郑州市高三数学模拟试题

合集下载

河南省郑州市(新版)2024高考数学统编版模拟(综合卷)完整试卷

河南省郑州市(新版)2024高考数学统编版模拟(综合卷)完整试卷

河南省郑州市(新版)2024高考数学统编版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数的图象大致是( )A.B.C.D.第(2)题为提升学校教职工的身体素质,某校工会组织学校600名教职工积极参加“全民健身运动会”,该运动会设有跳绳、仰卧起坐、俯卧撑、开合跳、健步走五个项目,教职工根据自己的兴趣爱好最多可参加其中一个,参加各项目的人数比例的饼状图如图所示,其中参加俯卧撑项目的教职工有75名,参加跳绳项目的教职工有125名,则该校( )A .参加该运动会的教职工的总人数为450B .参加该运动会的教职工的总人数占该校教职工人数的80%C .参加开合跳项目的教职工的人数占参加该运动会的教职工的总人数的12%D .从参加该运动会的教职工中任选一名,其参加跳绳或健步走项目的概率为0.6第(3)题如果函数的图像与曲线恰好有两个不同的公共点,则实数的取值范围是A.B.C.D.第(4)题命题的否定是( )A.B.C.D.第(5)题在△ABC 中,若,则B =( )A.B.C.或D.或第(6)题已知数列的通项为,则其前8项和为( )A.B.C.D.第(7)题已知函数,且关于的方程有6个不同的实数解,若最小的实数解为-1,则的值为A .-2B .-1C .0D .1第(8)题设函数的定义域为,值域为,若的最小值为,则实数a 的值为A.B.或C.D.或二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知是自然对数的底数,函数则()(参考数据:,,)A.函数的图象在处的切线方程为B.的最小值为C.函数在上单调递减D.若整数满足,则所有满足条件的的和为21第(2)题密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0—07”,478密位写成“4—78”.若,则角可取的值用密位制表示可能是()A.10—50B.2—50C.13—50D.42—50第(3)题已知,为两个平面,,为两条直线,平面,平面,则下列命题正确的是()A.若,则B.若,为异面直线,则与相交C.若与相交,则,相交D.若,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知直线是曲线的一条切线,则__________.第(2)题若为奇函数,则______.第(3)题的展开式中,x5的系数是_________.(用数字填写答案)四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数(且)的零点是.(1)设曲线在零点处的切线斜率分别为,判断的单调性;(2)设是的极值点,求证:.第(2)题如图,在三棱锥中,是边长为的等边三角形,且,平面,垂足为平面,垂足为,连接并延长交于点.(1)求二面角的余弦值;(2)在平面内找一点,使得平面,说明作法及理由,并求四面体PDEF的体积.第(3)题如图,AD是∠BAC的平分线,圆O过点A且与边BC相切于点D,与边AB、AC分别交于点E、F,求证:EF∥BC.第(4)题已知P是椭圆上的动点,P到坐标原点的距离的最值之比为,P到焦点的距离的最值之差的绝对值为2.(1)求椭圆C的方程;(2)若D为椭圆C的弦AB的中点,,证明:的面积为定值.第(5)题设函数,.(1)证明:当时,;(2)判断函数在上的零点个数.。

河南省郑州市(新版)2024高考数学统编版模拟(提分卷)完整试卷

河南省郑州市(新版)2024高考数学统编版模拟(提分卷)完整试卷

河南省郑州市(新版)2024高考数学统编版模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题一元二次不等式的解为,那么的解集为()A.B.C.D.第(2)题已知函数,则“有两个极值”的一个充分不必要条件是()A.B.C.D.第(3)题设,定义符号函数,则方程的解是()A.1B.C.1或D.1或或第(4)题已知函数的定义域为,且,,则()A.B.为奇函数C.D.的周期为3第(5)题已知全集,集合,集合,则集合()A.B.C.D.第(6)题已知实数满足约束条件,则的最大值为()A.B.15C.4D.19第(7)题某活动小组对组内8名成员的身高(单位:)进行测量,制作出茎叶图如图所示.已知该小组成员的平均身高为,则该小组成员身高的中位数为()A.B.C.D.第(8)题已知(为常数)在上有最大值3,则函数在上的最小值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题函数的图象是双曲线,且直线和是它的渐近线.已知函数,则下列说法正确的是()A.,B.对称轴方程是C.实轴长为D.离心率为第(2)题已知函数,则以下结论正确的是().A.函数为增函数B.,,C .若在上恒成立,则自然数n的最小值为2D.若关于的方程有三个不同的实根,则第(3)题已知点在函数上,则下列结论正确的是()A.函数的最小正周期为B.C.函数的一条对称轴为直线D .函数在上单调递增三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.以正方体每条棱的中点为顶点构造一个半正多面体,它由八个正三角形和六个正方形构成,若它的所有棱长都为1,则该半正多面体外接球的体积为___________;若该半正多面体可以在一个正四面体内任意转动,则该正四面体表面积最小值为___________.第(2)题若函数的最大值为2,则常数的一个取值为_______.第(3)题已知则________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题为增强市民的环保意识,某市面向全市增招环保知识义务宣传志愿者,从符合条件的志愿者中随机选取名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第组,第组,第组,第组,第组,得到的频率分布直方图(局部)如图所示.(1)求第组的频率,并在图中补画直方图;(2)从名志愿者中再选出年龄低于岁的志愿者名担任主要宣讲人,求这名主要宣讲人的年龄在不同一组的概率.第(2)题在四棱锥Q-ABCD中,底面ABCD是正方形,若,,.(1)证明:平面⊥平面;(2)求四棱锥的体积与表面积.第(3)题近年来某城市空气污染较为严重,为了让市民及时了解空气质量情况,气象部门每天发布空气质量指数“API”和“PM2.5”两项监测数据,某段时间内每天两项质量指数的统计数据的频率分布直方图如下所示,质量指数的数据在内的记为优,其中“API”数据在内的天数有10天(1)求这段时间PM2.5数据为优的天数;(2)已知在这段时间中,恰有2天的两项数据均为优,在至少一项数据为优的这些天中,随机抽取2天进行分析,求这2天的两项数据为优的频率.第(4)题已知抛物线:的焦点为,点在抛物线上,且满足.(1)求抛物线的方程;(2)过抛物线上的任意一点作抛物线的切线,交抛物线的准线于点.在轴上是否存在一个定点,使以为直径的圆恒过.若存在,求出的坐标,若不存在,则说明理由.第(5)题以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是,(为参数).(1)求直线的直角坐标方程和曲线的普通方程;(2)设直线与曲线交于两点,求.。

