总价值,然后找 出价值最大的子集 。对于一个具有 n个元素的 集合 ,其子集数量是 2 “,所 以,不论生成子集 的算法效率有 多高 ,蛮力法求解 0 - 1 背包 问题都会导致一个 Q ( 2 n )的算法 。 ( 二 )动 态规划法。动态规划 法是一种通用 的算 法设计 技术用来求解 多阶段决策最优 化问题。这类 问题都满 足最优 性原理,即原 问题 的最优 性包含着子 问题 的最优性 。 应用 动态规划法 求解 0 - 1 背包 问题 ,可 以将 0 — 1背包 问 题看 作一个 多阶段决策最 优化 问题 。n个物 品集合 的所 有子 集可 以看 作该 问题 的所有 可行解;这些可行解 都是满足约束 条件 的,可行解可能不止一个,通过 目标 函数找到最优解 。 动态 规划 法求解 0 - 1 背包 问题 的算法描述 : 设V ( n , C )表 示将 n个 物 品装入 容量 为 C的背 包获 得 的 最大价值 。 初 始 状 态 :V ( i , 0 ) = V ( 0 , j ) = 0 , 0≤ i ≤n , 0≤ j≤ C 则V ( i , j )表示 将前 i 个 物 品装入 容量 为 j的背 包获 得

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】

一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。

注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。

其中,每种物品只有全部装入背包或不装入背包两种选择。

二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。

在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。

2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。

求解0—1背包问题算法综述

求解0—1背包问题算法综述

0-1背包问题是一种常见的动态规划问题,其目标是在给定背包容量和物品集合的情况下,选择某些物品放入背包,使得背包内物品的总价值最大。

以下是求解0-1背包问题的算法综述:
1. 定义变量和参数:
* 物品集合:包括每个物品的重量和价值。

* 背包容量:表示背包能够容纳的最大重量。

* dp数组:用于存储每个状态下的最大价值,dp[i][j]表示前i个物品、背包承重为j时的最大价值。

2. 初始化dp数组:
* 对于每个物品i和背包容量j,如果物品i能够装入背包,则令dp[i][j]为0;否则,令dp[i][j]为负无穷。

3. 递推计算dp数组:
* 对于每个物品i和背包容量j,如果物品i能够装入背包,则令dp[i][j]为当前物品的价值加上前i-1个物品、背包容量为j-w[i]时的最大价值,即dp[i][j] = dp[i-1][j-w[i]] + p[i];否则,
令dp[i][j]为前i-1个物品、背包容量为j时的最大价值,即dp[i][j] = dp[i-1][j]。

4. 返回dp数组的最后一个元素,即为所求的最大价值。

以上是求解0-1背包问题的算法综述,实际实现时可以根据具体情况进行优化,以提高算法的效率和性能。

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析【摘要】本文主要介绍了0-1背包问题的算法决策分析。

在我们首先概述了背包问题的基本概念,指出了其在实际应用中的重要性。

同时强调了本文的研究意义。

接着在我们详细讨论了动态规划算法、贪心算法、分支界限算法和穷举法在解决背包问题中的应用方法。

通过比较不同算法在背包问题中的性能,得出了结论部分的结论,包括不同算法在不同情况下的应用、算法决策的重要性以及为背包问题提供不同解决方案的价值。

本文旨在为研究者和决策者提供背包问题解决方案的参考,帮助他们更好地应对实际问题。

【关键词】关键词:0-1背包问题,算法决策分析,动态规划算法,贪心算法,分支界限算法,穷举法,性能比较,算法应用,算法决策,解决方案。

1. 引言1.1 背包问题概述0-1背包问题指的是给定一个背包,容量为C,以及一组物品,每个物品有自己的重量w和价值v。

要求在不超过背包容量的前提下,选择一些物品放入背包,使得背包中物品的总价值最大。

这是一个经典的组合优化问题,在计算机科学和运筹学中有着广泛的应用。

背包问题的概念最早可以追溯到20世纪50年代,当时被提出和研究。

由于其简洁的描述和丰富的应用场景,背包问题一直备受关注并被广泛研究。

在实际生活中,背包问题可以应用于资源分配、投资决策、装箱问题等方面,对于提高资源利用率和解决实际问题具有重要意义。

在解决背包问题的过程中,算法的选择对于问题的解决效率和准确性起着关键作用。

不同的算法在不同情况下可能表现出不同的性能,因此需要对不同算法进行综合比较和评估,以找到最适合特定情况下的解决方案。

本文将探讨动态规划算法、贪心算法、分支界限算法和穷举法在解决背包问题中的应用及性能表现,从而为背包问题的解决提供更多选择和参考。

1.2 背包问题的重要性背包问题是一个在计算机科学和数学领域非常重要的经典优化问题。

在现实生活中,我们常常会面临类似于背包问题的决策情境,需要在有限的资源下做出最优选择。

01背包问题多种解法

01背包问题多种解法

一、问题描绘0/1 背包问题 :现有 n 种物件,对1<=i<=n,已知第i 种物件的重量为正整数W i,价值为正整数V i,背包能蒙受的最大载重量为正整数W ,现要求找出这n 种物件的一个子集,使得子集中物品的总重量不超出W 且总价值尽量大。

