game theory

合集下载

第七章 博奕论(Game Theory教材课程

第七章  博奕论(Game Theory教材课程

max

u1
即该博奕的纳什均衡解
max u 2
maxu1 maxu2
U1 Uq12
q2
6q2 6q1
2q1 2q2
0 0
的解,
求解上述方程组:
q 1 * q 2 * 2 , Q 4 u 1 1 , u 2 4 , u 1 u 2 8
标志着博奕论的初步形成。 50年代,合作博奕发展到鼎盛阶段,非合作博奕开始出现 纳什和夏普里的讨价还价模型, 塔克的“囚徒困境” 60年代以后,selten,Haysany,Krops,Wilseen
“信誉问题模型” (动态不完全信息博弈) 最近十多年,博弈论几乎贯穿了整个微观经济学,产业组
织理论和企业制度理论,并扩展到宏观经济学,环境、劳动、 福利经济学等领域。
新厂商的市场进入问题
B
打入
A
打击
(0,10)
和平共处
(-2,3)
(5,5)
6.博奕进程的信息
完美信息博奕:在动态博奕中,博弈方对博弈的进程, 即次此行为前各博奕方的行为完全了解
非完美信息博弈:
完全信息博弈:博奕各方完全了解所有博奕方各种策 略组合下得益情况 非完全信息博弈:
7.2.2博弈的主要分类
1 3、赢得(利益):参加博奕各方从博奕中所获得的 利
益 支付矩阵,博弈树
零和博奕:各博奕方赢得的代数和为零 非零和博奕:各博奕方赢得的代数和不为零
4.均衡:所有博奕方的最优策略的组合
博奕分析的目的是使用博奕规则决定均衡
5.得益的信息
完全信息博奕:博奕各方完全了解所有博奕方各种策略 组合下得益情况的博奕,如囚徒困境和田忌赛马。
7。3 完全信息静态博奕——纳什均衡

博弈论介绍 Game Theory

博弈论介绍 Game Theory

2. 生活中的“囚徒困境”例子
例子1 商家价格战 例子1
出售同类产品的商家之间本来可以 通过共同将价格维持在高位而获利,但 实际上却是相互杀价,结果都赚不到钱。 当一些商家共谋将价格抬高,消费 者实际上不用着急,因为商家联合维持 高价的垄断行为一般不会持久,可以等 待垄断的自身崩溃,价格就会掉下来。
表2 智猪博弈 小猪 按 按 大猪 等待 5,1 9, -1 等待 4,4 0,0
这个博弈大猪没有劣战略。但是,小猪有 一个劣战略“按”,因为无论大猪作何选择, 小猪选择“等待”是比选择“按”更好一些 的战略。 所以,小猪会剔除“按”,而选择“等 待”;大猪知道小猪会选择“等待”,从而 自己选择“按”,所以,可以预料博弈的结 果是(按,等待)。这称为“ 重复剔除劣战略 的占优战略均衡 ”,其中小猪的战略“等待” 占优于战略“按”,而给定小猪剔除了劣战 略“按”后,大猪的战略“按”又占优于战 略“等待”
表4 有补贴时的博弈 空中客车 开发 开发 波音 不开发 -10,10 0, 120 不开发 100,0 0,0
这时只有一个纳什均衡,即波音公司 不开发和空中客车公司开发的均衡(不 开发,开发),这有利于空中客车。 在这里,欧共体对空中客车的补贴就 是使空中客车一定要开发(无论波音是 否开发)的威胁变得可置信的一种“承 诺行动”。
类似的例子还有: 渤海中的鱼愈来愈少了,工业化中的大气 及河流污染,森林植被的破坏等。解决公共 资源过度利用的出路是政府制订相应的规制 政策加强管理,如我国政府规定海洋捕鱼中, 每年有一段时间的“休渔期”,此时禁止捕 鱼,让小鱼苗安安静静地生长,大鱼好好地 产卵,并对鱼网的网眼大小作出规定,禁用 过小网眼的捕网打鱼,保护幼鱼的生存。又 如在三峡库区,为了保护库区水体环境,关 闭了前些年泛滥成灾的许多小造纸厂等。 问题:1、为什么在城市中心道路上禁止汽车鸣 喇叭?

