复合材料知识交流

合集下载

复合材料手册

复合材料手册

复合材料手册复合材料是由两种或两种以上不同性质的材料组合而成的一种新型材料,具有轻质、高强度、耐腐蚀等特点,在航空航天、汽车制造、建筑等领域有着广泛的应用。

本手册旨在介绍复合材料的基本知识、制造工艺、应用领域以及未来发展趋势,希望能够帮助读者更好地了解和应用复合材料。

一、复合材料的基本知识。

复合材料由增强材料和基体材料组成,增强材料通常是纤维或颗粒,基体材料则是粘合剂或树脂。

常见的增强材料包括玻璃纤维、碳纤维、芳纶纤维等,而基体材料则有环氧树脂、聚酰亚胺树脂等。

复合材料的制造工艺包括手工层叠、自动纺织、注塑成型等,不同的制造工艺会影响复合材料的性能和成本。

二、复合材料的制造工艺。

复合材料的制造工艺包括预浸料成型、热压成型、注塑成型等。

预浸料成型是将增强材料浸渍在树脂中,然后通过模具成型,这种工艺适用于复杂形状的零件制造。

热压成型是将预先浸渍好的增强材料放入模具中,在高温高压下进行成型,适用于大批量生产。

注塑成型则是将树脂和增强材料混合后注入模具中,适用于复杂形状的零件制造。

三、复合材料的应用领域。

复合材料在航空航天、汽车制造、建筑等领域有着广泛的应用。

在航空航天领域,复合材料可以减轻飞机的重量,提高燃油效率,延长使用寿命。

在汽车制造领域,复合材料可以提高汽车的安全性能,减少燃油消耗,降低排放。

在建筑领域,复合材料可以制造出轻质、高强度的建筑材料,提高建筑物的抗风抗震能力。

四、复合材料的未来发展趋势。

随着科技的不断进步,复合材料的应用领域将会不断扩大。

未来,复合材料有望在医疗器械、体育用品、能源领域等方面得到更广泛的应用。

同时,随着制造工艺的不断改进,复合材料的成本将会逐渐降低,使得其在更多领域得到应用。

综上所述,复合材料作为一种新型材料,具有广阔的应用前景。

通过本手册的介绍,相信读者对复合材料有了更深入的了解,希望能够在实际应用中发挥其优势,推动相关领域的发展。

同时,也希望本手册能够成为复合材料领域的一本实用参考书,为相关从业人员提供帮助。

有关复合材料拍门的一些知识

有关复合材料拍门的一些知识

有关复合材料拍门的一些知识
复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。

各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。

复合材料的基体材料分为金属和非金属两大类。

金属基体常用的有铝、镁、铜、钛及其合金。

非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。

增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。

复合材料拍门是采用复合材料经科学加工而成. 具有重量轻,强度高等优点,是传统铸铁拍门,不锈钢拍门,型钢拍门的革命性替代品.
复合材料拍门可根据出水口大小形状设计生产;可分别为空心浮板式拍门和平板式拍门。

适用于管道、污水处理,江河岸边排水管出口处,依靠自重以及拍门内外压力差,具有自动开启、闭合的功能,止水、防回流性能好,复合材料拍门耐腐蚀强,便于安装管理。

根据出水口的形状可分为圆形拍门和方形拍门;根据连接形式可分为法兰连接、混凝土浇灌、手糊对接、套接;根据结构形式可分为空心浮板式、平板式、泵用。

口径规格:圆形DN200-2600mm,方形300-3000mm
工作介质:带酸碱性的工业、生活污水、海水等
工作温度:60度以下,根据使用要求,最高可设计成耐温100度的拍门
工作压力:常压至0.25MPa
密封圈形式:唇形密封,空心圆管密封
拍门盖开角:>60度
巴氏硬度:30-40
拍门比重:1.8-1.9
使用寿命:大于10年。

