武汉市2018年新高三起点调研考试数学质量分析

合集下载

2018-2019学年度武汉市部分学校新高三起点调研测试化学试卷

2018-2019学年度武汉市部分学校新高三起点调研测试化学试卷

2018~2019 学年度武汉市部分学校新高三起点调研测试化学试卷武汉市教育科学研究院命制2018 . 9 . 6本试题分第I 卷(选择题)和第11 卷(非选择题)两部分.满分100 分。

考试用时90分钟。

★祝考试顺利★注意事项:1.答卷前,先将自己的XX、XX号填写在试题卷和答题卡上,并将XX号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.非选择题的作答:用黑色墨水的签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束,请将本试题卷和答题卡一并上交。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Al 27 P 31 S 32 Cl 35.5K 39 Ca 40 Cu 64 Pb 207第I卷(选择题,共42分)一、选择题(本大题共14 小题,每小题 3 分,共42 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.化学与社会、生产、生活和科技密切相关。

下列有关说法错误的是A .食醋又称为冰醋酸,易溶于水和乙醇.B.干冰、AgI都可用于人工降雨,但原理不同C.可燃冰(CH4•nH2O )属于新型的一次能源D.家用不粘锅的保护膜氟纶()属于有机高分子材料2.下列有关化学用语的表示正确的是A.乙烯的结构简式:C2H4B. HClO的电子式为:C.质子数与中子数相等的硫原子:D.的名称:2-乙基丙烷3.下列有关物质性质的叙述错误的是A.淀粉和纤维素水解的最终产物均为葡萄糖B.向蔗糖中加入浓硫酸发生一系列变化,体现了浓硫酸的脱水性和强氧化性C.明矾净水是因为KAl(SO4)2•12H2O 溶于水可形成Al (OH)3胶体D.乙硫醇(C2H5SH)的沸点比乙醇的高4.短周期主族元素X、Y、Z、W 原子序数依次增大,X是地壳中含量最多的元素,Y原子的最外层只有一个电子,Z位于元素周期表ⅢA 族,W 与X 属于同一主族。

高2018级一诊成绩研究分析及反思

高2018级一诊成绩研究分析及反思

高2018级一诊成绩分析及反思————————————————————————————————作者:————————————————————————————————日期:高2018级一诊考试成绩分析及反思数学组易志刚2018年1月14日和25日,我校师生通过五个月的备战,参加了主城六区的高三一诊考试。

一.试题分析文理科数学总体题型符合全国卷考纲要求,立足基础,交叉整合,注重数学主干知识的综合考查如数列、概率统计,解析几何、函数各版块之间考查的比例和难度适当。

理科数学选择题从第五个开始设置梯度,中档题个数较多,考查知识点全面,计算和技能要求比较高,题型常规。

体现数形结合,分类讨论,化归转换等数学思想等渗透。

由于中档题过于集中,难度忽高忽低,梯度不好,对全国卷命题特点有待进一步研究。

二.成绩分析文科数学区平79.86,我校84.03,8班平均98.5分。

理科数学区平80.97分,我校78.98分,12班平均84.8.文数8班重本单上线即99分以上的21人,双上线15人,比5次月考数据有较大下滑。

12班重本单上线即90分以上者13人,双上线10人,数据和月考有波动基本持平。

8班需要关注的波动对象是平时基本上线无忧的:陈春芳,余小芳,魏文静,陈海林,庹奥琪,还有分配的7个临界生:仅刘雨欣这次双上线,金丰怡,腾予涵,王嵩,梁凯,向南,周鑫这6个都没有达线,其中金奉怡一人94分临界,其余5人都在80到90之间没有及格,需要加强针对性辅导。