第三节博弈论(GameTheory)

第三节博弈论(GameTheory)

第三节博弈论(Game Theory)在国际关系的研究过程中,我们时常会运用到博弈论这样一个工具。

博弈论在英语中称之为“Game Theory”。

很多人会认为这是一种所谓的游戏理论,其实不然,我们不能把Games 与Fun 同论,而应该将博弈论称之为是一种“Strategic interaction”(策略性互动)。

“博弈”一词现如今在我们的生活中出现的已经很频繁,我们经常会听说各种类型的国家间博弈(如:中美博弈),“博弈论”已经深刻的影响了世界局势和地区局势的发展。

在iChange创设的危机联动体系中,博弈论将得到充分利用,代表也将有机会运用博弈论的知识来解决iChange 核心学术委员会设计的危机。

在这一节中,我将对博弈论进行一个初步的介绍与讨论,代表们可以从这一节中了解到博弈论的相关历史以及一些经典案例的剖析。

(请注意:博弈论的应用范围非常广泛,涵盖数学、经济学、生物学、计算机科学、国际关系、政治学及军事战略等多种学科,对博弈论案例的一些深入分析有时需要运用到高等数学知识,在本节中我们不会涉及较多的数学概念,仅会通过一些基本的数学分析和逻辑推理来方便理解将要讨论的经典博弈案例。

)3.1 从“叙利亚局势”到“零和博弈”在先前关于现实主义理论的讨论中,我们对国家间博弈已经有了初步的了解,那就是国家是有目的的行为体,他们总为了实现自己利益的最大化而选择对自己最有利的战略,其次,政治结果不仅仅只取决于一个国家的战略选择还取决于其他国家的战略选择,多种选择的互相作用,或者策略性互动会产生不同的结果。

因此,国家行为体在选择战略前会预判他国的战略。

在这样的条件下,让我们用一个简单的模型分析一下发生在2013年叙利亚局势1:叙利亚危机从2011年发展至今已经将进入第四个年头。

叙利亚危机从叙利亚政府军屠杀平民和儿童再到使用化学武器而骤然升级,以2013年8月底美国欲对叙利亚动武达到最为紧张的状态,同年9月中旬,叙利亚阿萨德政府以愿意向国际社会交出化学武器并同意立即加入《禁止化学武器公约》的态度而使得局势趋向缓和。

Game theory

Game theory

靠左走还是靠右走?
B
靠左行
靠 左 行
靠右行
1, 1
-1, -1
A
靠 右 行
-1, -1
1, 1
南京农业大学经济管理学院 王艳
3、智猪博弈boxed pigs
有一头大猪和一头小猪住在同一个猪圈里,猪圈 的一侧放着猪食槽,另一侧安装着一个控制食物 供应的按钮。按一次按钮,有8个单位的食物进槽 ,但需承担2个单位的成本。 偌大猪小猪同时到达猪食槽,大猪吃到5个单位的 食物,小猪吃到3个单位的食物;若大猪先到,大 猪吃7个单位的食物,小猪只能吃到1个单位;若 小猪先到,小猪吃到4个单位食物,大猪也吃到4 个单位食物。
南京农业大学经济管理学院 王艳
斗鸡博弈
进 A 独木桥
B
退 4,-1 0,0

退
-2,-2 -1,4
纳什均衡:A进,B退;A退,B进
南京农业大学经济管理学院 王艳
斗鸡博弈
村子里有两户富户,有两种可能:一家修 ,另一家就不修;一家不修,另一家就得 修。 冷战期间美苏抢占地盘:一方抢占一块地 盘,另一方就占另一块。 夫妻吵架,一方厉害,另一方就出去躲躲 。
南京农业大学经济管理学院 王艳
Reinhard Selten
Sub-game perfect Nash equilibrium 德国波恩大学经济学 系
南京农业大学经济管理学院 王艳
博弈树(扩展型)
参与人 每个参与人选择行动的时点 每个参与人在每次行动时可供选择的行动 集合 每个参与人在每次行动时有关对手过去行 动选择的信息 支付函数
南京农业大学经济管理学院 王艳
博弈树
行动
进入
进入者
在位者