2024年郑州高三二模数学答案

2024年郑州高三二模数学答案

郑州市2024高三第二次质量预测数学(参考答案)一、单选题二、多选题题号91011答案ADABDACD三、填空题14-四、解答题15.解:(1)前3局比赛甲都不下场说明前3局甲都获胜,故前3局甲都不下场的概率为1111.2228P =⨯⨯=...........................4分(2)X 的所有可能取值为0,1,2,3............................5分其中,0X =表示第1局乙输,第3局是乙上场,且乙输,则111(0)224P X ==⨯=;...........................6分1X =表示第1局乙输,第3局是乙上场,且乙赢;或第1局乙赢,且第2局乙输,则11111(1)22222P X ==⨯+⨯=;............................8分2X =表示第1局乙赢,且第2局乙赢,第3局乙输,则1111(2)2228P X ==⨯⨯=;...........................9分3X =表示第1局乙赢,且第2局乙赢,第3局乙赢,则1111(3)2228P X ==⨯⨯=;...........................10分所以X 的分布列为题号12345678答案BDCBDCCAX 0123P14121818...........................11分故X 的数学期望为811119()0123.4288E X =⨯+⨯+⨯+⨯=...........................13分16.解:(1)函数定义域为(0,)+∞,222(12)()ax a x af x x +--'=,...........................2分因为1x =是函数()y f x =的极值点,所以2(1)120f a a '=+-=,解得12a =-或1a =,因为0a ,所以 1.a =...........................5分此时()()()221121x x x x f x x x'+--==-令()0fx '>得1x >,令()0f x '<得01x <<,∴)(x f 在)(1,0单调递减,在)(+∞,1单调递增,所以1x =是函数的极小值点.所以 1.a =...........................7分(2)当0a =时,x x f =)(,则函数()f x 的单调增区间为(0,);+∞...........................8分当0a >时,222(12)(21)()()ax a x a ax x a f x x x+--+-'==,...........................9分因为0a >,0x >,则210ax +>,令()0f x '>得x a >;令()0f x '<得0x a <<;∴函数的单调减区间为(0,),a 单调增区间为(,).a +∞...........................13分综上可知:当0a =时,函数()f x 在(0,)+∞上单调递增,无递减区间;当0a >时,函数()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增............................15分17.证明:取BC 中点O ,连接AO ,EO.ABC ∆是等边三角形,O 为BC 中点,∴AO BC ⊥,........................2分又EB EC =,∴EO BC ⊥,........................3分AO EO O ⋂=,∴BC AEO ⊥平面,又AE AEO ⊂平面,∴BC AE ⊥.........................5分||||2MNS MKS NKSM N S S S KS y y ∆∆∆=+=⋅⋅-2242||2514424174m m m m +=⋅⋅+=⋅令1||[2,)t m m=+∈+∞,2221||111149224924174MNS m t m S t m t m t ∆+=⋅=⋅=⋅++++,若6m =,满足要求的数列{}n a 中有四项为1,一项为2,所以4k ≤,不符合题意,所以6m >.若7m =,满足要求的数列{}n a 中有三项为1,两项为2,符合m 的6增数列.所以,当5=n 时,若存在m 的6增数列,m 的最小值为7..........................8分(3)若数列{}n a 中的每一项都相等,则0k =,若0k ≠,所以数列{}n a 中存在大于1的项,若首项11a ≠,将1a 拆分成1a 个1后k 变大,所以此时k 不是最大值,所以11a =.当2,3,...,i n =时,若1i i a a +>,交换1,i i a a +的顺序后k 变为1k +,所以此时k 不是最大值,所以1i i a a +≤.若{}10,1i i a a +-∉,所以12i i a a +≥+,所以将1i a +改为11i a +-,并在数列首位前添加一项1,所以k 的值变大,所以此时k 不是最大值,所以{}10,1i i a a +-∈.若数列{}n a 中存在相邻的两项1,32i i a a +≥=,设此时{}n a 中有x 项为2,将1i a +改为2,并在数列首位前添加12i a +-个1后,k 的值至少变为1k +,所以此时k 不是最大值,所以数列{}n a 的各项只能为1或2,所以数列{}n a 为1,1,...,1,2,2,,2 的形式.设其中有x 项为1,有y 项为2,因为存在100的k 增数列,所以2100x y +=,所以()22100221002(25)1250k xy y y y y y ==-=-+=--+,所以,当且仅当50,25x y ==时,k 取最大值为1250..........................17分。

