运放参数说明(加选型和例子)

合集下载

运算放大器的参数选择

运算放大器的参数选择

运算放大器的参数指标1. 开环电压增益Avd开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。

它一般为104~106,因此它在电路分析时可以认为无穷大。

2. 闭环增益AF闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。

反相比例放大器,其增益为AF=-3. 共模增益Avc和共模抑制比当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。

但由于实际上内部电路失配而输出电压不为零。

此时输出电压和输入电压之比成为共模增益Avc。

共模抑制比Kcmr=,通常以对数关系表示:Kcmr=20log共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。

这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

4. 输入失调电压在常温(25℃)下当输入电压为零时,其输出电压不为零。

此时将其折算到输入端的电压称为输入失调电压。

它一般为±(0.2~15)mV。

这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio的差值输入电压。

5. 输入偏置电流在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即IIB=( IIB -+ IIB+)它一般在10nA~1uA的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。

6. 输入失调电流IIO输入失调电流可表示为IIO=︱IIB --IIB+∣在双极晶体管输入级运算放大器中,IIO约为(0.2~0.1)IIB -或(0.2~0.1)IIB+。

当IIO流过信号源内阻时,产生输入失调电压。

运放选型参数

运放选型参数

运放选型参数摘要:一、运放简介二、运放选型参数1.增益带宽积2.输入偏置电流3.输入偏置电压4.共模抑制比5.输出电流和电压6.电源电压范围7.功耗三、运放选型实例1.确定应用场景2.根据参数进行选型3.实际应用案例四、总结正文:运放,全称为运算放大器,是一种模拟电子器件,广泛应用于各种电子设备和系统中。

作为核心组件,运放的选择至关重要,其中运放选型参数是重要的参考依据。

本文将详细介绍运放选型参数,并以实际案例进行说明。

首先,我们来了解一下运放的增益带宽积。

增益带宽积是运放的一个重要参数,表示运放能够处理信号的最大增益和带宽。

在选择运放时,应根据所需信号的增益和带宽来选取合适的增益带宽积。

输入偏置电流和输入偏置电压是衡量运放输入性能的重要参数。

输入偏置电流是指输入端电流的差值,输入偏置电压是指输入端电压的差值。

这两个参数对运放的输入阻抗和共模抑制比产生影响,需要根据实际应用场景进行选择。

共模抑制比是运放抑制共模信号的能力,它影响了运放在实际应用中的抗干扰性能。

在选择运放时,应根据共模抑制比来选取能够满足抗干扰要求的运放。

输出电流和电压是运放输出性能的重要参数。

输出电流表示运放能够驱动负载的最大电流,输出电压表示运放能够输出的最大电压。

在选择运放时,应根据实际应用中负载的电流和电压需求来选取合适的输出电流和电压。

电源电压范围和功耗是运放的两个重要电气参数。

电源电压范围表示运放能够正常工作的电源电压范围,功耗表示运放在工作过程中的能量消耗。

在选择运放时,应根据实际应用场景的电源电压和功耗要求来选取合适的运放。

下面通过一个实际应用案例来说明如何进行运放选型。

某智能家居系统需要一个用于信号放大的运放,信号增益需求为100倍,信号带宽为10kHz。

根据这些参数,我们可以选择一个增益带宽积大于100kHz的运放。

接下来,我们需要考虑运放的输入性能,输入偏置电流和输入偏置电压应满足系统对输入阻抗和共模抑制比的要求。

运放参数及指标定义详解

运放参数及指标定义详解

运放主要指标及定义:单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。

单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。

这用于小信号处理中运放选型。

例:某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。

转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端 测得运放的输出上升速率。

由于在转换期间,运放的输入级处于开关状态{由于一个大信号(含阶跃信号)接输入端,运放输入级电路迅速从截止状态变成饱和状态,处在放大状态的时间几乎忽略不计,简称处于“开关状态”},所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。

转换速率对于大信号处 理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。

目前的高速运放最高转换速率SR 达到6000V/μs。

这用于大信号处理中运放选型。

全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。

这个频率受到运放转换速率的限制。

近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。

全功率带宽是一个很重要的指标,用于大信号处理中运放选型。

建立时间:在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。

运算放大器工作原理与选择(附常用运放型号)

运算放大器工作原理与选择(附常用运放型号)