博弈论 Game theory (全)

博弈论 Game theory (全)

博弈论 Game Theory博弈论亦名“对策论”、“赛局理论”,属应用数学的一个分支, 目前在生物学,经济学,国际关系,计算机科学, 政治学,军事战略和其他很多学科都有广泛的应用。

在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。

主要研究公式化了的激励结构间的相互作用。

是研究具有斗争或竞争性质现象的数学理论和方法。

也是运筹学的一个重要学科。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。

其中一个有名有趣的应用例子是囚徒困境(Prisoner's dilemma)。

具有竞争或对抗性质的行为称为博弈行为。

在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。

为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。

比如日常生活中的下棋,打牌等。

博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。

生物学家使用博弈理论来理解和预测演化(论)的某些结果。

例如,约翰·史密斯(John Maynard Smith)和乔治·普莱斯(George R. Price)在1973年发表于《自然》杂志上的论文中提出的“evolutionarily stable strategy”的这个概念就是使用了博弈理论。

其余可参见演化博弈理论(evolutionary game theory)和行为生态学(behavioral ecology)。

博弈论也应用于数学的其他分支,如概率,统计和线性规划等。

历史博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。

博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

英语第一章阅读 game theory 原文及翻译

英语第一章阅读 game theory 原文及翻译
都具有相互依赖的共同特征。也就是说,每个参与者的结果取决于所有人的选择(策略)。在所 谓的零和游戏中,玩家的利益是完全冲突的博弈论是战略的科学。它试图从数学和逻辑上确定 “玩家”应采取的行动,以确保他们在各种“游戏”中获得最佳成果。所研究的游戏包括从国际象 棋到儿童饲养,从网球到收购。但是这些游戏,所以一个人的收益总是另一个人的损失。更典 型的是有相互收益(正数)或相互伤害(负数)的博弈,以及一些冲突。
The essence of a game is the interdependence of player strategies. There are two distinct types of strategic interdependence: sequential and simultaneous. In the former the players move in sequence, each aware of the others’ previous actions. In the latter the players act at the same time, each ignorant of the others’ actions.
Game theory was pioneered by Princeton mathematician john von Neumann. In the early years the emphasis was on games of pure conflict (zero-sum games). Other games were considered in a cooperative form. That is, the participants were supposed to choose and implement their actions jointly. Recent research has focused on games that are neither zero sum nor purely cooperative. In these games the players choose their actions separately, but their links to others involve elements of both competition and cooperation.

game theory 教材

Game Theory 教材一、介绍Game Theory是一种研究决策问题的数学理论,它关注的是理性行为体在面临复杂互动环境时的选择和行动。

Game Theory可以广泛应用于经济学、政治学、社会学等领域,帮助人们理解和解释现实世界的各种互动现象。

本教材旨在介绍Game Theory的基本概念、方法和应用,为读者提供一种理解和分析现实世界中复杂问题的工具。

二、内容第一章:Game Theory概述本章将介绍Game Theory的基本概念、发展历程和应用领域。

我们将探讨理性行为体的假设、互动决策的基本模式以及Game Theory 的主要研究问题。

第二章:策略博弈本章将介绍策略博弈的基本概念和方法,包括策略博弈的定义、纳什均衡、零和博弈和囚徒困境等。

我们将通过实例和分析来理解和应用这些概念和方法。

第三章:非策略博弈本章将介绍非策略博弈的基本概念和方法,包括非策略博弈的定义、优势策略和劣势策略、不完全信息博弈和拍卖理论等。

我们将通过实例和分析来理解和应用这些概念和方法。

第四章:演化博弈本章将介绍演化博弈的基本概念和方法,包括演化博弈的定义、演化稳定性和动态演化博弈等。

我们将通过实例和分析来理解和应用这些概念和方法。

第五章:应用案例本章将介绍Game Theory在经济学、政治学和社会学等领域的应用案例,包括市场交易、政治选举和社会规范等。

我们将通过案例分析和讨论来深入理解和应用Game Theory的概念和方法。

三、结论本教材旨在介绍Game Theory的基本概念、方法和应用,帮助读者理解和分析现实世界中各种复杂的互动现象。

通过阅读和实践,读者可以更好地理解和掌握Game Theory,并应用于解决现实问题中。

博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支 ...