12班分配到我头上的4个临界生只有刘念同学双上线,余金花88分接近单有效90,但胡茂蝶74分,邓红成79分离90的线还有很大距离。

优生段对陈扬,周国庆的辅助提升还需要加强引导,特别是陈杨的计算和书写,他老想攻克难题,常基础题丢分。

引导大家重视基础题,重视计算,重视规范,忌眼高手低平。

三.有效地方法1.积极和同学们保持良好的师生关系。

2.重视课堂上知识的引入,思维的产生及演化过程,注重作业的量和针对性。

湖北省武汉市2017-2018学年度部分学校新高三起点调研考试文科数学试题

湖北省武汉市2017-2018学年度部分学校新高三起点调研考试文科数学试题

2017-2018学年度武汉市部分学校新高三起点调研测试文科数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.【答案】C【解析】本题选择C选项.2. 设,其中是实数,则在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】由,其中是实数,得:,所以在复平面内所对应的点位于第四象限.本题选择D选项.3. 函数的最小正周期为()A. B. C. D.【答案】C【解析】∴最小正周期.本题选择C选项.4. 设非零向量满足,则()A. B. C. D.【答案】A【解析】∵非零向量满足,本题选择A选项.5. 已知双曲线()的离心率与椭圆的离心率互为倒数,则双曲线的渐近线方程为()A. B.C. 或D. 或【答案】A【解析】由题意,双曲线离心率∴双曲线的渐近线方程为,即.本题选择A选项.点睛:双曲线的渐近线方程为,而双曲线的渐近线方程为(即),应注意其区别与联系.6. 一个几何体的三视图如图,则它的表面积为()A. 28B.C.D.【答案】D【解析】如图所示,三视图所对应的几何体是长宽高分别为2,2,3的长方体去掉一个三棱柱后的棱柱:ABIE-DCJH,该几何体的表面积为:.本题选择D选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.7. 设满足约束条件,则的最大值是()A. -15B. -9C. 1D. 9【答案】D【解析】x、y满足约束条件的可行域如图:z=2x+y经过可行域的A时,目标函数取得最小值,由解得A(−6,−3),则z=2x+y的最小值是:−15.故选:A.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.8. 函数的单调递增区间是()A. B. C. D.【答案】D【解析】由得:x∈(−∞,−1)∪(5,+∞),令,则y=t,∵x∈(−∞,−1)时,为减函数;x∈(5,+∞)时, 为增函数;y=t为增函数,故函数的单调递增区间是(5,+∞),本题选择D选项.点睛:复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.9. 给出下列四个结论:①命题“,”的否定是“,”;②“若,则”的否命题是“若,则”;③是真命题,则命题一真一假;④“函数有零点”是“函数在上为减函数”的充要条件.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】由题意得,根据全程命题与存在性命题的否定关系,可知①是正确的;②中,命题的否命题为“若,则”,所以是错误的;③中,若“”或“”是真命题,则命题都是假命题;④中,由函数有零点,则,而函数为减函数,则,所以是错误的,故选A。

武汉市2018届新高三起点调研考试数学质量分析

武汉市2018届新高三起点调研考试数学质量分析

Page 8
二、选填题——失分情况
填空题丢分情况
题号
13
14
15
16
全区失分人数
925
0.36 145 0.25
1104
0.43 114 0.20
1149
0.45 218 0.37
15
0.01 0 0.00
选择题第9、11、12题失分学生明显较多;前川校区失分人数
比例
比例
填空题第15题失分较多,第13、14题情况也相对较差,可能题型因素比较大;
11
1183 0.46 212 0.36
12
1488 0.58 287 0.49
全区失分人数
比例
0.06 0.13 0.20 0.02 0.07 0.19
前川校区失分人数
比例
Page 9
二、选填题——重点小题分析
个人认为,对学生丢分较多试题的分析,还需从学生角度出发。可 以在评讲试卷前,抽取典型学生当面交流,了解学生的“盲点”、“卡 点”、“易错点”。 借助学生回忆自己做题时的心路历程,“复盘”思维受阻的全过程, 找出学生分析和解决问题过程中的能力不足,可以让试卷评讲更有针 对性,也可以让学生克难攻坚更高效。 特别要注意指导学生充分挖掘“好题”的价值,引导学生独立思考、 自学自强。 下面就第9题和第12题进行简要分析:
Page 10
二、选填题——重点小题分析——第9题
简析:
将不等式与平面区域表示、解三角形、轨迹方程求解等知 识与方法巧妙地融合在一起,新颖且内涵丰富!
虽然在第9题位置,答题效果很不好!
Page 11
二、选填题——重点小题分析——第9题
卡点1:很多学生不会处理那个不等式!常见思路有:

武汉市2018届高三二月调考数学试卷分析

武汉市2018届高三二月调考数学试卷分析

• 文第4理第5,16,18题涉及立体几何知识,具体 包括三视图,空间线面关系,空间几何体的体积, 点到平面的距离的计算;函数最值求解,文第 10,15,17题理第7,16,17题涉及三角函数,具体内 容包括解三角形,三角函数图象与性质,三角恒等 变形;文第7,12,16,21理,6,15,20,22题涉及解析几 何,具体内容包括直线与圆,平面向量,圆锥曲线 等;文第13,19题理8,13,19题涉及概率统计随机 变量分布列,二项式定理。具体内容包括古典概率 ,互斥事件的概率加法公式(对立事件概率公式) ,样本的数字特征等;第22,23题分别是关于坐标 系与参数方程以及不等式选讲的选做题。
文科第16题如果选取圆C上的两个特殊点 (0,0),(-8,0)就可以很快地求出B点 坐标,体现了特殊与一般的数学思想。 理科第15题考查了直线与圆的位置关系,切 割线定理, 柯西不等式的应用, 整合思想, 数形结合思想,化归与转化思想, 综合分析 能力,数据处理能力,应用创新意识;第19题 体现了统计与概率的数学思想;文科第20题理 科第11,12,21题体现了分类与整合的数学思 想,函数与方程的思想,可通过先分离变量, 用导数工具研究函数的最值解决问题。
• 2.注重数学思想方法的考查 • 经过高三第一轮的总复习,如何有效地将不同 数学能力的学生区分开,就要看学生运用数学 知识解决数学问题的能力了。在考试过程中就 要看学生运用基本的数学思想,恰当地选择解 题方法,解题方法选择表现出学生思维水平。 • 文科第12题,理科第9,10题先将向量问题坐 标化,就可以看出问题本质上是向量的模与不 等式应用或函数的最小值问题,体现了数形结 合的数学思想;转化与化归的数学思想;
武汉市2018届高中毕业生二月调研考试
数学试卷分析

