运算放大器选型指南
按应用分类的运算放大器选型指南

ADI 公司开发创新能源解决方案已逾十年。
我们的高性能放大器产品组合在促进变电站设备中的电能质量监控方面起着重要作用,而且随着再生能源系统的最新发展,它们也有助于实现突破性的解决方案。
能源应用放大器欲了解有关能源应用的更多信息,请访问:/zh/energy典型太阳能电池系统图典型变电站自动化系统图过程控制和工业自动化应用放大器40多年来,工业过程控制系统设计者与ADI公司密切合作,以定义、开发、实施针对各种应用进行优化的完整信号链解决方案。
我们提供基于业界领先技术和系统性专业技术的精密控制与监测解决方案,使过程控制同时具备可靠性与创新性。
欲了解有关过程控制和工业自动化应用的更多信息,请访问:/zh/processcontrol仪器仪表和测量应用放大器ADI公司提供高性能模拟解决方案,用来检测、测量、控制各种传感器。
我们的技术支持广泛的创新设备鉴别、测量液体、粉末、固体和气体。
领先的放大器产品可帮助客户优化定性和定量仪器的性能。
网络分析仪框图电子秤框图欲了解有关仪器仪表和测量应用的更多信息,请访问:/zh/instrumentation电机和电源控制应用放大器针对电机和电源控制解决方案,ADI公司提供齐全的产品系列以优化系统级和应用导向设计。
ADI公司的放大器产品在电流检测和电压检测应用中具有许多优势。
欲了解有关电机和电源控制应用的更多信息,请访问:/zh/motorcontorl健器械的未来。
脉搏血氧仪功能框图医疗保健应用放大器(续)超声功能框图欲了解有关医疗保健应用的更多信息,请访问:/zh/healthcare通信应用放大器通信系统联通世界。
无论是传输重要信息,报导突发新闻,还是联系家人和朋友,通信系统都不可或缺。
宽带系统设计工程一向信赖ADI公司来创造卓越的设计。
ADI公司丰富多样的运算放大器支持由点到点通信系统、专用移动无线电和无线基础设施设备所组成的网络以低功耗、高容量和经济有效的方式运行。
运放选型参数

运放选型参数摘要:一、运放简介二、运放选型参数1.增益带宽积2.输入偏置电流3.输入偏置电压4.共模抑制比5.输出电流和电压6.电源电压范围7.功耗三、运放选型实例1.确定应用场景2.根据参数进行选型3.实际应用案例四、总结正文:运放,全称为运算放大器,是一种模拟电子器件,广泛应用于各种电子设备和系统中。
作为核心组件,运放的选择至关重要,其中运放选型参数是重要的参考依据。
本文将详细介绍运放选型参数,并以实际案例进行说明。
首先,我们来了解一下运放的增益带宽积。
增益带宽积是运放的一个重要参数,表示运放能够处理信号的最大增益和带宽。
在选择运放时,应根据所需信号的增益和带宽来选取合适的增益带宽积。
输入偏置电流和输入偏置电压是衡量运放输入性能的重要参数。
输入偏置电流是指输入端电流的差值,输入偏置电压是指输入端电压的差值。
这两个参数对运放的输入阻抗和共模抑制比产生影响,需要根据实际应用场景进行选择。
共模抑制比是运放抑制共模信号的能力,它影响了运放在实际应用中的抗干扰性能。
在选择运放时,应根据共模抑制比来选取能够满足抗干扰要求的运放。
输出电流和电压是运放输出性能的重要参数。
输出电流表示运放能够驱动负载的最大电流,输出电压表示运放能够输出的最大电压。
在选择运放时,应根据实际应用中负载的电流和电压需求来选取合适的输出电流和电压。
电源电压范围和功耗是运放的两个重要电气参数。
电源电压范围表示运放能够正常工作的电源电压范围,功耗表示运放在工作过程中的能量消耗。
在选择运放时,应根据实际应用场景的电源电压和功耗要求来选取合适的运放。
下面通过一个实际应用案例来说明如何进行运放选型。
某智能家居系统需要一个用于信号放大的运放,信号增益需求为100倍,信号带宽为10kHz。
根据这些参数,我们可以选择一个增益带宽积大于100kHz的运放。
接下来,我们需要考虑运放的输入性能,输入偏置电流和输入偏置电压应满足系统对输入阻抗和共模抑制比的要求。
运算放大器选型手册

产品型号 单通道 双通道 四通道 AD8513A
A CL A CL 每个放 压摆 VOS TCVOS 最小 最小 最小 1 kHz时 1 kHz时 报价 最 最小值 大器 IB 最大 ISC 温度 Micro 率 最大值 典型值 CMRR PSRR AVO 噪声 SC70 SOT-23 MSOP SOIC LFCSP TSSOP PDIP (1k、OEM、 噪声 小 时带宽 IS 最大值 值 (mA) 范围 CSP 最小 最大 (������V/°C) (dB) (dB) (dB) (nV/√Hz) (pA/√Hz) 美元/片) 输入 输出 值 (MHz) (V/������s) (mV) (mA) 值 值 电源电压 轨到轨 ±18 ±18 ±13 ±13 ±13 ±13 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±22 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±18 ±22 ±22 ±18 ±18 ±18 ±20 ±20 36 ±18 ±18 ±18 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 8 8 25 25 5 3.5 5 4 3.5 5 5 5 5 1.9 1.9 1.4 1.4 20 9 4 4 9 1.27 0.6 12 3.4 3.4 10 10 10 0.6 0.6 10 0.6 8 8 10 8 40 4.25 0.085 1.3 0.9 0.9 0.7 5 6.5 6.5 0.035 20 20 60 60 5 3 20 9 9 20 3 3 3 3 3 3.3 3.3 60 22 20 20 22 0.46 0.2 2.7 1.2 1.2 2.5 2.5 2.5 0.2 0.3 16.8 0.45 20 20 4 2.8 17 4 0.03 0.7 0.2 0.2 0.2 2.4 8 12 0.015 1 0.4 0.25 0.1 0.75 0.75 5.5 3 1 1.7 1 0.25 0.5 2 1 2.5 1.5 0.25/ 0.10 1 2 0.5 0.25 0.5 0.13 0.125 0.075 0.15 0.075 0.1 0.05 0.15 0.075 0.12 0.12 0.04 0.08 0.075 0.1 0.1 0.1 0.5 0.06 0.075 0.2 0.1 0.25 1.8 1 0.15 1.7 