博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。

博弈论主要研究公式化了的激励结构间的相互作用。

是研究具有斗争或竞争性质现象的数学理论和方法。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

生物学家使用博弈理论来理解和预测进化论的某些结果。

博弈论已经成为经济学的标准分析工具之一。

在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

自从博弈论被引入经济学以来,现在经济的许多领域都发生了巨大变化。

博弈论在强调经济活动的利益主体行为所产生的相互作用和相互影响的同时,也在突出反映社会制度的本质。

人们或组织需要更多的信息在预期其他参与方行动决策的情况下做出自己的行动选择期求更大的利益。

而我们所谓的制度就是均衡行动选择的本质特征,被参与方普遍认可并与他们的行动息息相关。

下面以最近的南海争端作为案例用博弈论的知识对争端各方所认同的制度进行研究。

由于南海问题牵涉利益参与方较多,争端较为复杂,我们只考虑中国和南海诸国双边的政治博弈。

首先看南海争端的地理位置。

南沙群岛陆地面积虽然只有二平方公里,但是整个海域面积达八十二万三千平方公里,而且地理位置非常重要。

南沙群岛地处越南金兰湾和菲律宾苏比克湾两大海军基地之间,战略位置突出,扼西太平洋至印度洋海上交通要冲,通往非洲和欧洲的咽喉要道。

再次,南海的资源也成为各国关注的焦点。

南海地处中、菲、越、日、马各国交界地带,渔业矿产资源丰富,各国利益争端复杂,这也成为南海争端形成的必要条件。

二十世纪六十年代开始,越、菲、马等国以军事手段占领南沙群岛部分岛礁,在南沙群岛附近海域进行大规模的资源开发活动并提出主权要求。

众所周知,作为一个行为主体忽略和偏离制度对其而言是无利可图甚至产生消极效应。

从60年代至今,中方与南海边界小国以及美日印诸国产生了重复参与博弈的战略互动的稳定状态。

上世纪80年代末90年代初,这些国家开始分别在所占据的岛礁上修建飞机跑道,建海港、灯塔和旅游观光点,并纷纷与外国石油公司合作,开采南沙地区的油气资源。

博弈论game theory


1.2.4石头、剪刀、布
A
石头 剪刀

石头 0,0 1,-1 -1,1
B
剪刀 -1,1 0,0 1,- 1

1,-1 -1,1 0,0
§1.3按局中人的数量对博弈分类
1.3.1单人博弈 退化为一般的最优化问题 (1)单人迷宫
入口
A左B左
0

A左B右
M
A
B

A右B左
0

出口(奖金M)
A右B右
0
单人迷宫
田忌 上中下 上下中 中上下 中下上 下上中 下中上 上中下 3,-3 1,-1 1,-1 1,-1 -1,1 1,-1 上下中 1,-1 3,-3 1,-1 1,-1 1,-1 -1,1 齐 中上下 1,-1 -1,1 3,-3 1,-1 1,-1 1,-1 威 王 中下上 -1,1 1,-1 1,-1 3,-3 1,-1 1,-1 下上中 1,-1 1,-1 1,-1 -1,1 3,-3 1,-1 下中上 1,-1 1,-1 -1,1 1,-1 1,-1 3,-3
局中人的得益(payoffs)——支付 博弈结果的量化 局中人在博弈中得到的效用 策略组合的函数
博弈的次序(orders) 局中人决策是否同时
1.1.3博弈的表示方法 (1)正规型(策略型)——Payoff Matrix
A坦 B
白不 坦 白