(注意:这里对每种物件或许全取或许一点都不取,不一样意只取一部分)二、算法剖析依据问题描绘,能够将其转变为以下的拘束条件和目标函数:nw i x i W(1)i1x i{ 0,1}( 1i n)nmax v i x i (2)i1于是,问题就归纳为找寻一个知足拘束条件( 1 ),并使目标函数式( 2 )达到最大的解向量 X(x1, x2 , x3 ,......, x n ) 。

第一说明一下0-1 背包问题拥有最优解。

假定 (x1, x2 , x3 ,......, x n ) 是所给的问题的一个最优解,则 (x2 , x3,......, x n ) 是下边问题的nw i x i W w1x1 maxn一个最优解:i 2v i x i。

假如不是的话,设( y2, y3 ,......, y n ) 是这x i{ 0,1}( 2i n)i 2n n n个问题的一个最优解,则v i y i v i x i,且 w1x1w i y i W 。

因此,i 2i 2i 2n n nv1x1v i y i v1 x1v i x i v i x i,这说明 (x1, y2 , y3 ,........, y n ) 是所给的0-1 背包问i 2i 2i 1题比 ( x1 , x2 , x3 ,........, x n ) 更优的解,进而与假定矛盾。

穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物件会合的所有子集,找出所有可能的子集(总重量不超出背包重量的子集),计算每个子集的总重量,而后在他们中找到价值最大的子集。

因为程序过于简单,在这里就不再给出,用实例说明求解过程。

背包问题

背包问题

(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。

设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。

这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。

一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。

然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。

算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。

if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

#动态规划0-1背包问题思路概述

#动态规划0-1背包问题思路概述

#动态规划0-1背包问题思路概述01背包问题是动态规划中的经典问题。

本篇⽂章主题:分析与优化最基本的01背包问题,对此类问题解题有⼀个基本的解题模板。

问题概述:有⼀个背包,他的容量为C(Capacity)。

现在有n种不同的物品编号分别为0、1....n-1。

其中每⼀件物品的重量为w(i),价值为v(i)。

问可以向这个背包中放⼊哪些物品,使得在不超过背包容量的基础上,背包内物品价值最⼤。

思路:1.暴⼒法。

每⼀件物品都可以放进背包,也可以不放进背包。

找出所有可能组合⼀共2^n种组合时间复杂度:O((2^n)*n)2.动态规划法。

我们⾸先使⽤递归函数⾃上⽽下进⾏思考。

明确两点:第⼀、递归函数的定义第⼆、数据结构函数定义:F(n,C)递归函数定义:将n个物品放⼊容量为C的背包,使得价值最⼤。

这⾥要注意⼀下,第⼆个参数⼀定是剩余容量。

我们通过使⽤剩余容量来控制价值。

F(i,c) = F(i-1,c) = v(i) + F(i-1 , c-w(i))状态转移⽅程:F(i,c) = max( F(i-1 , c) , v(i) + F(i-1 , c-w(i) ) )即,当前价值的最⼤值为,不放⼊第i个物品(对应剩余容量为c)和放⼊第i个物品(对应剩余容量为C-w(i))两种情况的最⼤值。