运算放大器工作原理与选择(附常用运放型号)1.模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。

最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。

在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。

当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。

经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。

这使得初学者选用时不知如何是好。

为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。

1.1.根据制造工艺分类根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。

按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。

标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。

这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。

为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。

标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。

通过变更标准硅工艺,可以设计出通用运放和高速运放。

典型代表是LM324。

在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。

增益可以是固定的,也可以是可调的。

增益决定了输出信号相对于输入信号的放大程度。

2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。

带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。

3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。

输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。

4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。

输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。

5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。

输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。

6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。

输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。

7.输出电流:输出电流是指运放输出端提供的最大电流。

输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。

8.输出电压:输出电压是指运放输出端能够提供的最大电压。

输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。

二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。

例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。

2.选择性能指标:根据应用需求选择合适的性能指标。

不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。

3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。

产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。

运放关键参数及选型原则

运放关键参数及选型原则

精心整理运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:、输电压。

输入失调小于±1其两输入端的偏置电流平均值。

输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。

Inputbiascurrent(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。

偏置电流biascurrent就是第一级放大器输入晶体管的基极直流电流。

这个电流保证放大器工作在线性范围,为放大器提供直流工作点。

输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

偏置电流值也限制了输入电阻和反馈电阻数值不可以过大,使其在电阻上的压降与运算电压可比而影响了运算精度。

或者不能提供足够的偏置电流,使放大器不能稳定的工作在线性范围。

如果设计要求一定要用大数值的反馈电阻和输入电阻,可以考虑用J-FET输入的运放。

同样是电压控制的还有MOSFET器件,可以提供更小的输入漏电流。

在设计高精度直流放大放大器或选用具有较大输入偏置电流的运放时,必须使运放两端直流通道电阻相等,这样子才能平衡输入偏置电流。

Inputoffsetcurrent(失调电流)是运放两输入端的偏置电流差,是由于输入差分对管的不对称性所致,是使输出电压为零(或规定值)时,流入两输入端电流之差。

由于目前多数运放的输入级都存在有不同形式的偏置电流补偿,故偏置电流的量级大为降低,以至于相对失调电流来说显得不那么重要。

运放参数的详细解释和分析

运放参数的详细解释和分析

运放参数的详细解释和分析我始终觉得运放的压摆率(SR)是与运放的增益带宽积GBW同等重要的一个参数。

但它却常常被人们所忽略。

说它重要的原因是运入的增益带宽积GBW是在小信号条件下测试的。

而运放处理的信号往往是幅值非常大的信号,这更需要关注运放的压摆率。

压摆率可以理解为,当输入运放一个阶跃信号时,运放输出信号的最大变化速度,如下图所示它的数学表达式为:因此在运放的数据手册中查到的压摆率的单位是V/us.下表就是运放datasheet中标出的运放的压摆率。

我在实验室里测过OPA333对阶跃信号响应的波形如下图所示。

希望能让大家看的更直观:讨论完定义和现象,我们来看一下压摆率SR的来源。

先看一下运放的内部结构:这个图有点眼熟,是的,运放的SR主要限制在内部第二级的Cc 电容上。

这个电容同时也决定着运放的带宽。

那运放的压摆率,主要是由于对第二级的密勒电容充电过程的快慢所决定的。

再深究一下,这个电容的大小会影响到运放的压摆率,同时充电电流的大小也会影响到充电的快慢。

这也就解释了,为什么一般超低功耗的运放压摆率都不会太高。

好比水流流速小,池子又大。

只能花更长的时间充满池子。

下表是一些常用到TI运放的压摆率和静态电流:上面简单说了一个影响压摆率SR的因素。

下面该说SR对放大电路的影响了。

它的直接影响,就是使输出信号的上升时间或下降时间过慢,从而引起失真。

下图是测试的OPA333增益G=10时波形。

由于OPA333的增益带宽积为350kHz,理论上增益为10的时候的带宽为35kHz。

但下图是24kHz时测试的结果。

显然输出波形已经失真,原因就是压摆率不够了。

带宽也变成了27kHz左右。

运放如何选型

运放如何选型

运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、输入失调电压(Input Offset Voltage) VOS若将运放的两个输入端接地,理想运放输出为零,但实际运放输出不为零。

此时,用输出电压除以增益得到的等效输入电压称为输入失调电压。

其值为数mV,该值越小越好,较大时增益受到限制。

输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在 1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

本文来自: 原文网址:/info/analog/3366_2.html2、输入失调电压的温漂(Input Offset Voltage Drift),又叫温度系数 TC VOS 一般为数uV/.C输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

本文来自: 原文网址:/info/analog/3366_2.html3、输入偏置电流(Input Bias Current) IBIAS运放两输入端流进或流出直流电流的平均值。

对于双极型运放,该值离散性较大,但却几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。

输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。

输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

本文来自: 原文网址:/info/analog/3366_2.html4、输入失调电流(Input Offset Current) IOS是运放两输入端输入偏置电流之差的绝对值。

输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。

输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。

输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电流大约是输入偏置电流的百分之一到十分之一。

输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k 或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。