白 -8,-8
0,-10
不 坦 白 -10,0
-1,-1
例子 三人决斗,开枪射杀对手,以保存自己。命中率和
每一轮的开枪次序如下。
命中率
次序
A
30%
1
B
70%
2
C

game-theory1--博弈论-英文PPT课件

• Utility maximization - major component of a certain way of thinking, pulls together most of economic theory. More attractive and realistic alternatives failed because they did not have any interesting consequences
playersknowactionstakenotherplayersactionsknowngamesclassificationintroductioneconomicmodelsgametheorymodelsgamessummary38previewperfectinformationstaticgamesnashequilibriumdynamicgamesbackwardinduction倒推归imperfectinformationdynamicgamessubgame子博弈perfectneincompleteinformationstaticgamesauctions拍卖dynamicgamessignalinggamesclassificationintroductioneconomicmodelsgametheorymodelsgamessummaryeconomicmodelsgoodenoughapproximationrealworldmanyusefulpurposesgametheorymodelseconomicmodelssituationswheredecisionmakersinteractsummaryintroductioneconomicmodelsgametheorymodelsgamessummarystrategicgameconsistseachplayerseteachplayersetpreferencesoveractionprofilespreferencesrepresentedpayofffunctionsolvinggamesiterative重复的elimination消去strictlydominatedstrategiesnextlecturenashequilibriumnextlectureothermethodslatercoursesummaryiiintroductioneconomicmodelsgametheorymodelsgamessummary
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

What is Game theory
is a branch of applied mathematics that is used in the social science, most notably in economics, as well as in biology , engineering, political science, international relations, computer science and philosophy.
Game
theory attempts to mathematically capture behavior in strategic situations, in which an individual's success in making choices depends on the choices of others.

. Robert Gplied fields within economics who want a serious and thorough discussion of game theory but who may have found other works overly abstract. Gibbons emphasizes the economic applications of the theory at least as much as the pure theory itself; formal arguments about abstract games play a minor role.

这个理论中有个经典的例子——囚徒困境,说的是:A 和B合伙抢了银行,被抓获。他们被关进分隔的牢房。 检察官分别告诉他们:如果两人都不坦白,他们会因 非法携带枪支的罪名各判刑1年;如果其中一人招供而 另一人不招,坦白者作为证人将不会被起诉,另一人 将会被重判10年;如果两人都招供,则两人都会以抢 劫罪名各判5年。结果,两个人都招供了。故事背后的 原理是这样的:A和B都是理性的,首先关心的是减少 自己刑期,而不在乎对方被判多少年。由于信息是不 对称的,双方没有串谋的机会,所以,A会这样推理: “假如B不招,我只要一招供,立马可以获得自由,而 不招却要坐牢一年,显然招比不招好;假如B招了,我 若不招,则要坐牢10年,招了只坐5年,显然还是以 招认为好。可见无论B招与不招,我的最佳选择都是招 认。”同理,B也是理性的人,也会如此推理。于是两 人都作出招供的选择,这对他们个人来说都最佳的, 即最符合他们个体理性的选择。但现在的问题是,两 个人都招供,并不是集体最优的选择。无论对哪个人 来说,两个人都不招供,要比两个人都招供好得多。 最符合个体理性的选择,却是集体非理性的。
Game theory
Came into being with the 1944 book Theory of Games and Economic Behavior by John von Neumann & Oskar Morgenstern explicitly applied to biology in the 1970s Eight game theorists have won the Nobel Memorial Prize in Economic Sciences




Traditional applications of game theory attempt to find equilibria(平衡、均势)in these games. In an equilibrium, each player of the game has adopted a strategy that they are unlikely to change. In non-cooperative games, the most famous of these is the Nash equilibrium. A set of strategies is a Nash equilibrium if each represents a best response to the other strategies.


is a solution concept of a game involving two or more players, in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only his or her own strategy unilaterally(单方面地) If each player has chosen a strategy and no player can benefit by changing his or her strategy while the other players keep theirs unchanged, then the current set of strategy choices and the corresponding payoffs constitute a Nash equilibrium.
囚徒困境

"game theory is a sort of umbrella or 'unified field' theory for the rational side of social science, where 'social' is interpreted broadly, to include human as well as non-human players (computers, animals, plants)"
相关文档
最新文档