河南省郑州市(新版)2024高考数学部编版摸底(预测卷)完整试卷

河南省郑州市(新版)2024高考数学部编版摸底(预测卷)完整试卷

河南省郑州市(新版)2024高考数学部编版摸底(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题今年月日,日本不顾国际社会的强烈反对,将福岛第一核电站核污染废水排入大海,对海洋生态造成不可估量的破坏.据有关研究,福岛核污水中的放射性元素有种半衰期在年以上;有种半衰期在万年以上.已知某种放射性元素在有机体体液内浓度与时间(年)近似满足关系式为大于的常数且.若时,;若时,.则据此估计,这种有机体体液内该放射性元素浓度为时,大约需要()(参考数据:)A.年B.年C.年D.年第(2)题如图,将一个圆柱等分切割,再将其重新组合成一个与圆柱等底等高的几何体,越大,重新组合成的几何体就越接近一个“长方体”.若新几何体的表面积比原圆柱的表面积增加了10,则圆柱的侧面积为()A.B.C.D.第(3)题设等差数列的前n项和为,若,,则()A.0B.C.D.第(4)题小明同学过生日时,他和好朋友小天一起分享一个质地均匀但形状不规则的蛋糕,他们商量决定用刀把蛋糕平均分成两份(蛋糕厚度不计),你认为下面的判断中正确的是()A.无论从哪个位置(某个点)切一刀都可以平均分成两份B.只能从某个位置(某个点)切一刀才可以平均分成两份C.无论从哪个位置(某个点)切一刀都不可以平均分成两份D.至少要切两刀才可以平均分成两份第(5)题设复数满足(为虚数单位),则()A.B.C.1D.-1第(6)题设复数的共轭复数为,满足(为虚数单位),则()A.B.C.D.第(7)题定义运算如果,,满足等式,函数在单调递增,则取最大值时,函数的最小正周期为()A.B.C.D.第(8)题已知全集,集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设z为复数(i为虚数单位),下列命题正确的有()A.若,则B.对任意复数,,有C.对任意复数,,有D.在复平面内,若,则集合M所构成区域的面积为第(2)题已知函数,设函数,则下列说法正确的是()A.若有4个零点,则B.存在实数t,使得有5个零点C.当有6个零点时.记零点分别为,且,则D.对任意恒有2个零点第(3)题已知函数,则()A.是的极小值点B.有两个极值点C.的极小值为D.在上的最大值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列满足,,则______,数列的前50项和为______.第(2)题斜线与平面成15°角,斜足为,为在内的射影,为的中点,是内过点的动直线,若上存在点,使,则则的最大值是_______,此时二面角平面角的正弦值是_______第(3)题过抛物线焦点的直线交抛物线于两点,点,沿轴将坐标系翻折成直二面角,当三棱锥体积最大时,____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)讨论的单调性.(2)试问是否存在,使得对恒成立?若存在,求的取值范围;若不存在,请说明理由.第(2)题公比为q的等比数列满足.(1)求的通项公式;(2)若,记的前n项和为,求.第(3)题已知函数.(1)若在上单调递增,求a的取值范围;(2)当时,设,求证:.第(4)题点列,就是将点的坐标按照一定关系进行排列.过曲线上的点作曲线的切线与曲线交于,过点作曲线的切线与曲线交于点,依此类推,可得到点列:,,,…,,…,已知.(1)求数列、的通项公式;(2)记点到直线(即直线)的距离为,(I)求证:;(II)求证:,若值与(I)相同,则求此时的最小值.第(5)题在数列中,,.(1)求的通项公式;(2)设的前项和为,证明:.。