武昌区2018届高三年级元月调研考试(理数答案)

武昌区2018届高三年级元月调研考试(理数答案)

武昌区2018届高三年级元月调研考试理科数学参考答案及评分细则二、填空题:13. 2 14. 180 15.3416. 100 三、解答题: 17.(12分) 解析:(1)由正弦定理,知C A C B sin sin 2cos sin 2+=, 由π=++C B A ,得C C B C B sin )sin(2cos sin 2++=,化简,得C C B C B C B sin )sin cos cos (sin 2cos sin 2++=,即0sin sin cos 2=+C C B . 因为0sin ≠C ,所以21cos -=B .因为π<<B 0,所以32π=B . ......................................6分 (2)由余弦定理,得B ac c a b cos 2222-+=,即B ac ac c a b cos 22)(22--+=, 因为2=b ,5=+c a ,所以,32cos22)5(222πac ac --=,即1=ac . 所以,4323121sin 21=⨯⨯==∆B ac S ABC . ......................................12分 18.(12分) 解析:(1)取AC 的中点O ,连接BO ,PO .因为ABC 是边长为2的正三角形,所以BO ⊥AC ,BO =3.因为P A ⊥PC ,所以PO =121=AC .因为PB =2,所以OP 2+OB 2==PB 2,所以PO ⊥OB . 因为AC ,OP 为相交直线,所以BO ⊥平面P AC .又OB ⊂平面ABC ,所以平面P AB ⊥平面ABC . ......................................6分 (2)因为P A =PB ,BA =BC ,所以PAB ∆≌PCB ∆. 过点A 作PB AD ⊥于D ,则PB CD ⊥.所以ADC ∠为所求二面角A ﹣PB ﹣C 的平面角. 因为P A =PC ,P A ⊥PC ,AC =2,所以2==PC PA . 在PAB ∆中,求得27=AD ,同理27=CD . P AC在ADC ∆中,由余弦定理,得712cos 222-=⋅-+=∠CD AD AC CD AD ADC .所以,二面角A ﹣PB ﹣C 的余弦值为71-. ......................................12分 19.(12分)解析:(1)由计算可得2K 的观测值为416.836362844)2028816(722≈⨯⨯⨯⨯-⨯⨯=k .因为005.0)879.7(2≈≥K P ,而789.7416.8>所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.......................................4分 (2)ξ的取值为0,1,2.18995)0(28220===C C P ξ,18980)1(2812018===C C C P ξ,272)2(2828===C C P ξ. ξ的分布列为ξ的数学期望为742722189801189950=⨯+⨯+⨯=ξE . ......................................12分20.(12分)解析:(1)由题意,知⎪⎪⎩⎪⎪⎨⎧==+,22,141122ac b a 考虑到222c b a +=,解得⎪⎩⎪⎨⎧==.1,222b a所以,所求椭圆C 的方程为1222=+y x . ......................................4分(2)设直线l 的方程为m kx y +=,代入椭圆方程1222=+y x ,整理得0)1(24)21(222=-+++m kmx x k .由0)1)(21(8)4(222>-+-=∆m k km ,得1222->m k . ① 设),(11y x A ,),(22y x B ,则221214k km x x +-=+,222121)1(2k m x x +-=.因为)0,1(-F ,所以1111+=x yk AF ,1221+=x y k AF .因为1122211+++=x y x y k ,且m kx y +=11,m kx y +=22,所以0)2)((21=++-x x k m .