1 0.8 0.5 2.5 2.5 10 10 10 2 20 5 10 2 2 3 3 2/1 2 7 5 1 1.1 0.5 0.7 0.2 0.2 0.2 0.2 0.2 0.5 0.3 0.8 0.2 0.2 0.2 0.3 0.3 0.3 0.2 1 0.2 0.3 0.3 0.3 0.7 4 0.3 0.2 86 86 90 90 76 90 80 70 70 80 80 90 90 70 74 74 80 100 80 76 80 80 95 120 110 100 96 114 111 111 120 106 120 125 114 120 100 100 100 86 90 120 3 110 110 110 90 95 110 97 86 86 100 100 80 90 80 110 92 82 80 90 90 70 70 74 80 100/ 106 85 76 80 85 100 115 110 103 100 120 106 106 115 94 120 125 114 120 110 140 140 90 90 120 110 110 120 104 95 106 97 101 101 100 100 103 106 100 86 86 100 109 109 109 114 114 76 76 114 108 103 106 108 116 120 114 120 120 123 123 123 120 106 110 125 120 126 120 116 116 103 120 120 106 106 120 117 110 114 114 8 8 6 6 16 27.5 16 36 36 16 35 35 35 16 16 36 36 5.5 6 18 18 6 25 10 1.8 4.7 4.7 2.8 2.8 2.8 10 9.6 1.07 12 0.9 0.9 2.8 3.2 3.2 3.9 45 7.9 14 14 15 3.2 6.5 2.8 65 2.500 2.500 3.500 3.500 0.850 0.290 1.800 0.250 0.250 1.650 0.700 0.700 0.700 0.900 0.900 0.200 0.200 7.500 2.500 3.400 3.000 2.500 0.250 1.300 2.200 3.000 3.000 2.900 3.400 3.400 1.300 4.000 5.700 0.250 10.500 10.500 3.500 5.700 4.700 2.000 0.175 0.500 0.380 0.380 0.350 2.000 2.750 2.250 0.030 80 pA 70 80 pA 70 10 pA 65 10 pA 65 1 pA 15 3 1 pA 12 3 100 pA 27 100 pA 10 20 pA 10 40 pA 28 250 fA 20 100 fA 20 60 fA 20 25 pA 45 10 pA 45 50 pA 20 50 pA 20 10 pA 350 nA 50 pA 50 pA 350 nA 55 nA 1 nA 90 nA 600 nA 600 nA 2 nA 2 nA 2 nA 1 nA 4 nA 200 nA 200 pA 1500 nA 900 nA 12 nA 80 nA 75 nA 350 nA 20 nA 2 nA 150 pA 200 pA 10 nA 60 nA 60 nA 100 nA 20 nA 3 55 14 25 25 30 41 30 25 40 40 40 40 40 30 30 52 40 80 80 30 30 30 10 3 25 3 25 10 10 30 3 30 3 20 3 40 25 H H H H I H H I I H C C C I I H H I/H I C C I H H H I I H H H H H H H I I H I I H H H I I I I I H H S/D S/D S S D D D D D D S/D/Q S/D S/D S/D S/D/Q S/D/Q D/Q D/Q D/Q S/D/Q Q 0.95/1.49/3.71 2.33/4.76 3.75/7.50 9.86/16.70 1.60/2.63/4.09 1.47/2.35/3.85 0.42/0.90 Q 1.31/2.06 1.66/2.44 0.73/1.31/2.22 13.00 18.15 22.44 S/D 1.82/2.76/4.55 S/D 2.66/4.11 0.75/1.21 1.25/TBD 6.75/10.75 D 1.00 S/D/Q 1.20/1.66/4.62 S/D 2.10/3.36 D 2.40 2.22/3.60 0.76 1.75/2.65/4.25 D 3.42/6.53/9.41 D 1.76/2.10/4.52 1.18 1.66 2.14 S 0.45 S 0.65 2.25/3.24 1.90/TBD S S Q S S D/Q D/Q Q S/D/Q D/Q D/Q D/Q Q D 4.32 5.88 1.06/1.72/3.24 1.19 1.14 1.66/3.01/5.01 2.18/4.53 0.81/1.53/3.60 1.25/3.18/6.16 2.36/4.07 1.20/1.80/3.31 2.80/4.43 4.93 0.75 1.65/2.49
运算放大器参数说明及选型指南

运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。
增益可以是固定的,也可以是可调的。
增益决定了输出信号相对于输入信号的放大程度。
2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。
带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。
3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。
输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。
4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。
输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。