本文来源于:拍门/。

复合材料基础知识

复合材料基础知识

复合材料在中国


起始于1958年 ,首先用于军工制品,而后逐渐 扩展到民用。 1958年以手糊工艺研制了玻璃钢艇,以层压和卷 制工艺研制玻璃钢板、管和火箭弹 1961年研制成用于远程火箭的玻璃纤维-酚醛树 脂烧蚀防热弹头 1962年引进不饱和聚酯树脂、喷射成型和蜂窝夹 层结构成型技术,并制造了玻璃钢的直升机螺旋 桨叶和风洞叶片,同年开始纤维缠绕工艺研究并 生产出一批氧气瓶等压力容器。 1970年用玻璃钢蜂窝夹层结构制造了一座直径 44m的雷达罩
物理性质



相对密度在1.11~1.20左右 ,固化时体积收缩 率较大 耐热性。绝大多数不饱和聚酯树脂的热变形温度 都在50~60℃,一些耐热性好的树脂则可达 120℃ 力学性能。不饱和聚酯树脂具有较高的拉伸、弯 曲、压缩等强度 耐化学腐蚀性能。不饱和聚酯树脂耐水、稀酸、 稀碱的性能较好,耐有机溶剂的性能差,同时, 树脂的耐化学腐蚀性能随其化学结构和几何开关 的不同,可以有很大的差异。 ⑷介电性能。不饱和聚酸树脂的介电性能良好。
环氧树脂的性能和特性




1、 形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的 要求,其范围可以从极低的粘度到高熔点固体。 2、 固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围 内固化。 3、 粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具 有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘 附强度。 4、 收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环 氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯 树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。 5、 力学性能。固化后的环氧树脂体系具有优良的力学性能。 6、 电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的 优良绝缘材料。 7、 化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂 性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。 适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。 8、 尺寸稳定性。上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和 耐久性。 9、 耐霉菌。固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。

高一化学复合材料知识点

高一化学复合材料知识点

高一化学复合材料知识点复合材料是一种由两种或两种以上的不同物质组成的材料,其中它们各自保持其特点,并且相互作用之后呈现出更好的综合性能。

在现代工业中,复合材料广泛应用于航空航天、汽车制造、建筑材料等领域。

本文将介绍一些高一化学学习课程中涉及的关于复合材料的基本知识。

一、复合材料的分类复合材料根据其组成和结构的不同可以分为以下几种类型:1. 纤维增强复合材料:以纤维为增强体,树脂等为基体,通过层叠或编织形成的材料。

纤维增强复合材料具有高强度、高模量、轻质等优点,因此在航空航天等领域得到广泛应用。

2. 颗粒增强复合材料:以颗粒为增强体,树脂等为基体,混合后形成的材料。

颗粒增强复合材料具有良好的耐磨性、耐蚀性等特点,常用于建筑材料中。

3. 片层材料:由多个层状片材通过胶合等方式连接而成的材料。

片层材料常用于电子元器件中,可以提供较好的绝缘性能和导热性能。

二、复合材料的制备方法复合材料的制备方法多种多样,常见的有以下几种:1. 手工层压:将纤维和树脂依次叠放在模具中,利用手工操作使其完全贴合,并经过高温高压处理,最终形成复合材料。