因为直线AB :m kx y +=不过焦点)0,1(-F ,所以0≠-k m , 所以0221=++x x ,从而02414=++-k km ,即kk m 21+=. ② 由①②得1)21(222-+>k k k ,化简得22||>k . ③ 焦点)0,1(2F 到直线l :m kx y +=的距离112121|212|1||222++=++=++=k k k k k km k d . 令112+=k t ,由22||>k 知)3,1(∈t . 于是)3(21232tt t t d +=+=.考虑到函数)3(21)(tt t f +=在]3,1[上单调递减,所以)1()3(f d f <<,解得23<<d . ......................................12分 21.(12分)解析:(1)a x f x -='-2e )(.当0≤a 时,0)(≥'x f ,函数)(x f 在),(+∞-∞上单调递增; 当0>a 时,由0e )(2=-='-a x f x ,得a x ln 2+=.若a x ln 2+>,则0)(>'x f ,函数)(x f 在),ln 2(+∞+a 上单调递增;若a x ln 2+<,则0)(<'x f ,函数)(x f 在)ln 2,(a +-∞上单调递减. .........................4分 (2)(ⅰ)由(1)知,当0≤a 时,)(x f 单调递增,没有两个不同的零点. 当0>a 时,)(x f 在a x ln 2+=处取得极小值. 由0)ln 2(e )ln 2(ln <+-=+a a a f a ,得ea 1>. 所以a 的取值范围为),1(+∞e.(ⅱ)由0e 2=--ax x ,得x a ax x ln ln )ln(2+==-,即a x x ln ln 2=--. 所以a x x x x ln ln 2ln 22211=--=--.令x x x g ln 2)(--=,则xx g 11)(-='. 当1>x 时,0)(>'x g ;当10<<x 时,0)(<'x g .所以)(x g 在)1,0(递减,在),1(+∞递增,所以2110x x <<<. 要证221>+x x ,只需证1212>->x x .因为)(x g 在),1(+∞递增,所以只需证)2()(12x g x g ->.因为)()(21x g x g =,只需证)2()(11x g x g ->,即证0)2()(11>--x g x g . 令)2()()(x g x g x h --=,10<<x ,则)211(2)2()()(xx x g x g x h -+-=-'-'='.因为2)211)](2([21211≥-+-+=-+xx x x x x ,所以0)(≤'x h ,即)(x h 在)1,0(上单调递减. 所以0)1()(=>h x h ,即0)2()(11>--x g x g ,所以221>+x x 成立. ......................................12分 22.[选修4-4:坐标系与参数方程](10分) 解析:(1)∵ρsin 2α﹣2cos α=0,∴ρ2sin 2α=4ρcos α, ∴曲线C 的直角坐标方程为y 2=4x . 由⎩⎨⎧=+=,2,12t y t x 消去t ,得1+=y x .∴直线l 的直角坐标方程为01=--y x . ......................................5分 (2)点M (1,0)在直线l 上,设直线l 的参数方程⎪⎪⎩⎪⎪⎨⎧=+=,22,221t y t x (t 为参数),A ,B 对应的参数为t 1,t 2.将l 的参数方程代入y 2=4x ,得08242=--t t . 于是2421=+t t ,821-=t t .∴8||||||21==⋅t t MB MA . ......................................10分 23.[选修4-5:不等式选讲](10分)解析:(1)由题意知03|||2|≥-++-a x x 恒成立. 因为|2||)()2(||||2|+=+--≥++-a a x x a x x ,所以3|2|≥+a ,解得5-≤a 或1≥a . ......................................5分 (2)因为2=+n m ()0,0>>n m ,所以)322(21)32(21)12(212+≥++=+⋅+=+n m m n n m n m n m ,即n m 12+的取值范围为),232[+∞+. ......................................10分。