5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。
输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。
6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。
输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。
7.输出电流:输出电流是指运放输出端提供的最大电流。
输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。
8.输出电压:输出电压是指运放输出端能够提供的最大电压。
输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。
二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。
例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。
2.选择性能指标:根据应用需求选择合适的性能指标。
不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。
3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。
产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。
如何选用运算放大器

如何选用运算放大器——用电压型还是用电流型运算放大器按其输入阻抗、输出阻抗的高低分为四种基本类型(见图1)。
应用最广泛的是电压型(“VV”型)运放。
这类运放有高输入阻抗(反相输入端)和低输出阻抗(注意,所有各类运算放大器的同相输入端均有高输入阻抗)。
但是,在很多电路中,还用到了另外几种类型的运算放大器,即图1中所示的"CC”型(电流型)、“VC”型(电压至电流型。
即跨导型)及“CV”型(电流至电压型,或跨阻型)。
这三种类型的运放均具有相当宽的频带。
现通过一些简单的电路来说明上述各类运放的工作特性。
一、运放的构成首先,我们来看一下怎样用基本模块来构成上述四种类型的运算放大器。
为了便于比较。
每种类型都用同样的元件。
在这里,我们决定用一种所谓推挽AB类运作技术,这种技术又称为“电流按要求”(“current on demond”)运作。
具体如图2所示,图中只用了两种基本电路:一个电压跟随器和一个电流镜。
这两种电路的内部结构示于图3。
两个互补的电压跟随器构成了运放输入端所必需的差动放大器。
电压跟随器的输出信号,以从电源吸收电流的形式,进入电流镜。
推挽AB类运作较常规差动放大器优越,其静态电流小,但即便如此,仍可获得很大的峰值电流。
因此,无摆率(slew rate)限制。
两个电流镜的输出端是电路的高阻抗点。
如有需要,可以从这一点接一电容(即“补偿电容”)到地。
此运算放大器的最后部分是一个电压跟随器,以提供低阻抗输出。
二、电压型运放(VV)电压型运算放大器的特征是高阻抗输入和低阻抗输出。
其运作模式为压控电压源。
理想的VV型放大器增益为A D=Vo/V D=∞(无限大)。
而实际的运放有不同的增益,其范围为103至l06。
图4所示为一个理想的VV型放大器的模型。
由图中可以看出,其差动增益是由输入端阻抗变换器的跨导电阻(transductance resistance)R=1/S和高阻抗点的电阻共同确定的。
(完整版)运放分类及选型

运放分类及选型对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。
对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小)运算放大器大体上可以分为如下几类:1、 通用型运放2、 高阻型运放3、 低温漂型运放4、 高速型运放5、 低功耗型运放6、 高压大功率型运放1、 通用型运放其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A μ,LM358(双运放),LM324及场效应管为输入级的LF356。
2、 高阻型运放这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。
实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。
这类运放有LF356、LF355、LF347、CA3130、CA3140等3、 低温漂型运放在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。
底温漂型运放就是为此设计的。
目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。
4、 高速型运放在快速A/D 及D/A 以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大。
高速型运放的主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、175A μ等。
其SR=50~70V/ms5、 低功耗型运放由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。
常用的低功耗运放有TL-022C,TL —160C 等。
6、 高压大功率型运放运放的输出电压主要受供电电源的限制。
在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。
高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。
D41运放的电源电压可达V 150±,791A μ运放的输出电流可达1A 。
运放分类及选型

运放分类及选型对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。
对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小)运算放大器大体上可以分为如下几类:1、通用型运放2、高阻型运放3、低温漂型运放4、高速型运放5、低功耗型运放6、高压大功率型运放1、通用型运放其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如3741,LM358 (双运放),LM324及场效应管为输入级的LF356.2、高阻型运放这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。