2. 注塑成型:将树脂熔融后注入模具中,并加压使其充分填充纤维空隙,待冷却固化后取出模具即可得到复合材料。

3. 熔融法:将纤维和树脂混合后加热熔融,然后通过喷射或挤出成型的方法得到复合材料。

三、复合材料的应用领域复合材料具有轻质、高强度、耐腐蚀等优点,在许多领域中得到了广泛应用。

1. 航空航天领域:航空器的结构件和发动机零部件中经常使用复合材料,可以减轻重量,提高飞行速度和燃油利用率。

2. 汽车制造:复合材料在汽车制造中的应用越来越广泛,例如车身和发动机盖等部位常使用复合材料,可以降低车辆重量,提高燃油经济性。

3. 建筑材料:复合材料可以制成各种形状的板材,用于墙体、屋面等建筑结构中,具有良好的隔热、隔音和耐候性能。

4. 体育用品:高档的运动装备和器械,如高尔夫球杆、网球拍等常使用复合材料制作,以提高其性能和使用寿命。

化学知识点初中复合材料

化学知识点初中复合材料

初中化学知识点:复合材料1.什么是复合材料?复合材料是由两种或更多种不同物质组合而成的材料。

它们的组合使得复合材料具有比单一物质更好的性能和特性。

2.复合材料的组成复合材料通常由两个主要组成部分构成:基体和增强材料。

基体是主要成分,起到固化增强材料的作用。

增强材料则提供了复合材料的特殊性能。

3.基体的种类基体可以是金属、陶瓷、聚合物等。

不同的基体材料具有不同的特性。

金属基体材料通常具有高强度和刚性,适用于需要承受高压和高温的应用。

陶瓷基体材料具有良好的耐磨性和耐腐蚀性,适用于高温和化学环境下的应用。

聚合物基体材料具有轻质和良好的绝缘性能,适用于需要轻质和绝缘的应用。

4.增强材料的种类增强材料可以是纤维、颗粒、颗粒等。

纤维增强材料是最常见的类型,如碳纤维、玻璃纤维等。

纤维增强材料具有高强度和刚性,能够增加复合材料的强度和耐用性。

颗粒增强材料可以改善复合材料的耐磨性和耐腐蚀性能。

5.复合材料的制备方法制备复合材料的方法有很多种,其中最常见的是层压法和浸渍法。

层压法是将基体和增强材料层层叠加,并通过压力和温度使其固化在一起。

浸渍法是将基体浸入增强材料的浆料中,使其吸附增强材料,并通过固化使其固定在基体上。

6.复合材料的应用复合材料具有广泛的应用领域。

在航空航天领域,复合材料被广泛应用于飞机和宇航器的结构件,以提高其强度和轻量化。

在汽车制造领域,复合材料可以用于制造车身和零部件,以提高汽车的燃油效率和碰撞安全性。

此外,复合材料还可以应用于建筑、体育用品、电子设备等领域。

7.复合材料的优点和挑战复合材料相比传统材料具有许多优点,如高强度、轻质、耐腐蚀等。

然而,复合材料的制备过程较为复杂,成本较高,并且在环境和可持续性方面面临挑战。

因此,如何平衡复合材料的性能和成本,以及如何解决其可持续性问题,是复合材料研究的重要课题。

总结:复合材料是由两种或更多种不同物质组合而成的材料。

它们的组合使得复合材料具有比单一物质更好的性能和特性。

高分子和复合材料知识点

高分子和复合材料知识点

1、名词解释:单体、单体是可与同种或他种分子通过共价键连接生成聚合物的小分子。

聚合度、大分子链上的结构单元的数目n结构单元、构成大分子链的基本结构单元称为结构单元或重复单元。

链段、链段是指高分子链上划分出来的可以任意取向的最小单元。

构象、由单键的内旋转而引起的分子在空间上表现的不同形态。

构象是由分子内部热运动而产生的,是一种物理结构。

塑料、塑料是以聚合物为主要成分,在一定条件(温度、压力等)下可塑成一定形状并且在常温下保持其形状不变的材料,习惯上也包括塑料的半成品。

橡胶、橡胶是有机高分子弹性化合物。

在很宽的温度(-50~150℃)范围内具有优异的弹性,所以又称为弹性体。

硫化剂、在一定条件下能使橡胶产生交联的物质,也叫交联剂。

胶粘剂、胶粘剂又称为粘合剂、粘接剂,简称为胶。

是一种能把各种材料紧密地结合在一起的物质。

2、写出下列聚合物的结构式:聚丙烯、(C3H6)n pp聚氯乙烯、:[-CH2 -CHCl- ]n o pvc聚苯乙烯、-FCH—CH2-]-n ps尼龙-66、pa66聚甲醛、pom聚对苯二甲酸乙二醇酯、天然橡胶、丁苯橡胶3、聚合物的结构。