河南省郑州市(新版)2024高考数学部编版摸底(押题卷)完整试卷

河南省郑州市(新版)2024高考数学部编版摸底(押题卷)完整试卷

河南省郑州市(新版)2024高考数学部编版摸底(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合,,则()A.B.C.D.第(2)题球缺指的是一个球被平面截下的一部分,垂直于截面的直径被截后剩下的线段为球缺的高,设球的半径为,球缺的高为,则球缺的体积.圆锥的高为2,底面半径为1,则以圆锥的高为直径的球在圆锥外的体积为()A.B.C.D.第(3)题不等式成立的一个充分不必要条件是( )A.或B.或C.D.第(4)题设集合,,则()A.B.C.D.第(5)题已知,则下列不等式不一定成立的是()A.B.C.D.第(6)题已知集合,,则等于()A.B.C.D.第(7)题若复数,则()A.6B.5C.4D.3第(8)题若复数满足,其中为虚数单位,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,对于任意的,,,关于的方程的解集可能的是()A.B.C.D.第(2)题已知不等式的解集为,不等式的解集为,不等式的解集是,则()A.B.C.D.第(3)题在的展开式中()A.所有奇数项的二项式系数的和为128B.二项式系数最大的项为第5项C.有理项共有两项D.所有项的系数的和为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,内角A,B,C所对的边分别为a,b,c,且满足.若的内切圆面积为,则的面积最小值为__________,此时周长为__________.第(2)题二项式的展开式中所有二项式系数之和为64,则二项式的展开式中常数项为______.第(3)题甲、乙、丙3人在公交总站上了同一辆公交车,已知3人都将在第4站至第8站的某一公交站点下车,且在每一个公交站点最多只有两人同时下车,从同一公交站点下车的两人不区分下车的顺序,则甲、乙、丙3人下车的不同方法总数是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在平面直角坐标系中,已知直线的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线的普通方程和曲线C的直角坐标方程;(2)若点P的极坐标为,直线与曲线C相交于A,B两点,求的值.第(2)题已知椭圆的离心率为,直线交椭圆于A,两点,点为坐标原点,且的面积为.(1)求椭圆的方程.(2)点是椭圆上的一个动点,过点分别作直线,与曲线相切于点,.若直线在轴、轴上的截距分别是,,证明:.第(3)题某高中学校开展生涯规划教育,对今年的1200名考生(其中女生540人)进行调查,统计知:有意向报考师范专业的学生有200人(其中女生120人).(1)完成下面的列联表,并依据小概率值的独立性检验分析判断报考师范专业意向是否与性别有关?报考意向报考意向人数合计师范专业非师范专业男生女生合计(2)对有报考师范专业意向的学生按男女分层抽样得一个容量为10的样本,从样本中任意抽取5人,记抽取到的男生人数为X,求X的分布列与期望值.附:0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828(其中).第(4)题已知函数,,点,设曲线在点A,B处的切线的斜率分别为,,直线的斜率为k.(1)若存在极小值,且极小值为0,求实数a的值;(2)若,证明:.第(5)题已知拋物线和,其中.与在第一象限内的交点为.与在点处的切线分别为和,定义和的夹角为曲线的夹角.(1)若的夹角为,,求的值;(2)若直线既是也是的切线,切点分别为,当为直角三角形时,求出相应的值.。

河南省郑州市(新版)2024高考数学统编版模拟(培优卷)完整试卷

河南省郑州市(新版)2024高考数学统编版模拟(培优卷)完整试卷

河南省郑州市(新版)2024高考数学统编版模拟(培优卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知命题,;命题,,则()A.和都是真命题B.和都是真命题C.和都是真命题D.和都是真命题第(2)题过点,且倾斜角为的直线与圆相切于点,且,则的面积是()A.B.C.1D.2第(3)题下列说法中正确的是()A.一组数据3,4,2,8,1,5,8,6,9,9,的第60百分位数为6B.将一组数据中的每一个数据加上同一个正数后,方差变大C.若甲、乙两组数据的相关系数分别为和,则甲组数据的线性相关程度更强D.在一个列联表中,由计算得的值,则的值越接近1,判断两个变量有关的把握越大第(4)题根据有关资料,围棋状态空间复杂度的上限约为,而可观测宇宙中某类物质的原子总数约为.则下列各数中与最接近的是()(参考数据:)A.B.C.D.第(5)题已知,向量与向量垂直,,,2成等比数列,则与的等差中项为()A.B.C.D.1第(6)题在菱形中,,则向量与的夹角为()A.B.C.D.第(7)题函数的零点所在的一个区间是()A.B.C.D.第(8)题已知集合,,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题Sigmoid 函数是一个在生物学中常见的型函数,也称为型生长曲线,常被用作神经网络的激活函数.记为Sigmoid函数的导函数,则下列结论正确的是()A.B.Sigmoid函数的图象是中心对称图形C.函数的图象是轴对称图形D.Sigmoid函数是单调递增函数,函数是单调递减函数第(2)题已知数列满足,则()A.是等差数列B.的前项和为C.是单调递增数列D.数列的最小项为4第(3)题已知,,则下列说法正确的是()A.最小值为B.若,则的最小值为C .若,则的最小值为D .若,则的最小值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,则______.第(2)题已知,则______________.第(3)题若,共线,则实数的值为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.参考公式:0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828第(2)题如图,有一码头和三个岛屿,,,.(1)求两个岛屿间的距离;(2)某游船拟载游客从码头前往这三个岛屿游玩,然后返回码头.问该游船应按何路线航行,才能使得总航程最短?求出最短航程.第(3)题在中,.(1)求;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使存在且唯一确定,求的面积.条件①:;条件②:;条件③:.第(4)题若数列及满足,且.(1)证明:;(2)求数列和的通项公式第(5)题已知数列是公差为的等差数列,如果数列满足,则称数列是“可等距划分数列”.(1)判断数列是否是“可等距划分数列”,并说明理由;(2)已知,,设,求证:对任意的,,数列都是“可等距划分数列”;(3)若数列是“可等距划分数列”,求的所有可能值.。