实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。
这类运放有LF356、LF355、LF347、CA3130、CA3140 等3、低温漂型运放在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。
低温漂型运放就是为此设计的。
目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。
4、高速型运放在快速A/D及D/A以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG —定要足够大。
高速型运放的主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、从175等。
其SR=50~70V/ms5、低功耗型运放由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。
常用的低功耗运放有TL-022C, TL-160C等。
6、高压摆大功率型运放运放的输出电压主要受供电电源的限制。
在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。
高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。
D41运放的电源电压可达-150V,J A791运放的输出电流可达1A。
运算放大器的参数选择

运算放大器的参数选择运算放大器的参数指标1. 开环电压增益Avd开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz 的交流输入信号的放大倍数,即输出电压与输入差模电压之比。
它一般为104~106,因此它在电路分析时可以认为无穷大。
2. 闭环增益A F闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。
反相比例放大器,其增益为A F =-RI RF3. 共模增益Avc 和共模抑制比当两个输入端同时加上频率小于200Hz 的电压信号Vic 时,在理想情况下,其输出电压应为零。
但由于实际上内部电路失配而输出电压不为零。
此时输出电压和输入电压之比成为共模增益Avc 。
共模抑制比Kcmr=Avd 运算放大器的差模增益,通常以对数关系表示:Kcmr=20log AvcAvd 共模增益运算放大器的差模增益共模抑制比一般在80~120Db 范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。
这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。
4. 输入失调电压在常温(25℃)下当输入电压为零时,其输出电压不为零。
此时将其折算到输入端的电压称为输入失调电压。
它一般为±(0.2~15)mV 。
这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。
5. 输入偏置电流在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即I IB =21( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。
6. 输入失调电流I IO输入失调电流可表示为I IO =︱I IB --I IB+∣在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快速选型指南——精密放大器(插页)................................ 7 轨到轨输入/输出............................................. . . . . . . . 34
按性能规格分类的放大器选型指南
FastFET (FET输入)............................................... . . . . . . 35
共模抑制比(CMRR) 共模电压范围(CMVR)与此范围内的输入失调电压(ΔVoOS)变化的比 值,结果用dB表示。CMRR (dB) = 20log (CMVR/ΔVOS)
全功率带宽 指在单位增益下测得的最大频率,在该频率下,额定负载上可 以获得一个正弦信号的额定输出电压,并且压摆率限制不会导 致失真。
选择运算放大器并非易事,可供选择的放大器类型、类别、架 构和参数如此之多,因此选择过程可能相当困难。每位客户和 每种应用所要求的性能可能都略有不同。无论您是设计咖啡机
(不错,咖啡机中也会使用运算放大器),还是新一代医疗成像系 统,ADI公司都能提供合适的放大器来满足您的需求。
本手册将能够帮助您轻松快捷地找到满足您应用需求的运算放大 器。手册包括如下内容:运算放大器术语和用于制造IC的工艺说 明、各种选型表、应用指南、设计工具,以及一份方便易用的运 算放大器参考挂图插页。希望您经常查阅这份选型指南,它将帮 助您更好地了解和鉴识运算放大器及其诸多应用。
轨到轨输出. . . . . . . . . . . . . . . ...................................... ..... 24 通信.................................................................. 46
零输入交越失真 (ZCO) . . . ...................................... ..... 11 高电源电压................................................... . . . . . . . 38
过压保护 (OVP). . . . . . . . . . . . ...................................... ..... 12 箝位........................................................... . . . . . . . 39
