01背包问题(动态规划法)

合集下载

动态规划与回溯法解决0-1背包问题

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。

但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。

动态规划之01背包问题(最易理解的讲解)

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。

01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。

Pi表示第i件物品的价值。

决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗?题目描述:有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最首先要明确这张表是从右到左,至底向上生成的。

为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。

然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0,对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。

对于承重为9的背包,d9=10,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.。

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。

第i件物品的体积是vi,价值是wi。

求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。

⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。

result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。

初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。

那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

01背包问题(动态规划法)

01背包问题(动态规划法)

0/1背包问题1. 问题描述给定一个载重量为m,n个物品,其重量为w i,价值为v i,1<=i<=n,要求:把物品装入背包,并使包内物品价值最大2. 问题分析在0/1背包问题中,物体或者被装入背包,或者不被装入背包,只有两种选择。

循环变量i,j意义:前i个物品能够装入载重量为j的背包中(n+1)*(m+1)数组value意义:value[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值若w[i]>j,第i个物品不装入背包否则,若w[i]<=j且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值(替换为第i个物品装入背包后的价值)计算最大价值的动态规划算法如下://计算for(i=1;i<row;i++){for(j=1;j<col;j++){//w[i]>j,第i个物品不装入背包value[i][j]=value[i-1][j];//w[i]<=j,且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值int temp=value[i-1][j-w[i]]+v[i];if(w[i]<=j && temp>value[i][j])value[i][j]=temp;}}即该段程序完成以下n个阶段:1:只装入1个物品,确定在各种不同载重量的背包下,能够得到的最大价值2:装入2个物品,确定在各种不同载重量的背包下,能够得到的最大价值。

n:以此类推,装入n个物品,确定在各种不同载重量的背包下,能够得到的最大价值3. 问题求解确定装入背包的具体物品,从value[n][m]向前逆推:若value[n][m]>value[n-1][m],则第n个物品被装入背包,且前n-1个物品被装入载重量为m-w[n]的背包中否则,第n个物品没有装入背包,且前n-1个物品被装入载重量为m的背包中以此类推,直到确定第一个物品是否被装入背包为止。

蛮力法、动态规划法 求解01背包问题

蛮力法、动态规划法 求解01背包问题
v[i][j]=values[i]+v[i-1][j-weigths[i]];
else
v[i][j]=v[i-1][j];
}
else v[i][j]=v[i-1][j];
}
return v[n][m];
}
int main()
{
int m,n;int i,j;
cout<<"请输入背包的承重量:"<<endl;
2)复杂度分析:2n
2、动态规划法
1)基本思想:Dynamic programming is a technique for solving problems with overlapping subproblems.The function:
V(i,0)=V(0,j)=0;(1)
V(i-1,j)j<w
if (cur_weight <= capacity && cur_value > max_value) {
max_value = cur_value;
}
return;
}
c[d] = 0;
MFKnapsack(capacity, values, weights, c,
d + 1, max_value);
cout << MFKnapsack(capacity, values, weights, n) << endl;
return 0;
}
(2)Dynamic Programming
#include<iostream.h>
#include<string.h>
int v[10][100];//对应每种情况的最大价值

动态规划算法--01背包问题

动态规划算法--01背包问题

动态规划算法--01背包问题基本思想:动态规划算法通常⽤于求解具有某种最优性质的问题。

在这类问题中,可能会有许多可⾏解。

每⼀个解都对应于⼀个值,我们希望找到具有最优值的解。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若⼲个⼦问题,先求解⼦问题,然后从这些⼦问题的解得到原问题的解。

与分治法不同的是,适合于⽤动态规划求解的问题,经分解得到⼦问题往往不是互相独⽴的(即下⼀个⼦阶段的求解是建⽴在上⼀个⼦阶段的解的基础上,进⾏进⼀步的求解)。

若⽤分治法来解这类问题,则分解得到的⼦问题数⽬太多,有些⼦问题被重复计算了很多次。

如果我们能够保存已解决的⼦问题的答案,⽽在需要时再找出已求得的答案,这样就可以避免⼤量的重复计算,节省时间。

我们可以⽤⼀个表来记录所有已解的⼦问题的答案。

不管该⼦问题以后是否被⽤到,只要它被计算过,就将其结果填⼊表中。

这就是动态规划法的基本思路。

具体的动态规划算法多种多样,但它们具有相同的填表格式。

应⽤场景:适⽤动态规划的问题必须满⾜最优化原理、⽆后效性和重叠性。

1、最优化原理(最优⼦结构性质)最优化原理可这样阐述:⼀个最优化策略具有这样的性质,不论过去状态和决策如何,对前⾯的决策所形成的状态⽽⾔,余下的诸决策必须构成最优策略。

