动态规划算法01背包问题PPT
动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
背包问题课件

刷表法——手推
【样例输入】package.in
10 4
21
for(int i=1;i<=n;++i)
Hale Waihona Puke 33for(int v=m;v>=w[i];--v)
45
f[v]=max(f[v],f[v-w[i]]+c[i])
79
【样例输出】package.out
12
i
W[i]
C[i]
i=0
0
0
i=1
2
1
i=2
理一件物品,作为一个阶段,共有n个 阶段 2、定义状态:
定义f[i][v]是前i件物品恰好放 入一个容量为v的背包,所得到的最大 价值 3、状态转移方程: 若第i件物品没有放入背包,则f[i][v]=f[i-
1][v] 若第i件物品放入背包,则f[i][v]=f[i-1][v-
w[i]]+c[i] 根据状态定义,f[i][v]=max(f[i-1][v],f[i-
【输出格式】 仅一行,一个数,表示最大总价值。
【样例输入】package.in 10 4 21 33 45 79
【样例输出】package.out 12
01背包
【问题描述】 一个旅行者有一个最多能用m公斤的
背包,现在有n件物品,它们的重量分别是 W1,W2,...,Wn,它们的价值分别为 C1,C2,...,Cn.若每种物品只有一件求旅行者 能获得最大总价值。 【输入格式】
1][v-w[i]]+c[i]) 4、临界值: 当i==0时,表示一件物品也没有, f[0][v]=0,数组f在main函数前定义即可
刷表法——手推
【样例输入】package.in 10 4
(完整版)01背包问题

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。
01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是至底向上,从左到右生成的。
为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。
对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。
同理,c2=0,b2=3,a2=6。
对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。
背包问题九讲

背包问题九讲2.0RC1崔添翼(Tianyi Cui)*2011-09-28†本文题为《背包问题九讲》,从属于《动态规划的思考艺术》系列。
这系列文章的第一版于2007年下半年使用EmacsMuse制作,以HTML格式发布到网上,转载众多,有一定影响力。
2011年9月,本系列文章由原作者用L A T E X重新制作并全面修订,您现在看到的是2.0alpha版本,修订历史及最新版本请访问https:///tianyicui/pack查阅。
本文版权归原作者所有,采用CC BY-NC-SA协议发布。
Contents101背包问题31.1题目 (3)1.2基本思路 (3)1.3优化空间复杂度 (3)1.4初始化的细节问题 (4)1.5一个常数优化 (4)1.6小结 (5)2完全背包问题52.1题目 (5)2.2基本思路 (5)2.3一个简单有效的优化 (5)2.4转化为01背包问题求解 (6)2.5O(V N)的算法 (6)2.6小结 (7)3多重背包问题73.1题目 (7)3.2基本算法 (7)3.3转化为01背包问题 (7)3.4可行性问题O(V N)的算法 (8)*a.k.a.dd_engi†Build2011092818380013.5小结 (9)4混合三种背包问题94.1问题 (9)4.201背包与完全背包的混合 (9)4.3再加上多重背包 (9)4.4小结 (10)5二维费用的背包问题105.1问题 (10)5.2算法 (10)5.3物品总个数的限制 (10)5.4二维整数域N2上的背包问题 (11)5.5小结 (11)6分组的背包问题116.1问题 (11)6.2算法 (11)6.3小结 (12)7有依赖的背包问题127.1简化的问题 (12)7.2算法 (12)7.3较一般的问题 (12)7.4小结 (13)8泛化物品138.1定义 (13)8.2泛化物品的和 (13)8.3背包问题的泛化物品 (14)8.4小结 (14)9背包问题问法的变化149.1输出方案 (15)9.2输出字典序最小的最优方案 (15)9.3求方案总数 (15)9.4最优方案的总数 (16)9.5求次优解、第K优解 (16)9.6小结 (17)2101背包问题1.1题目有N件物品和一个容量为V的背包。
动态规划算法--01背包问题