防务和航空航天..................................................... 49
工具、评估板和其它设计资源..................................... 53
Hale Waihona Puke 放大器配置常用设计公式(插页).................................... 57
电源抑制比(PSRR) 电源电压的变化与输入失调电压的变化之比,结果用dB表示。 PSRR = 20log (ΔVSY/ΔVOS)
建立时间 施加一个阶跃输入后,放大器建立至某一预定的精度水平或输出 电压百分比所需的时间。
输入失调电流 两个输入电流之差。
输入失调电流漂移 输出保持恒定电压时,额定温度范围内输入失调电流的变化比率。
目录
运算放大器术语 . . . . . . . . ....................................... ...... 3 高速放大器 (带宽 > 50 MHz)
放大器设计技术. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 差分. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 放大器工艺和调整技术. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 低噪声/低失真................................................. . . . . . . 32
低成本... . . . . . . . . . . . . . . . . . ....................................... ..... 29 汽车电子. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
封装.................................................................. 60
2 | 运算放大器选型指南
运算放大器术语
共模电压范围(CMVR) 也称为输入电压范围,CMVR是两个输入端允许的输入电压范 围,如果超过此范围,输出将发生削波或过大非线性现象。
超低失调电压 (VOS ≤ 250 μV最大值). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 低失调电压 (VOS ≤ 1 mV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 低功耗 (每个放大器的IS ≤ 1 mA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 低噪声 (Vn ≤ 10 nV/√Hz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 低输入偏置电流 (IB ≤ 50 pA).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 单电源... . . . . . . . . . . . . . . . . . . ...................................... ..... 22
精密放大器 (带宽 < 50 MHz)
电流反馈...................................................... . . . . . . . 36
零漂移... . . . . . . . . . . . . . . . . . ....................................... ..... 10 高输出电流................................................... . . . . . . . 37
运算放大器 选型指南
2011–2012
和内设含计产公品式选插型页
/zh/opamps
/zh/opamps | 1
ADI公司为每种应用都准备了合适的放大器
为什么会有如此之多不同类型的运算放大器?ADI公司的工程师 坚持不懈地追寻令人捉摸不定的理想运算放大器,虽然我们离实 现它仅几步之遥,但遗憾的是,它仍然只存在于书本中。因此, 我们致力于提供类型广泛的运算放大器,来满足客户的众多不同 需求。
增益带宽积(GBW) 特定频率下开环增益与带宽的乘积。
输入偏置电流(IB) 输入引脚的电流。
输入偏置电流漂移 额定温度范围内输入偏置电流相对于温度的比例变化。
开环增益(AVO) 输出电压与两个输入引脚之间的输入失调电压的比值,结果用dB 表示。通常只规定DC(AO)时的增益,但对于许多应用,如视频和 RF所用的高速放大器等,增益的频率相关性也很重要。基于此, 我们给出了每个放大器的开环增益和相位响应。
输入失调电压漂移(TCVOS) 输入失调电压变化与温度变化的比值。
失调电压(VOS) 为获得零输出电压,运算放大器输入引脚所需的差分电压。失调 电压值范围依工艺和设计技术而异:
压摆率 在大信号条件下,输出电压变化的最大速率,结果通常用V/µs 表示。
电源电流 放大器空载工作时电源电压需提供的电流。
小信号单位增益频率 开环增益为1或0 dB时的频率。仅适用于200 mV以下的信号。由于 压摆率限制,在高频时无法获得大输出电压摆幅。
/zh/opamps | 3
放大器设计技术
箝位放大器
四内核(H电桥)
按应用分类的放大器选型指南 能源........................................................... . . . . . . . 40 过程控制和工业自动化....................................... . . . . . . 41 仪器仪表与测量............................................... . . . . . . 42 电机和电源控制............................................... . . . . . . 43 医疗保健...................................................... . . . . . . . 44