湖北省武汉市武昌区2018届高三调考理科数学试题含答案

湖北省武汉市武昌区2018届高三调考理科数学试题含答案

武昌区2021届高三年级五月调研考试理科数学试题及参考答案一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.假设复数m 1i是实数,那么实数m〔B〕1i213A.2B.1C.2D.2y2x,2.假设变量x,y满足约束条件x y1,那么zx2y的最大值是(C)y1,5B.055A.C.D.2323.某居民小区有两个相互独立的平安防范系统A和B,系统A和系统B在任意时刻发生故障的概率分别为1和p.假设在任意时刻恰有一个系统不发生故障的概率为9,那么840p(B)1211 A.B.C.D.1015654.双曲线2y2PF1PF2,x1,点F1,F2为其两个焦点,点P为双曲线上一点.假设那么|PF1||PF2|的值为(C)A.2B.22C.23D.2515.设alog32,b ln2,c52,那么(C)A.abc B.bca C.cabD.cba6.执行如下图的程序框图,假设输出k的值为8,那么判断框内可填入的条件是(B)A.S 3?开始4B.S11?S=0,k=012C.S25?S S1 24k D.S137?k=k+2 12是7.(3xy)(x 2y)5的展开式中,x4y2的系数为(A)否A.110输出k B.120C.130结束湖北省武汉市武昌区2018届高三调考理科数学试题含答案D.1508.某几何体的三视图如下图,那么该几何体的体积为(C)A.125B.182 C.2443 D.30正视图侧视图9.动点A(x,y)在圆x2y21上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.俯视图时间t0时,点A的坐标是(1,3),那么当22t12时,动点A的纵坐标y关于t〔单位:秒〕的函数的单调递增区间是(D)A.[0,1]B.[1,7]C.[7,12]D.[0,1]和[7,12] 10.命题p1:设函数f(x)ax2bxc(a0),且f(1)a,那么f(x)在(0,2)上必有零点;2p2:设a,b R,那么“a b〞是“a|a|b|b|〞的充分不必要条件.那么在命题q1:p1p2,q2:p1p2,q3:(p1)p2和q4:p1(p2)中,真命题是(C)A.q1,q3B.q2,q3C.q1,q4D.q2,q411.在ABC中,C90,M是BC的中点.假设sin1BAC(A) BAM,那么sin3A.6B.52D.3 33C.3312.设直线l与抛物线24x相交于A,B两点,与圆2220)相切于点M,y(x5)y r(r且M为线段AB的中点.假设这样的直线l恰有4条,那么r的取值范围是(D)A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共4小题,每题5分.13.假设向量a,b满足:a(3,1),(a+2b)⊥a,(a+b)⊥b,那么|b|.答案:214.2sin(x)dx 7,那么sin2.04答案:91615.直三棱柱ABC A1B1C1的各顶点都在同一球面上.假设ABAC AA12,BAC120,那么该球的外表积等于.答案:2016.函数f(x)ke x1x1x2〔k为常数〕,曲线yf(x)在点(0,f(0))处的切线与x轴2平行,那么f(x)的单调递减区间为.答案:(,0)三、解答题:解容许写出文字说明、证明过程或演算步骤. 17.〔本小题总分值 12分〕设数列{a n }的前n 项和为S n ,a 11,a n1n2N ).S n (nn〔Ⅰ〕证明:数列{S n}是等比数列;n〔Ⅱ〕求数列{S n }的前n 项和T n .解:〔Ⅰ〕由a n +1=n +2 -S n ,得S n + 1-S n = n +2S n ,n S n ,及a n +1=S n +1 n整理,得nS n +1=2(n +1)S n ,∴S n+1=2·S n.又S 1=1,n +1 n1∴{S n为首项,2为公比的等比数列. 6分n }是以1 〔Ⅱ〕由〔Ⅰ〕,得Snn=2n -1,∴S n =n ·2n -1〔n ∈N *〕.∴T n =1×20+2×21+3×22++n ·2n -1,①2T n =1 2 n -1n.②1×2+2×2++(n - 1)·2 +n ·2 由②-①,得n2n -1n1-2nnT n =-(1+2+2++2 )+n ·2=-+n ·2=(n -1)·2+1.12分18.〔本小题总分值12分〕某公司招收大学毕业生, 经过综合测试录用了 14名男生和6名女生,这20 名毕业生的测试成绩如茎叶图所示 〔单位:分〕.公司规定:成绩在 180分以上者到甲部门工作,在180分以下者到乙部门工作,另外只有成绩高于180分的男生才能担任助理工作.〔Ⅰ〕现用分层抽样的方法从甲、乙两部门中选取8人.假设从这8人中再选 3人,求至少有一人来自甲部门的概率;〔Ⅱ〕假设从甲部门中随机选取 3人,用X 表示所选人员中能担任助理工作的人数,求X的分布列及数学期望.解:〔Ⅰ〕根据茎叶图可知,甲、乙两部门各有10人,男女用分层抽样的方法,应从甲、乙两部门中各选88 6 16 82取10×5=4人.65432176 记“至少有一人来自甲部门〞为事件A ,那么5 4 2 18 5 632 1 19 02C 3 134.P(A)=1-3=14C 8故至少有一人来自甲部门的概率为13.5分14〔Ⅱ〕由题意可知, X 的可能取值为0,1,2,3.C 60C 43 = 1 ,P(X =1)= C 61C 42 3 ,3 3=P(X =0)=C 10 30 C 10 10C 2 1 1 3 01 6C 4 C 6C 4P(X =2)=C 103= 2,P(X =3)=C 103 = 6.