简⽽⾔之,⼀个最优化策略的⼦策略总是最优的。

⼀个问题满⾜最优化原理⼜称其具有最优⼦结构性质。

2、⽆后效性将各阶段按照⼀定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态⽆法直接影响它未来的决策,⽽只能通过当前的这个状态。

换句话说,每个状态都是过去历史的⼀个完整总结。

这就是⽆后向性,⼜称为⽆后效性。

3、⼦问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。

其中的关键在于解决冗余,这是动态规划算法的根本⽬的。

动态规划实质上是⼀种以空间换时间的技术,它在实现的过程中,不得不存储产⽣过程中的各种状态,所以它的空间复杂度要⼤于其它的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0/1背包问题1. 问题描述给定一个载重量为m,n个物品,其重量为w i,价值为v i,1<=i<=n,要求:把物品装入背包,并使包内物品价值最大2. 问题分析在0/1背包问题中,物体或者被装入背包,或者不被装入背包,只有两种选择。

循环变量i,j意义:前i个物品能够装入载重量为j的背包中(n+1)*(m+1)数组value意义:value[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值若w[i]>j,第i个物品不装入背包否则,若w[i]<=j且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值(替换为第i个物品装入背包后的价值)计算最大价值的动态规划算法如下://计算for(i=1;i<row;i++){for(j=1;j<col;j++){//w[i]>j,第i个物品不装入背包value[i][j]=value[i-1][j];//w[i]<=j,且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值int temp=value[i-1][j-w[i]]+v[i];if(w[i]<=j && temp>value[i][j])value[i][j]=temp;}}即该段程序完成以下n个阶段:1:只装入1个物品,确定在各种不同载重量的背包下,能够得到的最大价值2:装入2个物品,确定在各种不同载重量的背包下,能够得到的最大价值。

n:以此类推,装入n个物品,确定在各种不同载重量的背包下,能够得到的最大价值3. 问题求解确定装入背包的具体物品,从value[n][m]向前逆推:若value[n][m]>value[n-1][m],则第n个物品被装入背包,且前n-1个物品被装入载重量为m-w[n]的背包中否则,第n个物品没有装入背包,且前n-1个物品被装入载重量为m的背包中以此类推,直到确定第一个物品是否被装入背包为止。

逆推代码如下://逆推求装入的物品j=m;for(i=row-1;i>0;i--){if(value[i][j]>value[i-1][j]){c[i]=1;j-=w[i];}}4. 代码如下输入数据及输出数据均在文件中。

