动态规划算法 背包问题
动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
理学背包问题详解

0 1 2 3 4 5 6 7 8 9 10
000000000000
x1=1
w1=2 v1=6 1 0 0 6 6 6 6 6 6 6 6 6
x2=1
w2=2 v2=3 2 0 0 6 6 9 9 9 9 9 9 9
x3=0
w3=6 v3=5 3 0 0 6 6 9 9 9 9 11 11 14
可用动态规划算法求解。
3
其他类型背包问题
完全背包问题(0/1):
有N种物品和一个容量为V的背包,每种物品都有 无限件可用。第i种物品的费用是c[i],价值是w[i]。 求解将哪些物品装入背包可使这些物品的费用总和 不超过背包容量,且价值总和最大。
多重背包问题
有N种物品和一个容量为V的背包。第i种物品最多 有n[i]件可用,每件费用是c[i],价值是w[i]。求解 将哪些物品装入背包可使这些物品的费用总和不超 过背包容量,且价值总和最大。
{// 计算x
for (int i=1; i<n; i++)
if (m[i][c]==m[i+1][c])
x[i]=0;
else
{
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c])?1:0;
}
11
算法改进
由m(i,j)的递归式容易证明,在一般情况下,对每一个确定的 i(1≤i≤n),函数m(i,j)是关于变量j的阶梯状单调不减函数。跳跃 点是这一类函数的描述特征。在一般情况下,函数m(i,j)由其 全部跳跃点唯一确定。如图所示。
(7,7)
(6,6) (4,5)
(4,5)(6,6)
(0,
0)
(2,
(3,2) 1)
《信息学奥赛一本通》:第9章 第2节 动态规划背包问题(C++版)

【参考程序】
#include<cstdio> using namespace std;
const int maxm = 201, maxn = 31;
int m, n;
int w[maxn], c[maxn];
int f[maxn][maxm];
int main()
{
scanf("%d%d",&m, &n);
for (int i=1; i <= n; i++)
//设f(v)表示重量不超过v公斤的最大价值
for (int v = m; v >= w[i]; v--)
if (f[v-w[i]]+c[i]>f[v])
f[v] = f[v-w[i]]+c[i];
printf("%d",f[m]);
// f(m)为最优解
【例9-12】、完全背包问题 【问题描述】
设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限 的,同时有一个背包,最大载重量为M,今从n种物品中选取若干件(同一种物品 可以多次选取),使其重量的和小于等于M,而价值的和为最大。
【输入格式】
第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。 【输出格式】
第九章 动态规划
第二节 背包问题
第二节 背包问题
一、01背包问题 问题:
有N件物品和一个容量为V的背包。第i件物品的费用(即体积,下同)是w[i], 价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量, 且价值总和最大。 基本思路:
动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
利用动态规划解决01背包问题01背包问题动态规划