河南省郑州市(新版)2024高考数学统编版摸底(预测卷)完整试卷

河南省郑州市(新版)2024高考数学统编版摸底(预测卷)完整试卷

河南省郑州市(新版)2024高考数学统编版摸底(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合和,则()A.B.C.D.第(2)题下列图象中,能表示函数图象的是()A.①②B.②③C.②④D.①③第(3)题已知等差数列的前项和为,等比数列的公比与的公差均为2,且满足,,则使得成立的的最大值为()A.6B.7C.8D.9第(4)题是的共轭复数. 若,(为虚数单位),则A.B.C.D.第(5)题已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于( )A.{2}B.{5}C.{3,4}D.{2,3,4,5}第(6)题关于函数(,,),有下列四个说法:①的最大值为3②的图象可由的图象平移得到③的图象上相邻两个对称中心间的距离为④的图象关于直线对称若有且仅有一个说法是错误的,则()A.B.C.D.第(7)题复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(8)题已知函数是定义在上的奇函数,且,当时,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了名学生的成绩,整理得到如图所示的频率分布直方图.为进一步分析高分学生的成绩分布情况,计算得到这名学生中,成绩位于内的学生成绩方差为,成绩位于内的同学成绩方差为.则()参考公式:样本划分为层,各层的容量、平均数和方差分别为:、、;、、.记样本平均数为,样本方差为,.A.B.估计该年级学生成绩的中位数约为C.估计该年级成绩在分及以上的学生成绩的平均数为D.估计该年级成绩在分及以上的学生成绩的方差为第(2)题已知椭圆与椭圆,则()A.与的长轴长相等B.的焦距是的焦距的2倍C.与的离心率相等D.与有公共点第(3)题在新加坡举行的2020世界大学生辩论赛中,中国选手以总分230.51分获得冠军.辩论赛有7位评委进行评分,首先7位评委各给出某队选手一个原始分数,评定该队选手的成绩时从7个原始分数中去掉一个最高分、去掉一个最低分,得到5个有效评分.若某队选手得到的7个原始分成等差数列,且公差不为零,则5个有效评分与7个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知抛物线的焦点为F,过F作斜率为的直线与C交于两点,若线段中点的纵坐标为,则F到C的准线的距离为_______.第(2)题在△ABC中,,,,,则___________,若动点F在线段AC上,则的最小值为___________.第(3)题在平面直角坐标系中,定义为,两点之间的“折线距离”.已知点,动点P满足,点M是曲线上任意一点,则点P的轨迹所围成图形的面积为___________,的最小值为___________四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知数列的各项均为互不相等的正数,且,记为数列的前项和,从下面①②③中选取两个作为条件,证明另一个成立.①数列是等比数列;②数列是等比数列;③注:若选择不同的组合分别解答,则按第一个解答计分.第(2)题已知椭圆方程,直线与轴相交于点,过右焦点的直线与椭圆交于,两点.(1)若过点的直线与垂直,且与直线交于点,线段中点为,求证:.(2)设点的坐标为,直线与直线交于点,试问是否垂直,若是,写出证明过程,若不是,请说明理由.第(3)题在复平面内复数,所对应的点为,,为坐标原点,是虚数单位.(1),,计算与;(2)设,,求证:,并指出向量,满足什么条件时该不等式取等号.第(4)题已知数列为公差大于0的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,数列的前n项和为,若,求m的值.第(5)题在平面直角坐标系中,曲线的参数方程为(γ为参数),曲线的参数方程为(s为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知点A的极坐标为,直线l:()与交于点B,其中.(1)求曲线的极坐标方程以及曲线的普通方程;(2)过点A的直线m与交于M,N两点,若,且,求α的值.。