(1 )大分子链的近程结构,(2 )大分子链的远程结构,(3 )聚合物聚集状态结构。

4、试述非晶态聚合物的力学三态。

玻璃态高弹态黏流态5、试述聚合物的性能特点?(1)强度:大分子链的主价力、分子间的力、大分子的柔韧性、聚合度、结晶度、取向情况、添加填料等。

高弹性:处于高弹态的聚合物表现出高弹性能。

粘弹性:聚合物的粘弹性是指聚合物既有粘性又有弹性的性质。

电阻率:聚合物是电阻率非常高的绝缘体。

介电常数:聚合物的介电常数一般1〜10之间。

介电强度:聚合物处于高电压下,每单位厚度能承受到被击穿时的电压称为介电强度。

静电现象:聚合物的高电阻率容易积累大量静电荷。

形成较高的静电压,造成灰尘及其他污物吸附、产生静电放电与电击现象。

(2)耐热性:高聚物的软化,高聚物的热裂解热导率:聚合物的热导率范围较窄,一般在0.22W/(m-K)左右,比金属材料低得多。

金属基复合材料知识讲解

金属基复合材料知识讲解

金属基复合材料1、复合材料的定义和分类是什么?定义:是由两种或多种不同类型、不同性质、不同相材料,运用适当的方法,将其组合成具有整体结构、性能优异的一类新型材料体系。

分类:按用途可分为:功能复合材料和结构复合材料。

结构复合材料占了绝大多数。

按基体材料类型分类可分为:聚合物基复合材料、金属基复合材料、无机非金属基复合材料(包括陶瓷基复合材料、水泥基复合材料、玻璃基复合材料)按增强材料形态可分为:纤维增强复合材料(包括连续纤维和不连续纤维)、颗粒增强复合材料、片材增强复合材料、层叠式复合材料。

3、金属基复合材料增强体的特性及分类有哪些?增强物是金属基复合材料的重要组成部分,具有以下特性:1)能明显提高金属基体某种所需特性:高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀性等,以便赋予金属基体某种所需的特性和综合性能;2)具有良好的化学稳定性:在金属基复合材料制备和使用过程中其组织结构和性能不发生明显的变化和退化;3)有良好的浸润性:与金属有良好的浸润性,或通过表面处理能与金属良好浸润,基体良好复合和分布均匀。

此外,增强物的成本也是应考虑的一个重要因素。

分类:纤维类增强体(如:连续长纤维、短纤维)、颗粒类增强体、晶须类增强体、其它增强体(如:金属丝)。

4、金属基复合材料基体的选择原则有哪些? 1)、金属基复合材料的使用要求;2)、金属基复合材料组成的特点;3)、基体金属与增强物的相容性。

5、金属基复合材料如何设计?复合材料设计问题要求确定增强体的几何特征(连续纤维、颗粒等)、基体材料、增强材料和增强体的微观结构以及增强体的体积分数。

一般来说,复合材料及结构设计大体上可分为如下步骤:1)对环境与负载的要求:机械负载、热应力、潮湿环境 2)选择材料:基体材料、增强材料、几何形状 3)成型方法、工艺、过程优化设计 4)复合材料响应:应力场、温度场等、设计变量优化 5)损伤及破坏分析:强度准则、损伤机理、破坏过程6、金属基复合材料制造中的关键技术问题有哪些?1)加工温度高,在高温下易发生不利的化学反应。

复合材料知识讲解

复合材料知识讲解

复合材料知识讲解复合材料的成型工艺简单。

纤维增强复合材料一般适合于整体成型,因而减少了零部件的数目,从而可减少设计计算工作量并有利于提高计算的准确性。

另外,制作纤维增强复合材料部件的步骤是把纤维和基体粘结在一起,先用模具成型,而后加温固化,在制作过程中基体由流体变为固体,不易在材料中造成微小裂纹,而且固化后残余应力很小。