利用动态规划解决01背包问题01背包问题动态规划背包问题是一个经典的动态规划模型,很多关于算法的教材都把它作为一道例题,该问题既简单又容易理解,而且在某种程度上还能够揭示动态规划的本质。
将具有不同重量和价值的物体装入一个有固定载重量的背包,以获取最大价值,这类问题被称为背包问题。
背包问题可以扩展出很多种问题,而01背包问题是最常见、最有代表性的背包问题。
一、问题描述给定一个载重量为M的背包及n个物体,物体i的重量为wi、价值为pi,1≤i≤n,要求把这些物体装入背包,使背包内的物体价值总量最大。
此处我们讨论的物体是不可分割的,通常称这种物体不可分割的背包问题为01背包问题。
二、基本思路01背包问题的特点是:每种物体只有一件,可以选择放或者不放。
假设:xi表示物体i被装入背包的情况,xi=0,1。
当xi=0时,表示物体没有被装入背包;当xi=1时,表示物体被装入背包。
根据问题的要求,有如下的约束方程(1)和目标函数(2):三、利用动态规划法求解01背包问题(一)动态规划算法的基本思想动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。
若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算很多次。
如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
我们可以用一个表来记录所有已解的子问题的答案。
不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中,这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
(二)算法设计假定背包的载重量范围为0~m。
动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进有N件物品和一个容量为V的背包。
第i件物品的重量是w[i],价值是v[i]。
求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。
形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。
数学描述为:求解最优值:设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。
所以原问题的解为m(1,C)将原问题分解为其子结构来求解。
要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。
最后求出的值即为最优值m(1,C)。
若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。
对于此时背包剩余容量j=0,1,2,3……C,分两种情况:(1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j)(2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。
若不放入物品i,则此时m(i,j)=m(i+1,j)若放入物品i,此时背包剩余容量为 j-w[i],在子结构中已求出当容量k=0,1,2……C 时的最优值m(i+1,k)。
所以此时m(i,j)=m(i+1,j-w[i])+v[i]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
void main( ) { int i,j;
printf("输入物品种数:"); scanf("%d",&n); printf("输入每种物品的重量与价值:\n"); for (i=0; i<n; i++)
scanf("%d%d",&w[i],&v[i]); printf("输入背包的总重量:\n"); scanf("%d",&c); knapsack(); disp(); printf("最大价值=%d\n",m[n][c]); for (i=0; i<=n; i++) { for (j=0; j<=c; j++)
}
void main( ) { int i,j;
printf("输入物品种数:"); scanf("%d",&n); printf("输入每种物品的重量与价值:\n"); for (i=1; i<=n; i++)
scanf("%d%d",&w[i],&v[i]); printf("输入背包的总重量:\n"); scanf("%d",&c); knapsack(); disp(); printf("最大价值=%d\n",m[0][c]); for (i=1; i<=n; i++) { for (j=0; j<=c; j++)
0
i=0 或者 j=0
m[i][j]= m[i-1][j]
j>0且j<w[i]
Max(m[i-1][j], m[i-1][j-w[i] ]+v[i] ) i>0且j>=w[i]
//程序2:动态规划法 #include <stdio.h> #define MAX 20 int n,c,w[MAX],v[MAX],m[MAX][MAX]={0}; void knapsack() { int i,j;
for (i=1; i<=n; i++) if ( m[i][c]!=m[i+1][c] ) printf("%5d%5d\n",w[i],v[i]);
}
void knapsack() { int i,j;
for (j=w[n]; j<=c; j++) m[n][j]=v[n];
for (i=n-1; i>=1;i--) for (j=w[i]; j<=c; j++) if ( m[i+1][j]>m[i+1][j-w[i]]+v[i] ) m[i][j]=m[i+1][j]; else m[i][j]=m[i+1][j-w[i]]+v[i];
}
//显示所取的物品及其重量(其中一个解) //对数组m的最后一列检查来求解 void disp( ) { int i,j;
i=n; while ( m[i][c]==m[i-1][c] ) i--; while (i>0) { j=i-1;
while (m[i][c]-m[j][c]!=v[i-1] && j>0) j--;
for (i=1; i<=n; i++) for (j=1; j<=c; j++) { m[i][j]=m[i-1][j]; if ( j>=w[i-1] && m[i-1][j-w[i-1]]+v[i-1]> m[i][j] ) m[i][j]=m[i-1][j-w[i-1]]+v[i-1]; }
printf("%3d",m[i][j]); printf("\n"); } }
算法思想2:设m[i][j]用来表示从前i项物品中区 取出装入体积为j的背包的物品的最大价值。其中i的范 围为1到n,其中j的范围为0到c,程序要寻求的解为 m[n][c]。可以清楚地发现:
①m[0][j]对所有的j的值为0, m[i][0]对所有的i的 值为0。 ②当前的体积j大于等于w[i]时, m[i][j]是 下面两个量的最大值:m[i-1][j] 和 m[i-1][j-w[i]]+v[i] ③当前的体积j小于w[i]时,m[i][j]等于m[i-1][j]
例:输出Fibonacii数列的第n项的递归算法
#include <stdio.h> int fib(int n) { if (n<=1) return 1;
else return fib(n-1)+fib(n-2); } void main( ) { int n;
scanf("%d",&n); printf("%d\n" ,fib( n ) ); }
a[1]=a[2]=1; for (i=3; i<=n; i++)
a[i]=a[i-1]+a[i-2]; return a[n]; } void main( ) { int n; scanf("%d",&n); printf("%d\n" ,fib( n ) ); }
例1:0-1背包问题
有一个负重能力为m的背包和不同价值v[i]、不同 重量w[i]的物品n件。在不超过负重能力的前提下, 从这n件物品中任意选择物品,使这些物品的价值之 和最大。
在上面的递归算法中存在多次计算同一个子问 题,如:fib(2)。如果能将这样的子问题的解用数组 保存起来,即可以加快求解的过程,即采用动态规 划方法。
//输出Fibonacii数列的第n项的动态规划算法
#include <stdio.h> #define MAX 50 int fib(int n) { int i,a[MAX];
m[i][j]=
m[i+1][j] Max(m[i+1][j], m[i+1][j-w[i] ]+v[i] )
当j<w[i] 当j>=w[i]
m[n][j]=
v[n] 0
当j>=w[n] 当j>=0 并且 j< w[n]
//程序1:动态规划法 #include <stdio.h> #define MAX 20 int n,c,w[MAX],v[MAX],m[MAX][MAX]={0}; void disp( ) { int i;
物品 1
2
3
4
重量 5
3
2
1
价值 4
4Hale Waihona Puke 31算法思想1:设m[i][j]用来表示从第i项物品开始 到第n项物品中区取出装入体积为j的背包的物品的最 大价值。其中i的范围为1到n,其中j的范围为0到c, 程序要寻求的解为m[1][c]。可以发现:
①m[n][j] 在当j>=0并且j< w[n] 时等于0,否则等 于v[n] ②当前的背包容量j大于等于物品重量w[i]时, m[i][j]是下面两个量的最大值:m[i+1][j] 和 m[i+1][ jw[i] ]+v[i] ③当前的背包容量j小于物品重量w[i]时, m[i][j]等于m[i+1][j]。
printf("%3d",m[i][j]); printf("\n"); } }
动态规划算法原理
将待求解的问题分解成若干个相互联系 的子问题,先求解子问题,然后从这些子问 题的解得到原问题的解;对于重复出现的子 问题,只在第一次遇到的时候对它进行求解, 并把答案保存起来。
为了不去求解相同的子问题,引入一个数 组,把所有子问题的解存于该数组中,这就 是动态规划所采用的基本方法。动态规划采 用由下至上(Bottom-Up) 计算策略。