∴X 的分布列为X0123P1311 301026∴E(X)=0×1+1×3+2×1+3×1=9.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分301026519.〔本小分12分〕如,在四棱S ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB AD1,DCSD2,E棱SB上的一点,平面EDC⊥平面SBC.〔Ⅰ〕明:SE2EB;〔Ⅱ〕求二面角A DEC的大小.解:〔Ⅰ〕以D坐原点,建立如所示的直角坐系D-xyz,A(1,0,0),B(1,1,→→→0),C(0,2,0),S(0,0,2),∴SC=(0,2,-2),BC=(-1,1,0),DC=(0,2,0).平面SBC的法向量m=(a,b,c),z→S→→m·SC=0,由m⊥SC,m⊥BC,得→m·BC=0,2b-2c=0,取m=(1,1,1).∴-a+b=0.E→→λλ2F又SE=λEB〔λ>0〕,E(,,),1+λ1+λ1+λD→λλ2).,,A∴DE=(B1+λ1+λ1+λx平面EDC的法向量n=(x,y,z),→→→n·DE=0,由n⊥DE,n⊥DC,得→n·DC=0,λx+λy+2z=0,取n=(2,0,-λ).∴1+λ1+λ1+λ2y=0.由平面EDC⊥平面SBC,得m⊥n,∴m·n=0,∴2-λ=0,即λ=2.故SE=2EB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分〔Ⅱ〕由〔Ⅰ〕,知222→222→242),E(,,),∴DE=(,,3),EC=(-,,-3 3333333→→∴EC·DE=0,∴EC⊥DE.Cy1 1 1→2 ,- 1 ,- 1),取DE 的中点F ,那么F(,,),∴FA =( 333 3 3 3→ →FA ·DE =0,∴FA ⊥DE .→ →A-DE-C 的平面角.∴向量FA 与EC 的夹角等于二面角→ →→ →1FA ·EC=- ,而cos <FA ,EC >=→ → 2|FA|| EC|故二面角A-DE-C 的大小为120°.12分20.〔本小题总分值12分〕2A(0,1),B(0,1)是椭圆xy 2 1的两个顶点,过其右焦点F 的直线l 与椭圆交于2C ,D 两点,与 y 轴交于P 点〔异于 A ,B 两点〕,直线AC 与直线BD 交于Q 点.〔Ⅰ〕当|CD| 32时,求直线l 的方程;2〔Ⅱ〕求证: OPOQ 为定值.解:〔Ⅰ〕由题设条件可知,直线 l 的斜率一定存在, F(1,0),设直线l 的方程为y =k(x -1)〔k ≠0且k ≠±1〕.y =k(x -1), 2222由2消去y 并整理,得(1+x +y 2=1,2k)x -4kx +2k -2=0.2设C(x 1,y 1),D(x 2,y 2),那么x 1+x 2=4k 2= 2k 2-22,x 1x 21+2k 2,1+2k22 ∴|CD|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·(4k)2-4·2k-22 21+2k 1+2k2 2(1+k 2)=1+2k2.2 2(1+k 2)3 22由,得1+2k 2 = 2 ,解得k =±2.故直线l 的方程为y =222(x -1)或y =-2(x -1),即x -2y -1=0或x +2y -1=0.5分〔Ⅱ〕由C(x 1,y 1),D(x 2,y 2),A(0,1),B(0,-1),得直线AC 的方程为y =y 1-1y 2+1x 1 x +1,直线BD 的方程为y =x 2x -1,联立两条直线方程并消去x ,得 y -1x 2(y 1-1)= ,y +1x 1(y 2+1)x 1y 2+x 2y 1+x 1-x 2∴y Q=x 1y 2-x 2y 1+x 1+x 2.22由〔Ⅰ〕,知y 1=k(x 1-1),y 2=k(x 2-1),x 1+x 2=4k 2,x 1x 2=2k-22, 1+2k 1+2kx 1y 2+x 2y 1+x 1-x 2=kx 1(x 2-1)+kx 2(x 1-1)+x 1-x 22kx 1x 2-k(x 1+x 2)+x 1-x 22 -22=2k ·2k4k 2+x 1-x 22-k ·1+2k1+2k4k==- 2+x 1-x 2,=x 1y 2-x 2y 1+x 1+x 2=kx 1(x 2-1)-kx 2(x 1-1)+x 1+x 2= k(x 2-x 1)+x 1+x 24k 2=k(x 2-x1)+1+2k 24k∴ =-k(-2+x 1-x 2),∴ y Q =-1,∴Q(x Q ,-1).又P(0,-k),kk→ →,-k)·(x Q ,-1)=1.∴OP ·OQ =(0 k→ →12分故OP ·OQ 定.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.〔本小分12分〕〔Ⅰ〕明:当x[0,1] ,2x sinx x ;23〔Ⅱ〕假设不等式ax x2x 2( x 2)cos 4 x [0,1]恒成立,求数a 的取范.2x解:〔Ⅰ〕F(x)=sinx -222x ,F ′(x)=cosx -2.