数据结构:借某盗版视频中的⼀个例⼦:我们这⾥选择⼀个⼆维数组,来迭代记录处理的结果。

这个⼆维数组dp[n][C] 其中n为物品数量,C为最⼤容量。

储存的值dp[i][j]含义为:考虑放⼊0~i 这些物品,背包容量为j我们考虑放⼊第⼀个物品。

由于第⼀个物品,编号为0,重量为1,价值为2。

对于容量为0的背包,放不下该物品,所以该背包价值为0.其余容量1~5,均可放下该物品。

所以只考虑物品0,不同背包⼤⼩对应的最⼤可能价值如图。

第⼀⾏处理为初始化,从第⼆⾏开始进⾏迭代。

第⼆⾏开始,就需要单独处理。

考虑dp[1][0],背包容量为0,理所应当为0考虑dp[1][1],此处我们依旧⽆法放⼊物品1,所以我们使⽤上⼀层的结果,即0~0物品在容量为1背包情况的最⼤价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兰州交通大学数理与软件工程学院题目0-1背包问题算法实现院系数理院专业班级信计09学生姓名雷雪艳学号200905130指导教师李秦二O一二年六月五日一、问题描述:1、0—1背包问题:给定n 种物品和一个背包,背包最大容量为M ,物品i 的重量是w i ,其价值是平P i ,问应当如何选择装入背包的物品,似的装入背包的物品的总价值最大? 背包问题的数学描述如下:2、要求找到一个n 元向量(x1,x2…xn),在满足约束条件:⎪⎩⎪⎨⎧≤≤≤∑10i i i x M w x 情况下,使得目标函数px ii ∑max ,其中,1≤i ≤n ;M>0;wi>0;pi>0。

满足约束条件的任何向量都是一个可行解,而使得目标函数达到最大的那个可行解则为最优解[1]。

给定n 种物品和1个背包。

物品i 的重量是wi ,其价值为pi ,背包的容量为M 。

问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。

不能将物品i 装人背包多次,也不能只装入部分的物品i 。

该问题称为0-1背包问题。

0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得Mwx ii≤∑ ,而且px ii∑达到最大[2]。

二、解决方案:方案一:贪心算法1、贪心算法的基本原理与分析贪心算法总是作出在当前看来是最好的选择,即贪心算法并不从整体最优解上加以考虑,它所作出的选择只是在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,但对范围相当广的许多问题它能产生整体最优解。

在一些情况下,即使贪心算法不能得到整体最优解,但其最终结果却是最优解的很好近似解。

贪心算法求解的问题一般具有两个重要性质:贪心选择性质和最优子结构性质。

所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择来达到。

这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。

当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。

问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。

2、0-1背包问题的实现对于0-1背包问题,设A 是能装入容量为c 的背包的具有最大价值的物品集合,则Aj=A-{j}是n-1个物品1,2,...,j-1,j+1,...,n 可装入容量为c-wj 的背包的具有最大价值的物品集合。

用贪心算法求解0-1背包问题的步骤是,首先计算每种物品单位重量的价值vi/wi ;然后,将物品进行排序,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

若将这种物品全部装入背包后,背包内的物品总量未超过c ,则选择单位重量价值次高的物品并尽可能多地装入背包。

依此策略一直进行下去,直到背包装满为止。

3、算法设计如下:#include<iostream.h>#define max 100 //最多物品数void sort (int n,float a[max],float b[max]) //按价值密度排序{int j,h,k;float t1,t2,t3,c[max];for(k=0;k<n;k++)c[k]=a[k]/b[k];for(j=0;j<n;j++)if(c[j]<c[j+1]){t1=a[j];a[j]=a[j+1];a[j+1]=t1;t2=b[j];b[j]=b[j+1];b[j+1]=t2;t3=c[j];c[j]=c[j+1];c[j+1]=t3;}}void knapsack(int n,float limitw,float v[max],float w[max],int x[max]){float c1; //c1为背包剩余可装载重量int i;sort(n,v,w);//物品按价值密度排序c1=limitw;for(i=0;i<n;i++){if(w[i]>c1)break;x[i]=1;//x[i]为1时,物品i在解中c1=c1-w[i];}}void main(){int n,i,x[max]; floatv[max],w[max],totalv=0,totalw=0 ,limitw;cout<<"请输入n和limitw:"; cin>>n >>limitw;for(i=1;i<=n;i++)x[i]=0;//物品选择情况表初始化为0 cout<<"请依次输入物品的价值:"<<endl;for(i=1;i<=n;i++)cin>>v[i];cout<<endl;cout<<"请依次输入物品的重量:"<<endl;for(i=1;i<=n;i++)cin>>w[i];cout<<endl;knapsack (n,limitw,v,w,x);cout<<"the selection is:";for(i=1;i<=n;i++){cout<<x[i];if(x[i]==1){totalw=totalw+w[i];totalv=totalv+v[i];}}cout<<endl;cout<<"背包的总重量为:"<<totalw<<endl; //背包所装载总重量cout<<"背包的总价值为:"<<totalv<<endl; //背包的总价值}4、贪心算法运行结果如下图所示:方案二:动态规划算法1、动态规划的基本原理与分析动态规划算法的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