河南省郑州市外国语学校2025届高三冲刺模拟数学试卷含解析

河南省郑州市外国语学校2025届高三冲刺模拟数学试卷含解析

河南省郑州市外国语学校2025届高三冲刺模拟数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B.[-C.(-D.⎡⎣2.函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .1,4⎛⎫+∞⎪⎝⎭ B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦3.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x ⎛ ⎝的展开式中2x 项的系数为( )A .60B .80C .90D .1204.已知集合A ={y |y =},B ={x |y =lg (x ﹣2x 2)},则∁R (A ∩B )=( )A .[0,12) B .(﹣∞,0)∪[12,+∞) C .(0,12)D .(﹣∞,0]∪[12,+∞) 5.已知函数()()()1sin,13222,3100x x f x f x x π⎧-≤≤⎪=⎨⎪-<≤⎩,若函数()f x 的极大值点从小到大依次记为12,?··n a a a ,并记相应的极大值为12,,?··n b b b ,则()1niii a b =+∑的值为( )A .5022449+B .5022549+C .4922449+D .4922549+6.要得到函数2sin 2y x x =-的图像,只需把函数sin 22y x x =的图像( )A .向左平移2π个单位 B .向左平移712π个单位 C .向右平移12π个单位D .向右平移3π个单位7.已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,若点(2,1)P -在角α的终边上,则sin 22πα⎛⎫-= ⎪⎝⎭( ) A .45-B .45C .35D .358.已知01021:1,log ;:,2x p x x q x R e x ∃>>∀∈>,则下列说法中正确的是( ) A .p q ∨是假命题 B .p q ∧是真命题 C .()p q ∨⌝是真命题 D .()p q ∧⌝是假命题9.已知数列满足:.若正整数使得成立,则( ) A .16B .17C .18D .1910.若关于x 的不等式1127k xx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( )A .9B .8C .7D .611.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:mm )服从正态分布()280,5N ,则直径在(]75,90内的概率为( )附:若()2~,X N μσ,则()0.6826P Xμσμσ-<+=,()220.9544P X μσμσ-<+=.A .0.6826B .0.8413C .0.8185D .0.954412.设()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且21()()(1)2x f x g x x ++=+-,则(1)(1)f g -=( ) A .1-B .0C .1D .3二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学综合测试题(四)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数3Z =,则复数Z 对应的点在 ( )A .第一象限或第三象限B .第二象限或第四象限C .x 轴正半轴上D .y 轴负半轴上(2)已知椭圆的一个焦点为F(1,0),离心率21=e ,则椭圆的标准方程为 ( ) A.122=+y x 2 B.1222=+y x C.14=+3y x 22 D.13=+4y x 22(3) ,a b 为非零向量,“函数2()()f x ax b =+ 为偶函数”是“a b ⊥”的( ) (A ) 充分但不必要条件 (B ) 必要但不充分条件 (C ) 充要条件 (D ) 既不充分也不必要条件(4)如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为( )(A )52 (B )107 (C )54 (D )109(5)已知实数x 、y 满足⎪⎩⎪⎨⎧≤≤--≥-+301,094y y xy x ,则x -3y 的最大值是 ( )A .-1B .0C .1D .2(6)如果执行右面的程序框图,那么输出的t =( )A .96B .120C .144D .300(7)已知二项式2(n x (n N +∈)展开式中,前三项的二项式系数和是56,则展开式中的常数项为( )A .45256B .47256 C .49256 D .51256 (8) 已知各项都是正数的等比数列{}n a 满足:5672aa a +=若存在两项n m a a ,,使得,41a a a n m =⋅则nm 41+的最小值为( ) A.41 B. 23 C. 32(9)函数()()()⎪⎩⎪⎨⎧=≠-=2222f x a x x x 若函数()2-=x f y 有3三个零点,则实数a 的值为( )A.2- B.2 C. 4- D.不存在 (10)已知c b a ,,为ABC ∆的三个内角C B A ,,的对边,向量()()A A n m sin ,cos ,1,3=-=,若n m⊥,且C c A b B a sin cos cos =+,则=B ( )6.πA 4.πB 3.πC 2.πD(11)函数的定义域为D ,若满足:①()x f 在D 内是单调函数;②存在],[b a 使得()x f 在],[b a 上的值域为]2,2[b a ,那么就称函数()x f y =为“成功函数”,若函数()()()1,0log ≠>+=c c t c x f x c 是“成功函数”,则t 的取值范围为( )A.()∞+,0 B.⎪⎭⎫ ⎝⎛∞-41, C.⎪⎭⎫ ⎝⎛+∞,41 D.⎪⎭⎫⎝⎛41,0 (12) 如图,平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为 ( )A.π23B. π3C. π32 D. π2二、填空题:本大题共4小题,每小题5分。

(13)等差数列{}n a 的前n 项和n s ,若8a a a 1073=-+,4a a 411=-,则13s 等于(14) 如图,在一个边长为1的正方形AOBC 内,曲线2x y =和曲线x y =围成一个叶形图形(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点都是等可能的),则所投的点落在叶形图内部的概率是 .(15) 下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是D C B A 'D C B A 第12题y 1CBA(16)已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =三、解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)已知函数2sin 2)sin(3)(2xx x f ωω-=(0>ω)的最小正周期为π3,(Ⅰ)当 ⎥⎦⎤⎢⎣⎡∈43,2ππx 时,求函数)(x f 的最小值; (Ⅱ)在ABC ∆,若1)(=C f ,且)cos(cos sin 22C A B B -+=,求A sin 的值。