输入数据格式:n mw1 w2 ... w nv1 v2 ... vn输出数据格式:maxValuei count //i表示物品编号,count表示该物品被选中次数 .../************************************************************************* 0/1背包问题求解 (visual studio 2005)* 给定一个载重量为m,及n个物品,其重量为wi,价值为vi,1<=i<=n* 要求:把物品装入背包,并使包内物品价值最大************************************************************************/#include <stdio.h>#include <stdlib.h>#include <string.h>#define FILENAMELENGTH 100class CBeibao{public:int m_nNumber; //物品数量int m_nMaxWeight; //最大载重量int *m_pWeight; //每个物品的重量int *m_pValue; //每个物品的价值int *m_pCount; //每个物品被选中的次数int m_nMaxValue; //最大价值public:CBeibao(const char *filename);~CBeibao();int GetMaxValue();int GetMaxValue(int n,int m,int *w,int *v,int *c);void Display(int nMaxValue);void Display(int nMaxValue,const char *filename); };//读入数据CBeibao::CBeibao(const char *filename){FILE *fp=fopen(filename,"r");if(fp==NULL){printf("can not open file!");return; //exit(0);}//读入物品数量和最大载重量fscanf(fp,"%d%d",&m_nNumber,&m_nMaxWeight);m_pWeight=new int[m_nNumber+1];m_pValue=new int[m_nNumber+1];m_pWeight[0]=0;//读入每个物品的重量for(int i=1;i<=m_nNumber;i++)fscanf(fp,"%d",m_pWeight+i);m_pValue[0]=0;//读入每个物品的价值for(int i=1;i<=m_nNumber;i++)fscanf(fp,"%d",m_pValue+i);//初始化每个物品被选中次数为0m_pCount=new int[m_nNumber+1];for(int i=0;i<=m_nNumber;i++)m_pCount[i]=0;fclose(fp);}CBeibao::~CBeibao(){delete[] m_pWeight;m_pWeight=NULL;delete[] m_pValue;m_pValue=NULL;delete[] m_pCount;m_pCount=NULL;}/************************************************************************* 动态规划求出满足最大载重量的最大价值* 参数说明:n:物品个数* m:背包载重量* w:重量数组* v:价值数组* c:是否被选中数组* 返回值:最大价值************************************************************************/int CBeibao::GetMaxValue(int n,int m,int *w,int *v,int *c){int row=n+1;int col=m+1;int i,j; //循环变量:前i个物品能够装入载重量为j的背包中//value[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值int **value=new int*[row];for(i=0;i<row;i++)value[i]=new int[col];//初始化第0行for(j=0;j<col;j++)value[0][j]=0;//初始化第0列for(i=0;i<row;i++)value[i][0]=0;//计算for(i=1;i<row;i++){for(j=1;j<col;j++){//w[i]>j,第i个物品不装入背包value[i][j]=value[i-1][j];//w[i]<=j,且第i个物品装入背包后的价值>value[i-1][j],则记录当前最大价值int temp=value[i-1][j-w[i]]+v[i];if(w[i]<=j && temp>value[i][j])value[i][j]=temp;}}//逆推求装入的物品j=m;for(i=row-1;i>0;i--){if(value[i][j]>value[i-1][j]){c[i]=1;j-=w[i];}}//记录最大价值int nMaxVlaue=value[row-1][col-1];//释放该二维数组for(i=0;i<row;i++){delete [col]value[i];value[i]=NULL;}delete[] value;value=NULL;return nMaxVlaue;}int CBeibao::GetMaxValue(){int nValue=GetMaxValue(m_nNumber,m_nMaxWeight,m_pWeight,m_pValue,m_pC ount);m_nMaxValue=nValue;return nValue;}//显示结果void CBeibao::Display(int nMaxValue){printf(" %d ",nMaxValue);for(int i=1;i<=m_nNumber;i++){if(m_pCount[i])printf(" %d %d ",i,m_pCount[i]);}printf(" ");}void CBeibao::Display(int nMaxValue,const char *filename){FILE *fp=fopen(filename,"w");if(fp==NULL){printf("can not write file!");return; //exit(0);}fprintf(fp,"%d ",nMaxValue);for(int i=1;i<=m_nNumber;i++){if(m_pCount[i])fprintf(fp,"%d %d ",i,m_pCount[i]);}fclose(fp);}//显示菜单void show_menu(){printf("--------------------------------------------- ");printf("input command to test the program ");printf(" i or I : input filename to test ");printf(" q or Q : quit ");printf("--------------------------------------------- ");printf("$ input command >");}void main(){char sinput[10];char sfilename[FILENAMELENGTH];show_menu();scanf("%s",sinput);while(stricmp(sinput,"q")!=0){if(stricmp(sinput,"i")==0){printf(" please input a filename:");scanf("%s",sfilename);//获取满足最大载重量的最大价值CBeibao beibao(sfilename);int nMaxValue=beibao.GetMaxValue();if(nMaxValue){beibao.Display(nMaxValue);int nlen=strlen(sfilename);strcpy(sfilename+nlen-4,"_result.txt");beibao.Display(nMaxValue,sfilename);}elseprintf(" error! please check the input data! ");}//输入命令printf("$ input command >");scanf("%s",sinput);}}5. 运行结果如下文件中的内容如下:1. input.txt4 102 3 4 71 3 5 9input_result.txt122 14 12. input1.txt5 102 2 6 5 46 3 5 4 6input1_result.txt151 12 15 13. input2.txt5 152 6 4 7 91 6 5 9 4input2_result.txt161 12 14 14. input3.txt10 10512 16 24 7 29 32 5 43 31 111 16 15 9 24 25 3 32 41 7input3_result.txt1121 12 14 16 17 19 110 1。

相关文档
最新文档