ππ当x ∈(0,4),F ′(x)>0,F(x)在[0,4]上是增函数;ππ上是减函数.当x ∈(,1),F ′(x)<0,F(x)在[,1]442∵F(0)=0,F(1)>0,∴当x ∈[0,1],F(x)≥0,即sinx ≥ x .H(x)=sinx -x ,当x ∈(0,1),H ′(x)=cosx -1<0,∴H(x)在[0,1]上是减函数,∴H(x)≤H(0)=0,即sinx ≤x .上,22x ≤sinx ≤x ,x ∈[0,1].⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4分〔Ⅱ〕∵当x ∈[0,1],ax +x 2+x 3+2(x +2)cosx -4=(a +2)x +x 2+x 3-4(x +2)sin 2x222322 x-4(x +2)(2=(a +2)x .≤(a +2)x +x + 2 4 x)3 ∴当a ≤-2,不等式 ax +x 2+x2+2(x +2)cosx ≤4x ∈[0,1]恒成立.下面明:3 当a >-2,不等式ax +x2+x 2+2(x +2)cosx ≤4x ∈[0,1]不恒成立.ax +x 2+x 3+2(x +2)cosx -4=(a +2)x +x 2+x 3-4(x +2)sin 2x2222x 3x 22x 3≥(a +2)x +x+ -4(x +2)()=(a +2)x -x - 222≥(a +2)x - 3 232(a +2)].2x =-x[x -2 3∴存在x ∈(0,1)〔例如x取a +2和1中的小者〕足ax +x 2+x 03+2(x +2)cosx322 0-4>0,即当a >-2,不等式2x 3ax +x ++2(x +2)cosx -4≤0x ∈[0,1]不恒成立.2上,数a 的取范是(-∞,-2].⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分22.〔本小分10分〕修4-1:几何明如,⊙O 和⊙O ′相交于A ,B 两点,A 作两的切分交两于C ,D 两点,DB 并延交⊙O 于点E ,ACBD3.A〔Ⅰ〕求AB AD 的;〔Ⅱ〕求段AE 的.O ′ 解:〔Ⅰ〕∵AC 切⊙O ′于A ,∴∠CAB =∠ADB ,O同理∠ACB =∠DAB ,∴△ACB ∽△DAB ,E∴AC =AB,即AC ·BD =AB ·AD .C BDAD BD∵AC =BD =3,∴AB ·AD =9.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分〔Ⅱ〕∵AD 切⊙O 于A ,∴∠AED =∠BAD ,又∠ADE =∠BDA ,∴△EAD ∽△ABD ,A E AB =ADBD ,即AE ·BD =AB ·AD .由〔Ⅰ〕可知,AC ·BD =AB ·AD ,∴AE =AC =3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分23.〔本小分10分〕修4-4:坐系与参数方程x3t,在直角坐系xOy 中,直l 的参数方程2〔t 参数〕.以原点极点,xy1 t52正半极建立极坐系,曲 C 的极坐方程 23cos .〔Ⅰ〕把曲C 的极坐方程化直角坐方程,并明它表示什么曲;〔Ⅱ〕假设P 是直l 上的一点,Q 是曲C 上的一点,当|PQ|取得最小,求P 的直角坐.2解:〔Ⅰ〕由ρ=23cos θ,得ρ=23ρcos θ,从而有x 2+y 2=23x ,∴(x -3)2+y 2=3.∴曲C 是心(3,0),半径3的.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5分〔Ⅱ〕由条件知,|PQ|+|QC|≥|PC|,当且当P,Q,C三点共,等号成立,即|PQ|≥|PC|-3,∴|PQ|min=|PC|min-3.P(-312t,-5+2t),又C(3,0),|PC|=(-3t-3)2+(-5+1t)2=t2-2t+28=(t-1)2+27.22当t=1,|PC|取得最小,从而|PQ|也取得最小,此,点P的直角坐(-3,-9).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分2224.〔本小分10分〕修4-5:不等式a0,b0,函数f(x)|x a||x b|的最小2.〔Ⅰ〕求ab的;〔Ⅱ〕明:a2a2与b2b2不可能同成立.解:〔Ⅰ〕∵a>0,b>0,f(x)=|x-a|+|x+b|≥|(x-a)-(x+b)|=|-a-b|=|a+b|=a+b,min=a+b.由条件知f(x)min=2,∴a+b=2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分〔Ⅱ〕由〔Ⅰ〕及根本不等式,得2ab≤a+b=2,∴ab≤1.假a2+a>2与b2+b>2同成立,由a2+a>2及a>0,得a>1.同理b>1,∴ab>1,与ab≤1矛盾.故a2+a>2与b2+b>2不可能同成立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分精品文档强烈推荐精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。