(18)(本小题满分12分)第26届世界大学生夏季运动会于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。

将这30名志愿者的身高编成如右所示的茎叶图(单位:cm ): 若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。

(1)如果用分层抽样的方法从“高个子”和“非高个子”中选出5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望。

(19)(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60BAD ︒∠=,Q 为AD 的中点。

2PA PD AD ===(1)点M 在线段PC 上,PM tPC =,试确定t 的值, 使//PA 平面MQB ;(2)在(1)的条件下,若平面PAD ⊥平面ABCD ,求①正方体 ②圆锥 ③三棱台 ④正四棱锥第15题 第18题yxO DA P BMQD CB AP二面角M BQ C --的大小。

(20) (本小题满分12分)如图,在平面直角坐标系中,O 为坐标原点,点B (0,1),且点()0,a A (a ≠0)是x 轴上动点,过点A 作线段AB 的垂线交y 轴于点D ,在直线AD 上取点P ,使AP =DA. (Ⅰ)求动点P 的轨迹C 的方程(Ⅱ)点Q 是直线1y =-上的一个动点,过点Q 作轨迹C 的两条切线切点分别为M ,N 求证:QM ⊥QN (21)(本小题满分12分) 已知函数a ax x x x f +-+-=ln )1(21)(2. (I )若23=a ,求函数)(x f 的极值; (II )若对任意的)3,1(∈x ,都有0)(>x f 成立,求a 的取值范围.请考生22、23、24题中任选一题做答,如果多做,则按所做的第一题记分做答时请写清题号。

(22)(本小题满分10分)选修4-1:几何证明选讲 如图,在△ABC 中,为钝角,点E 、H 是边AB 上的点,点K 和M 分别是边AC 和BC 上的点,且AH=AC,EB=BC,AE=AK,BH=BM. (I )求证:E 、H 、M 、K 四点共圆;(II )若KE=EH,CE=3求线段 KM 的长.(23) (本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+==t y t x 232221(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为)4cos(2πθρ-=(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于B A ,两点,求||AB . (24) (本小题满分10分)选修4-5:不等式选讲 若关于x 的方程 243x x a a -++-=0有实根 (1)求实数a 的取值集合AH EKM CBA 第22题(2)若存在a A ∈,使得不等式22120t a t -+<成立,求实数t 的取值范围。

理科数学(1)14.3115.②④ 160y ±= 三、解答题17.解:2)cos(12)sin(3)(x x x f ϖϖ-⋅-=1)cos()sin(3-+=x x ϖϖ 1)6sin(2-+=πϖx依题意函数)(x f 的最小正周期为π3,即πϖπ32=,解得32=ϖ, 所以1)632sin(2)(-+=πx x f(Ⅰ)由432ππ≤≤x 得326322πππ≤+≤x ,所以,当23)632sin(=+πx 时,131232)(-=-⨯=最小值x f ……6分 (Ⅱ)由1)632sin(2)(-+=πC C f 及1)(=C f ,得1)632sin(=+πC 而656326πππ≤+≤C , 所以2632ππ=+C ,解得2π=C 在ABC Rt ∆中,2π=+B A ,)cos(cos sin 22C A B B -+=0sin sin cos 22=--A A A ,01sin sin 2=-+∴A A ,解得251sin ±-=A 1sin 0<<A ,215sin -=∴A ………………12分18. 解解:(1)根据茎叶图,有“高个子”12人,”非高个子”18人,………1分用分层抽样的方法,每人被抽中的概率是61305=………2分 所以选中的”高个子”有26112=⨯人,“非高个子”有36118=⨯人,………3分 用事件A 表示有“至少有一名‘高个子’被选中”,则它的对立事件A 表示“没有一名‘高个子’被选中”, 则()107103112523=-=-=C C A P ………5分 因此至少有一人是“高个子”的概率是107………6分 (2)依题意ξ的取值为:0,1,2,3………7分(),5514031238===ξC C P (),552813122814===ξC C C P (),551223121824===ξC C C P ()551331234===ξC C P ………9分 因此,ξ的分布列如下:ξ123p5514 5528 5512 551 15513551225528155140=⨯+⨯+⨯+⨯=ξ∴E . …………12分19.解: (1)当13t =时,//PA 平面MQB下面证明:若//PA 平面MQB ,连AC 交BQ 于N 由//AQ BC 可得,ANQ BNC ∆∆∽, 12AQ AN BC NC ∴==.........2分//PA 平面MQB ,PA ⊂平面PAC , 平面PAC 平面MQB MN =,//PA MN ∴........................4分 13PM AN PC AC == 即:13PM PC = 13t ∴=...6分(2)由PA=PD=AD=2, Q 为AD 的中点,则PQ ⊥AD 。