输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

本文来自: 原文网址:/info/analog/3366_2.html5、输入电阻 Rin运放两输入端间的差动输入电阻。

该值由微小交流信号定义,实际影响很小,可忽略不计。

而运放输入端的共模输入电阻是Rin的10-1000倍,也可忽略不计。

6、电压增益 AV也称差动电压增益。

理想运放的AV为无限大,实际运放一般也约数百dB。

差模开环直流电压增益:差模开环直流电压增益定义为当运放工作于线性区时,运放输出电压与差模电压输入电压的比值。

由于差模开环直流电压增益很大,大多数运放的差模开环直流电压增益一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。

一般运放的差模开环直流电压增益在80~120dB之间。

实际运放的差模开环电压增益是频率的函数,为了便于比较,一般采用差模开环直流电压增益。

本文来自: 原文网址:/info/analog/3366_2.html7、最大输出电压 VOM饱和前的输出电压称为最大输出电压,理想运放可达到满幅度(rail to rail)输出。

8、共模输入电压范围CMVR(Input Common-Mode Voltage Range) VICM 表示运放两输入端与地间能加的共模电压的范围。

VICM等于正、负电源电压时为理想特性,满幅度输出运放接近这种特性。

9、共模信号抑制比(Common Mode Rejection Ratio) CMRR在运放两输入端与地间加相同信号时,输入、输出间的增益称为共模电压增益AVC,则CMRR定义为:CMRR = AV/AVC共模抑制比:共模抑制比定义为当运放工作于线性区时,运放差模增益与共模增益的比值。

共模抑制比是一个极为重要的指标,它能够抑制差模输入==模干扰信号。

由于共模抑制比很大,大多数运放的共模抑制比一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。

一般运放的共模抑制比在80~120dB之间。

本文来自: 原文网址:/info/analog/3366_2.html10、电源电压抑制比(Supply Voltage Rejection Ratio) SVRR正、负电源电压变化时,该变化量出现在运放的输出中,并将其换算为运放输入的值。

若电源变化ΔVs时等效输入换算电压为ΔVin,则SVRR定义为:SVRR = ΔVs/ΔVin电源电压抑制比:电源电压抑制比定义为当运放工作于线性区时,运放输入失调电压随电源电压的变化比值。

电源电压抑制比反映了电源变化对运放输出的影响。

目前电源电压抑制比只能做到80dB左右。

所以用作直流信号处理或是小信号处理模拟放大时,运放的电源需要作认真细致的处理。

当然,共模抑制比高的运放,能够补偿一部分电源电压抑制比,另外在使用双电源供电时,正负电源的电源电压抑制比可能不相同。

11、消耗电流 ICC该电流是指运放电源端流通的电流,它随外加电路及电源电压而有所变化。

12、转换速率(Slew Rate) SR表示运放能跟踪输入信号变化快慢的程度,单位是V/us。

转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。

由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。

转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。

目前的高速运放最高转换速率SR达到 6000V/μs。

这用于大信号处理中运放选型。

本文来自: 原文网址:/info/analog/3366_2.html13、增益带宽乘积(Gain Bandwidth Product) GB表示运放电压增益-频率特性的参数,单位是MHz。

单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。

单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。

这用于小信号处理中运放选型。

本文来自: 原文网址:/info/analog/3366_2.html运算放大器的专业术语1 bandwidth 带宽: 电压增益变成低频时1/(2 )的频率值2 共模抑制比:common mode rejection ratio3谐波失真:harmonic distortion 谐波电压的均方根值的和/基波电压均方根值4输入偏置电流:input bias current 两输入端电流的平均值5输入电压范围:input voltage range共模电压输入范围运放正常工作时输入端上的电压;6输入阻抗:input impendence Rs Rl指定时输入电压与输入电流的比值7输入失调电流input offset current 运放输出0时,流入两输入端电流的差值;8输入失调电压 input offset voltage 为了让输出为0,通过两个等值电阻加到两输入端的电压值9输入电阻:input resistance:任意输入端接地,输入电压的变化值/输入电流的变化值10大信号电压增益:large-signal voltage gain 输出电压摆幅/输入电压11输出阻抗:output impendence Rs Rl指定时输出电压与输出电流的比值12输出电阻:output resistance 输出电压为0,从输出端看进去的小信号电阻13输出电压摆幅:output voltage swing 运放输出端能正常输入的电压峰值;14失调电压温漂 offset voltage temperature drift15供电电源抑制比:power supply rejection 输入失调电流的变化值/电源的变化值16建立时间 settling time 从开始输入到输出达到稳定的时间;17 摆率:slew rate输入端加上一个大幅值的阶跃信号的时候输出端电压的变化率18电源电流 supply current19瞬态响应 transient response 小信号阶跃响应20 单位增益带宽 unity gain bandwirth 开环增益为1时的频率值21 电压增益 voltage gain 指rs rl固定时输出电压/输入电压2.运放的主要参数本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。

集成运放的参数较多,其中主要参数分为直流指标和交流指标。

其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。

2.1 直流指标输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

相关文档
最新文档