一、复合材料有特性:1、 复合材料通常都能耐高温。

在高温下,用碳或硼纤维增强的金属其强度和刚度都比原金属的强度和刚度高很多。

普通铝合金在400℃时,弹性模量大幅度下降,强度也下降;而在同一温度下,用碳纤维或硼纤维增强的铝合金的强度和弹性模量基本不变。

复合材料的热导率一般都小,因而它的瞬时耐超高温性能比较好。

2、复合材料的安全性好。

在纤维增强复合材料的基体中有成千上万根独立的纤维。

当用这种材料制成的构件超载,并有少量纤维断裂时,载荷会迅速重新分配并传递到未破坏的纤维上,因此整个构件不至于在短时间内丧失承载能力。

3、 复合材料的力学性能可以设计,即可以通过选择合适的原材料和合理的铺层形式,使复合材料构件或复合材料结构满足使用要求。

例如,在某种铺层形式下,材料在一方向受拉而伸长时,在垂直于受拉的方向上材料也伸长,这与常用材料的性能完全不同。

又如利用复合材料的耦合效应,在平板模上铺层制作层板,加温固化后,板就自动成为所需要的曲板或壳体。

4、复合材料的比强度和比刚度较高。

材料的强度除以密度称为比强度;材料的刚度除以密度称为比刚度。

这两个参量是衡量材料承载能力的重要指标。

比强度和比刚度较高说明材料重量轻,而强度和刚度大。

这是结构设计,特别是航空、航天结构设计对材料的重要要求。

现代飞机、导弹和卫星等机体结构正逐渐扩大使用纤维增强复合材料的比例。

5、复合材料的减振性能良好。

纤维复合材料的纤维和基体界面的阻尼较大,因此具有较好的减振性能。

用同形状和同大小的两种粱分别作振动试验,碳纤维复合材料粱的振动衰减时间比轻金属粱要短得多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合材料复合材料在海洋石油工程中的应用一.复合材料简介1.概述复合材料,是由两种或两种以上不同性质的材料,通过物理或学的方法,在宏观(微观)上组成具有新性能的材料。