.7分又平面PAD ⊥平面ABCD ,所以PQ ⊥平面ABCD ,连BD ,四边形ABCD 为菱形, ∵AD=AB , ∠BAD=60°△ABD 为正三角形, Q 为AD 中点, ∴AD ⊥BQ ............8分 以Q 为坐标原点,分别以QA 、QB 、QP 所在的直线为,,x y z 轴,建立如图所示的坐标系,则各点坐标为A (1,0,0),B (3,0),Q (0,0,0),P (0,03 设平面MQB 的法向量为()z y x ,,=,可得00,//,00n QB n QB PA MN n MN n PA ⎧⎧⋅=⋅=⎪⎪∴⎨⎨⋅=⋅=⎪⎪⎩⎩,⎪⎩⎪⎨⎧=-=0303z x y 取z=1,解得(3,0,1)n =.........10分 取平面ABCD 的法向量()3,0,0=QP 设所求二面角为θ,则21cos ==θ 故二面角M BQ C --的大小为60°........12分 20.(1)设动点(,)P x y ,1AB k a=-,AP AB ⊥,AP k a ∴=,∴直线AP 的方程为()y a x a =-.…………… 2分由AP DA =,2x a ∴=,∴点P 的轨迹C 的方程是24(0)x y y =≠.… 4分(2)设221212(,1),(,),(,)44x x Q t M x N x -,24x y =,1'2y x ∴=. 21212111111114,,,240222MQ NQ x k x k x x x tx x t +∴==∴=--=-.……… 7分 同理222240x tx --=,12,x x ∴是方程2240x tx --=的两个根,12122,4x x t x x +==-.…………………… 9分222222212121212121211(,1)(,1)()()144164x x QM QN x t x t x x t x x t x x x x ∴⋅=-+⋅-+=-++++++2221421(48)104t t t =--+++++=QM QN ∴⊥.…………………… 12分21.解:(I )()xx x x x x f 22522512+-=-+=', …………(2分)()0='x f ,得11=x ,或22=x ,列表:函数)(x f 在2=x 处取得极大值2ln 8)2(-=f , …………(4分) 函数)(x f 在2=x 处取得极小值12ln )2(-=f ; …………(6分)(II )方法1:())1(1a x x x f +-+=',()3,1∈x 时,)310,2(1∈+x x ,(i )当21≤+a ,即1≤a 时,()3,1∈x 时,()0>'x f ,函数)(x f 在()3,1是增函数()3,1∈∀x ,()()01=>f x f 恒成立; …………(8分)(ii )当3101≥+a ,即37≥a 时,()3,1∈x 时,()0<'x f ,函数)(x f 在()3,1是减函数()3,1∈∀x ,()()01=<f x f 恒成立,不合题意 …………(10分)(iii )当31012<+<a ,即371<<a 时,()3,1∈x 时,()x f '先取负,再取0,最后取正,函数)(x f 在()3,1先递减,再递增,而()01=f ,∴()3,1∈∀x ,()()01=>f x f 不能恒成立;综上,a 的取值范围是1≤a . …………(12分)方法2:∵2121=⋅≥+x x x x ,∴()a a xx x f -≥--+='111(i )当1≤a 时,()01≥-≥'a x f ,而()a xx x f --+='11不恒为0,∴函数)(x f 是单调递增函数,()3,1∈∀x ,()()01=>f x f 恒成立;…………(8分)(ii )当1>a 时,令()xx a x x f 1)1(2++-=',设01)1(2=++-x a x 两根是)(,2121x x x x <, ∵2121>+=+a x x ,121=x x ,∴2110x x <<< 当∈x ),(21x x 时,()0<'x f ,()x f 是减函数,∴)()1()(21x f f x f <<,而()01=f ,∴)(0)(21x f x f << …………(10分) 若32≤x ,∵()3,1∈∀x ,()0>x f ,∴0)1()(2=>f x f ,不可能,若32>x ,函数)(x f 在()3,1是减函数,()0)1(3=<f f ,也不可能,综上,a 的取值范围是1≤a . …………(12分) 22.证明:⑴连接CH ,,AC AH AK AE ==,∴四边形CHEK 为等腰梯形,注意到等腰梯形的对角互补,故,,,C H E K 四点共圆,----------- 3分 同理,,,C E H M 四点共圆,即,,,E H M K 均在点,,C E H 所确定的圆上,------------- 5分⑵连结EM ,由⑴得,,,,E H M C K 五点共圆,----------- 7分CEHM 为等腰梯形,EM HC ∴=, 故MKE CEH ∠=∠, 由KE EH =可得KME ECH ∠=∠,故MKE CEH ∆≅∆, 即3KM EC ==为所求. ----------10分 23.解:(1)60(2)l 的直角坐标方程为223+=x y , )4cos(2πθρ-=的直角坐标方程为1)22()22(22=-+-y x , 所以圆心)22,22(到直线l 的距离46=d ,210||=∴AB 24.解: (1)0)3(416≥-+-=∆a a 即 2721≤≤-a 所以 ⎥⎦⎤⎢⎣⎡-=27,21A ---------5分 (2)令212)(t t a a f ++-= 即 0)(min <a f 即可430127)27(2<<∴<+-=t t t f所以 4334<<-<<-t t 或----10分HEKMCBA。

相关文档
最新文档