动态规划算法--01背包问题基本思想:动态规划算法通常⽤于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可⾏解。
每⼀个解都对应于⼀个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若⼲个⼦问题,先求解⼦问题,然后从这些⼦问题的解得到原问题的解。
与分治法不同的是,适合于⽤动态规划求解的问题,经分解得到⼦问题往往不是互相独⽴的(即下⼀个⼦阶段的求解是建⽴在上⼀个⼦阶段的解的基础上,进⾏进⼀步的求解)。
若⽤分治法来解这类问题,则分解得到的⼦问题数⽬太多,有些⼦问题被重复计算了很多次。
如果我们能够保存已解决的⼦问题的答案,⽽在需要时再找出已求得的答案,这样就可以避免⼤量的重复计算,节省时间。
我们可以⽤⼀个表来记录所有已解的⼦问题的答案。
不管该⼦问题以后是否被⽤到,只要它被计算过,就将其结果填⼊表中。
这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
应⽤场景:适⽤动态规划的问题必须满⾜最优化原理、⽆后效性和重叠性。
1、最优化原理(最优⼦结构性质)最优化原理可这样阐述:⼀个最优化策略具有这样的性质,不论过去状态和决策如何,对前⾯的决策所形成的状态⽽⾔,余下的诸决策必须构成最优策略。
简⽽⾔之,⼀个最优化策略的⼦策略总是最优的。
⼀个问题满⾜最优化原理⼜称其具有最优⼦结构性质。
2、⽆后效性将各阶段按照⼀定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态⽆法直接影响它未来的决策,⽽只能通过当前的这个状态。
换句话说,每个状态都是过去历史的⼀个完整总结。
这就是⽆后向性,⼜称为⽆后效性。
3、⼦问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。
其中的关键在于解决冗余,这是动态规划算法的根本⽬的。
动态规划实质上是⼀种以空间换时间的技术,它在实现的过程中,不得不存储产⽣过程中的各种状态,所以它的空间复杂度要⼤于其它的算法。
动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。
如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。
动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。
思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。
背包问题全套PPT

用来求最优解具体组成的时间效率
②式表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:
V(i,j)=max{V(i-1,j) ,V(i-1,j-wi)+vi) } j-Wi>=0;
(1) V(i,0)=V(0,j)=0;
所以时间效率主要取决于W,用另一种话说本次测试的数据里面,在物品数目相同的情况下,求解背包问题法最优解分析
问题分析:
令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,
则可以得到如下的动态规划函数:
(1) V(i,0)=V(0,j)=0;i>=0,j>=0;//初始化
(2) V(i,j)=V(i-1,j)
j-Wi<0; ---①//递推式
(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-
Wi的背包中的价值加上第i个物品的价值Vi;
(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入 容量
为j的背包中所取得的价值。
取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。
3.数据处理与分析
时间应该是线性效率的。
物品数n=10时背包最大容量
取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。
(1)实验之前,先对算法进行理论效率分析和正确性分析:
用来求最优解具体组成的时间效率
(2) V(i,j)=V(i-1,j)
j-Wi<0;
动态规划法基本思想: 动态规划算法的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
5.5动态规划求解01背包问题

xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法思想2:设m[i][j]用来表示从前i项物品中区 取出装入体积为j的背包的物品的最大价值。其中i的范 围为1到n,其中j的范围为0到c,程序要寻求的解为 m[n][c]。可以清楚地发现: ①m[0][j]对所有的j的值为0, m[i][0]对所有的i的 值为0。 ②当前的体积j大于等于w[i]时, m[i][j]是 下面两个量的最大值:m[i-1][j] 和 m[i-1][j-w[i]]+v[i] ③当前的体积j小于w[i]时,m[i][j]等于m[i-1][j] 0 i=0 或者 j=0 m[i][j]= m[i-1][j] j>0且j<w[i] Max(m[i-1][j], m[i-1][j-w[i] ]+v[i] ) i>0且j>=w[i]
//输出Fibonacii数列的第n项的动态规划算法 #include <stdio.h> #define MAX 50 int fib(int n) { int i,a[MAX]; a[1]=a[2]=1; for (i=3; i<=n; i++) a[i]=a[i-1]+a[i-2]; return a[n]; } void main( ) { int n; scanf("%d",&n); printf("%d\n" ,fib( n ) ); }
//显示所取的物品及其重量(其中一个解) //对数组m的最后一列检查来求解 void disp( ) { int i,j; i=n; while ( m[i][c]==m[i-1][c] ) i--; while (i>0) { j=i-1; while (m[i][c]-m[j][c]!=v[i-1] && j>0) j--; printf("%5d%5d\n",w[i-1],v[i-1]); i=j; } }
void main( ) { int i,j; printf("输入物品种数:"); scanf("%d",&n); printf("输入每种物品的重量与价值:\n"); for (i=0; i<n; i++) scanf("%d%d",&w[i],&v[i]); printf("输入背包的总重量:\n"); scanf("%d",&c); knapsack(); disp(); printf("最大价值=%d\n",m[n][c]); for (i=0; i<=n; i++) { for (j=0; j<=c; j++) printf("%3d",m[i][j]); printf("\n"); } }
void main( ) { int i,j; printf("输入物品种数:"); scanf("%d",&n); printf("输入每种物品的重量与价值:\n"); for (i=1; i<=n; i++) scanf("%d%d",&w[i],&v[i]); printf("输入背包的总重量:\n"); scanf("%d",&c); knapsack(); disp(); printf("最大价值=%d\n",m[0][c]); for (i=1; i<=n; i++) { for (j=0; j<=c; j++) printf("%3d",m[i][j]); printf("\n"); } }
例:输出Fibonacii数列的第n项的递归算法
#include <stdio.h> int fib(int n) { if (n<=1) return 1; else return fib(n-1)+fib(n-2); } void main( ) { int n; scanf("%d",&n); printf("%d\n" ,fib( n ) ); } 在上面的递归算法中存在多次计算同一个子问 题,如:fib(2)。如果能将这样的子问题的解用数组 保存起来,即可以加快求解的过程,即采用动态规 划方法。
பைடு நூலகம்
//程序2:动态规划法 #include <stdio.h> #define MAX 20 int n,c,w[MAX],v[MAX],m[MAX][MAX]={0}; void knapsack() { int i,j; for (i=1; i<=n; i++) for (j=1; j<=c; j++) { m[i][j]=m[i-1][j]; if ( j>=w[i-1] && m[i-1][j-w[i-1]]+v[i-1]> m[i][j] ) m[i][j]=m[i-1][j-w[i-1]]+v[i-1]; } }
例1:0-1背包问题
有一个负重能力为m的背包和不同价值v[i]、不同 重量w[i] 的物品n 件。在不超过负重能力的前提下, 从这n件物品中任意选择物品,使这些物品的价值之 和最大。
物品 重量 价值 1 5 4 2 3 4 3 2 3 4 1 1
算法思想1:设m[i][j]用来表示从第i项物品开始 到第n项物品中区取出装入体积为j的背包的物品的最 大价值。其中i的范围为1到n,其中j的范围为0到c, 程序要寻求的解为m[1][c]。可以发现: ①m[n][j] 在当j>=0并且j< w[n] 时等于0,否则等 于v[n] ②当前的背包容量j大于等于物品重量w[i]时, m[i][j]是下面两个量的最大值:m[i+1][j] 和 m[i+1][ jw[i] ]+v[i] ③当前的背包容量j小于物品重量w[i]时, m[i][j]等于m[i+1][j]。 当j<w[i] m[i][j]= m[i+1][j] Max(m[i+1][j], m[i+1][j-w[i] ]+v[i] ) 当j>=w[i] m[n][j]= v[n] 0 当j>=w[n] 当j>=0 并且 j< w[n]
//程序1:动态规划法 #include <stdio.h> #define MAX 20 int n,c,w[MAX],v[MAX],m[MAX][MAX]={0}; void disp( ) { int i; for (i=1; i<=n; i++) if ( m[i][c]!=m[i+1][c] ) printf("%5d%5d\n",w[i],v[i]); }
void knapsack() { int i,j; for (j=w[n]; j<=c; j++) m[n][j]=v[n]; for (i=n-1; i>=1;i--) for (j=w[i]; j<=c; j++) if ( m[i+1][j]>m[i+1][j-w[i]]+v[i] ) m[i][j]=m[i+1][j]; else m[i][j]=m[i+1][j-w[i]]+v[i]; }