各种材料在性能上互相取长补短,产生协同效应,使复复合是一种混合物。

在很多领域都发挥了很大的作用,代替了很多传统的材料。

复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。

按其结构特点又分为:①纤维增强复合材料。

将各种纤维增强体置于基体材料内复合而成。

如纤维增强塑料、纤维增强金属等。

②夹层复合材料。

由性质不同的表面材料和芯材组合而成。

通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。

分为实心夹层和蜂窝夹层两种。

③细粒复合材料。

将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。

④混杂复合材料。

由两种或两种以上增强相材料混杂于一种基体相材料中构成。

与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。

分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。

2.复合材料分类复合材料主要可分为结构复合材料和功能复合材料两大类。

结构复合材料是作为承力结构使用的材料,基本上由能承受载荷的增强体组元与能连接增强体成为整体材料同时又起传递力作用的基体组元构成。

增强体包括各种玻璃、陶瓷、碳素、高聚物、金属以及天然纤维、织物、晶须、片材和颗粒等,基体则有高聚物(树脂)、金属、陶瓷、玻璃、碳和水泥等。

由不同的增强体和不同基体即可组成名目繁多的结构复合材料,并以所用的基体来命名,如高聚物(树脂)基复合材料等。

结构复合材料的特点是可根据材料在使用中受力的要求进行组元选材设计,更重要是还可进行复合结构设计,即增强体排布设计,能合理地满足需要并节约用材。

功能复合材料一般由功能体组元和基体组元组成,基体不仅起到构成整体的作用,而且能产生协同或加强功能的作用。

功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。

如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。

统称为功能复合材料。

功能复合材料主要由功能体和增强体及基体组成。

功能体可由一种或以上功能材料组成。

多元功能体的复合材料可以具有多种功能。

同时,还有可能由于复合效应而产生新的功能。

多功能复合材料是功能复合材料的发展方向。

复合材料也可分为常用和先进两类。

常用复合材料如玻璃钢便是用玻璃纤维等性能较低的增用于船舶、车辆、化工管道和贮罐、建筑结构、体育用品等方面。

先进复合材料指用高性能增强体如碳纤维、芳纶等于高性能耐热高聚物构成的复合材料,后来又把金属基、陶瓷基和碳(石墨)基以及功能复合材料包括在内。

它们的性能虽然优良,但价格相对较高,主要用于国防工业、航空航天、精密机械、深潜器、机器人结构件和高档体育用品等。

[5]二. 复合材料应用于海洋石油工程的由来由于复合材料的各种良好性能以及传统材料的弊端在深海油气开发中,传统材料面临的问题是考虑新材料应用的驱动力。

目前,传统材料主要面临以下5个方面的问题:第一,深水油气开采装备的自重问题。

因为随着水深的增加,装备自身的质量已经很大,如果安装在采油平台上,其自重已经对平台造成了很大的载荷要求。

第二,对装备的耐腐蚀性能要求更高。

由于在深海区域对装备的防腐维护、部件更换等成本比近海区域要高很多,因此,深海区域油气开发对装备的防腐性能提出了更高的要求。

第三,深水开采对材料的强度提出了更高的要求。

随着开采装备下到1 500m以上的深水中作业时,海水对装备造成的压力载荷,是传统材料无法承受的。

第四,疲劳损伤。

海浪的波动使装备的疲劳环境非常恶劣,海浪带来的疲劳损伤甚至比飞机飞行造成的疲劳损伤更大。

因此,深海开采对材料的抗疲劳损伤提出了更加苛刻的要求。

最后,深海区域的油气开采,施工和安装工程的成本比近海或者是陆地区域更加昂贵,如何提高装备安装和施工的便捷性也是一个值得关注的问题。

三.复合材料在海洋石油工程领域中的发展复合材料在陆地油田的应用(如:做抽油杆,水管等),大家都很熟悉,但是,该材料是否可用于海洋石油工程呢?答案是肯定的,而且应用的更广,更深,前景更可观!据资料介绍,复合材料可加工成许多海洋油田制品,如:抽油杆,钻杆,盘管,流送管,开采立管,钻眼立管,应力接头,弯曲接头和筋束等,抽吸杆和钻杆在美国已经商业化,例如:Brunswick Composites公司推出的挠曲复合材料钻杆,可盘绕成半径为10买的盘形;Conoco公司计划1995年推出复合材料盘管,法国IFP公司,Aerospatiale公司已研制成复合材料立管。

大直径流送管是盘管的逻辑发展产物。

复合材料在海洋油田应用潜力最大的是高压管型阻塞件。

分为定长的,如钻眼立管,开采立管,阻塞件,截流管路,浇铸件;连续件,如:盘管,流送管,连续管的直径较小,可盘绕起来,用于海底,甚至高度歪斜的井内。

深水中TLP系统给的开采立管,可减小所需的预应力,该管与平台呈刚性连接,免去了昂贵的张紧装置。

法国IFP公司,Aerospatiale公司于1985-1989年间研制成直径为244.4mm,碳纤,玻纤增强的复合材料立管,进行下述实验:静态,疲劳,多轴载荷和破坏评估实验,接着筛选最佳设计,最佳生产工艺。

复合材料海洋油田制品的成型工艺有:缠绕,拉挤,编制,RTM和混杂工艺等。

在美国,挪威等国家复合材料在海洋石油工程领域的研究和应用取得了显著地成果。

深海油气开采是当今世界石油开发的趋势,已经成为世界各国竞争的热点。

我国海洋油气资源开采潜力十分巨大,但与陆地石油勘探相比,我国的深海油气勘探整体上还处于早期阶段,与世界先进国家相比存在较大的差距。

加快深海油气开发已成为我国当前石油战略发展的重要课题。

随着我国石油和天然气资源在陆地及浅海区域的急剧减少,油气田勘探开发已逐渐由近海向深海发展,开采海域深度向1 500 ~3 000m的深水进军,这就给原来适用于浅海海域的钻井平台及其配套装备带来了不可回避的技术难题。

使用传统钢质材料无法有效地解决这些问题,例如,钢材的密度过大,一个1500m水深的钻井平台,其钢制系缆的质量就达6 500t左右,给钻井平台带来极大的载重负荷,增加了平台的建造成本。

此外,钢材在海水中耐腐蚀性差,造成钻井平台的钢制系缆和管道的平均工作寿命仅为2 ~3年。

因此,对于能够承受恶劣海洋环境的轻质高强材料的需求迫在眉睫。

由于碳纤维增强复合材料(CFRP)具有强度大(钢的7 ~9倍)、模量高、耐腐蚀性强、抗疲劳损伤性能优异、易于修补、抗冲击性强、热膨胀系数和导热性低、质量轻又无浮力等诸多优点,是目前最先进的复合材料之一,可被广泛应用于深海石油平台的结构件上,如脐带管加强杆、锚泊系缆、采油立管、柔性立管等方面。