但是经分解得到的子问题往往不是互相独立的。

不同子问题的数目常常只有多项式量级。

如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。

它把已知问题分为很多子问题,按顺序求解子问题,在每一种情况下,列出各种情况的局部解,按条件从中选取那些最有可能产生最佳的结果舍弃其余。

前一子问题为后面子问题提供信息,而减少计算量,最后一个子问题的解即为问题解。

采用此方法求解0-1背包问题的主要步骤如下:①分析最优解的结构:最有子结构性质; ②建立递归方程; ③计算最优值; ④构造最优解[4]。

2、 0-1背包问题的实现① 最优子结构性质0-1背包问题具有最优子结构性质。

设(y1,y2…yn)是所给0-1背包问题的一个最优解,则(y2,y3…yn)是下面相应子问题的一个最优解:∑=ni k kk x v max⎪⎩⎪⎨⎧≤≤∈≤∑=n k i x j x w k ni k k k },1,0{因若不然,设(z2,z3…zn)是上述问题的一个最优解,而(y2,y3…yn)不是它的最优解,由此可见>∑=ni 2∑=ni ii yv 2,且∑=+ni ii z w 2w1y1≤c 。

因此>+∑=ni i i z v 2v1y1∑=ni ii y v 1∑=+ni ii z w 2w1y1≤c这说明(y1,z2…zn)是所给0-1背包问题的一个更优解,从而(y1,y2…yn)不是所给0-1背包问题的最优解。

此为矛盾[1]。

② 递归关系设所给0-1背包问题的子问题∑=nik kk x v max⎪⎩⎪⎨⎧≤≤∈≤∑=n k i x j x w k ni k k k },1,0{的最优值为m(i,j),即m(i,j)是背包容量为j ,可选择物品为i ,i+1,……,n 时0-1背包问题的最优值。

由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式如下:⎩⎨⎧<≤+≥+-++=wj j j i m wi j vi wi j i m j i m 0),,1(},),1(),),1(max{j)m(i,⎩⎨⎧<≤≥=wn j wnvnj 0j)m(n,3、算法设计如下: #include<iostream> #include<iomanip> using namespace std; const int MAX=1000; intw[MAX],v[MAX],best[MAX]; int V[MAX][MAX]; //最大价值矩阵int W,n; //W 为背包的最大载重量,n 为物品的数量//求最大值函数 int max(int x,int y) {return x >= y?x:y; }//求最小值函数 int min(int x,int y) {return x>= y ? y:x;}void Knaspack() {int Max=min(w[n]-1,W); for(int j=1; j <= Max ; j++) V[n][j]=0;for( j=w[n]; j <= W ; j++) V[n][j]=v[n];for(int i=n-1;i > 1 ; i--) { Max=min(w[i]-1,W); for( j=1; j <= Max ; j++) V[i][j]=V[i+1][j]; for( j=w[i]; j <= W; j++)V[i][j]=max(V[i+1][j],V[i+1][j-w[i]]+v[i]); }V[1][W]=V[2][W]; //先假设第一个物品不放入if(W > w[1])V[1][W]=max(V[1][W],V[2][ W-w[1]]+v[1]);}//生成向量数组,决定某一个物品是否应该放入背包void Traceback(){for(int i=1; i < n ; i++) //比较矩阵两邻两行(除最后一行),背包容量为W的最优值.{if(V[i][W] == V[i+1][W]) //如果当前行的最优值与下一行的最优值相等,则表明该物品不能放入。

best[i]=0;else//否则可以放入{best[i]=1;W-=w[i];}}best[n]=(V[n][W] )?1:0;}void main(){cout<<"输入商品数量n 和背包容量W:";cin>>n>>W;cout<<"输入每件商品的重量w:"<<endl;for(int i=1;i<=n;i++)cin>>w[i];memset(V,0,sizeof(V));cout<<"输入每件商品的价值v:"<<endl;for( i=1;i<=n;i++)cin>>v[i];Knaspack();//构造矩阵Traceback(); //求出解的向量数组int totalW=0;int totalV=0;//显示可以放入的物品cout<<"所选择的商品如下:"<<endl;cout<<"序号i:重量w:价格v:"<<endl;for(i=1; i <= n ; i++){if(best[i] == 1){totalW+=w[i];totalV+=v[i];cout<<setiosflags(ios::left)<<se tw(5)<<i<<" "<<w[i]<<" "<<v[i]<<endl;}}cout<<"放入的物品重量总和是:"<<totalW<<" 价值最优解是:"<<V[1][W]<<" "<<totalV<<endl;}4、计算复杂性分析利用动态规划求解0-1背包问题的复杂度为0(min{nc,2n}。

相关文档
最新文档