C F RP制成的系缆可用于开采深度为3 000m以上的深海作业平台,且耐腐蚀性优异,工作寿命可达25年。

可见在深海油气开发领域,尽快研发和产业化应用轻质高强、性能优异的C F R P构件是非常必要的,也是产业急需的。

四.碳纤维复合材料(CFRP)在众多复合材料类型中碳纤维复合材料由于其特有的性能与特点被广泛应用。

碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品广泛采用。

据预测,土木建筑、交通运输、汽车、能源海上石油工程等领域将会大规模采用工业级碳纤维。

1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。

中国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。

碳纤维是一种性能优异的新材料,最大的特点就是轻质高强,密度不到钢的1/4,但拉伸强度是普通钢的7~9倍。

碳纤维一般不单独使用,而是作为增强材料,添加到树脂、金属、陶瓷或者是混凝土当中构成复合材料,其中应用最多的是碳纤维增强树脂。

碳纤维从诞生到现在,已经广泛应用于航空航天、高端工程装备、重大基础建设结构工程、压力容器以及体育休闲用品等领域。

对于一般消费者来说,接触最多的C F R P是其在体育用品上的应用,比如说高尔夫球拍、网球拍等。

碳纤维最早的应用是在航空航天领域,目前大家熟悉的空客350和波音787等机型结构质量的50%已经使用了C F R P。

所以,有时候空客350和波音787也被称为碳纤维飞机。

从力学性能来分,碳纤维一般分为以下几个等级。

如T300级碳纤维,拉伸强度为3 530M Pa,弹性模量为230G P a;T700级碳纤维,拉伸强度是4 900M P a ;T800级碳纤维,拉伸强度达到5 490M P a,弹性模量达到294G P a ;T1000是超高强度碳纤维,拉伸强度更是达到了6 370M P a。

表1是典型的碳纤维系列及其力学性能。

从表1可以看到,碳纤维具备高拉伸强度和高弹性模量,加之较较低的密度,使其比强度和比模量在众多的结构材中独树一帜。

图1和图2分别是碳纤维材料、C F R P与其他材料的比强度及比模量比较。

综上可知,CFRP具有以下特点:首先,它的比强度和比模量非常高,也就是说在同等强度和同等模量的情况下,C F RP具有更轻的质量,这对于深海油气开采来说,是非常值得关注的一个方面。

对比C F R P和深海油气开采中经常使用的合金钢材料,前者的比强度和比模量高出很多倍,如T700C F R P就要比钛合金高出近10倍。

近年来,国际上相关的机构和公司一直在致力于CF RP在深海油气领域的开发应用,已经实现了部分材料的工程化应用。

随着海上油气田开采深度的增加(见图3),对装备所用的材料也提出了新的要求。

例如,当钻井深度在1 500m以下时,可以使用钢材当开采深度达到2 000m时,海水所引起的巨大的张力载荷会导致钢材延伸变形,对一些钢制装备,如立管和系缆,将产生破坏性影响;当开采深度达到4 000m时,部分钢制部件已无法满足性能要求,需要C F R P和钢材并用;当水深到达5 000m,传统的钢制部件已经不能满足使用要求,此时需要大量使用由CFRP制造的装备。

以下简单介绍两个方面。

1.锚泊系统传统的海上油气田生产设备多使用钢材制造,包括将海面平台锚固定到海底的锚泊系缆和连接海底井口到平台的管索系缆。

随着深海油气勘(a)碳纤维加强杆增强的脐带式管缆(b)待施工的脐带管缆图4 集束CFRP 拉挤杆碳纤维杆碳纤维杆束塑料型框管缆外皮图5 CFRP 加强杆增强的脐带管缆结构示意图探开采深度的不断增加,钢制管索系缆的自身质量迫使海上平台漂浮尺寸增大,带来了多种成本消耗。

此外,钢材在海水浸泡下极易腐蚀,工作寿命短,一般仅为2 ~3年,因此需要对管缆进行周期性生产检修和维护。

相关文档
最新文档