武汉市2018届高三数学开学调研试卷文科含答案

武汉市2018届高三数学开学调研试卷文科含答案

武汉市2018届高三数学开学调研试卷(文科含答案)2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A.B.C.D.2.设,其中是实数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.函数的最小正周期为()A.B.C.D.4.设非零向量满足,则()A.B.C.D.5.已知双曲线()的离心率与椭圆的离心率互为倒数,则双曲线的渐近线方程为()A.B.C.或D.或6.一个几何体的三视图如图,则它的表面积为()A.28B.C.D.7.设满足约束条件,则的最大值是()A.-15B.-9C.1D.98.函数的单调递增区间是()A.B.C.D.9.给出下列四个结论:①命题“,”的否定是“,”;②“若,则”的否命题是“若,则”;③是真命题,则命题一真一假;④“函数有零点”是“函数在上为减函数”的充要条件. 其中正确结论的个数为()A.1B.2C.3D.410.执行下面的程序框图,如果输入的,,,则输出的值满足()A.B.C.D.11.标有数字1,2,3,4,5的卡片各一张,从这5张卡片中随机抽取1张,不放回的再随机抽取1张,则抽取的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.过抛物线()的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且,若,则到直线的距离为()A.B.C.D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数是定义在上的奇函数,当时,,则.14.函数取得最大值时的值是.15.已知三棱锥的三条棱所在的直线两两垂直且长度分别为3,2,1,顶点都在球的表面上,则球的表面积为.16.在钝角中,内角的对边分别为,若,,则的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列的前项和为,等比数列的前项和为,,,.(1)若,求的通项公式;(2)若,求.18.已知函数(为常数)(1)求的单调递增区间;(2)若在上有最小值1,求的值.19.如图1,在矩形中,,,是的中点,将沿折起,得到如图2所示的四棱锥,其中平面平面.(1)证明:平面;(2)设为的中点,在线段上是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.20.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:),其频率分布直方图如下:(1)估计旧养殖法的箱产量低于50的概率并估计新养殖法的箱产量的平均值;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量箱产量合计旧养殖法新养殖法合计附:,其中0.0500.0100.0013.8416.63510.828参考数据:21.设为坐标原点,动点在椭圆(,)上,过的直线交椭圆于两点,为椭圆的左焦点.(1)若三角形的面积的最大值为1,求的值;(2)若直线的斜率乘积等于,求椭圆的离心率.22.设函数(…是自然数的底数).(1)讨论的单调性;(2)当时,,求实数的取值范围.试卷答案一、选择题1-5:CDCAA6-10:DDDBD11、12:AB二、填空题13.-814.15.16.三、解答题17.(1)设的公差为,的公比为,则,.由,得①由,得②联立①和②解得(舍去),或,因此的通项公式. (2)∵,∴,或,∴或8.∴或.18.(1),∴,∴单调增区间为,(1)时,∴当时,最小值为∴19.(1)证明:连接,∵为矩形且,所以,即,又平面,平面平面∴平面(2)取中点,连接,∵,,∴且,所以共面,若平面,则.∴为平行四边形,所以.20.(1)旧养殖法的箱产量低于50的频率为所以概率估计值为0.62;新养殖法的箱产量的均值估计为(2)根据箱产量的频率分布直方图得列联表箱产量箱产量旧养殖法6238新养殖法3466由于,故有99%的把握认为箱产量与养殖方法有关. 21.(1),所以(2)由题意可设,,,则,,所以,所以所以离心率22.(1)当或时,,当时,所以在,单调递减,在单调递增;(2)设,,当时,设,,所以即成立,所以成立;当时,,而函数的图象在连续不断且逐渐趋近负无穷,必存在正实数使得且在上,此时,不满足题意.综上,的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 3
理科数学各分数段人数统计
全区理科数学总分情况(参考2581人)
分数段
人数 累计 比例
150分
2
140--149
21
23
0.01
130--139
94
115
0.04
120--129 168
283
0.11
110--119 248
531
0.21
100--109 299
830
0.32
90--99
Page 10
二、选填题——重点小题分析——第9题
简析: n 将不等式与平面区域表示、解三角形、轨迹方程求解等知
识与方法巧妙地融合在一起,新颖且内涵丰富! n 虽然在第9题位置,答题效果很不好!
Page 11
二、选填题——重点小题分析——第9题
n 卡点1:很多学生不会处理那个不等式!常见思路有:
Page 8
二、选填题——失分情况
填空题丢分情况
题号
13
14
15
16
全区失分人数
925 1104 1149
15
选择题第9、11、12题失分学生明显较多;前川校比区例失分人数
0.36 145
0.43 114
0.45 218
0.01 0
比例
0.25 0.20 0.37 0.00
填空题第15题失分较多,第13、14题情况也相对较差,可能题型因素比较大;
n 空对间线想面象关能系力探不求够的;要求有所提高,比如2016年全国1卷第
n 在19平题时。的立体几何的学习中,过于依赖空间向量方法;
Page 12
二、选填题——重点小题分析——第12题
简析:
D1
C1
n 考查立体几何中的动态问题。
n 以学生熟悉的正方体为载体,以动态面和静态面形成相 A1 等的锐二面角为抓手,落脚到平面轨迹。
B1
D
P
C
n 构思新颖、立意深远,对学生能力要求高。
M
Page 13
A
B
二、选填题——重点小题分析——第12题
思1路 :化 |y| 为3|x| 思路 2:利用平方差公 :( 式 3x化 y)为 ( 3xy)0 思路 3:将不等式看 3x2作 y2 双 1的曲 渐线 近线方程
前两种思路很容易受阻或出错,第3中思路不容易想到。
n 卡点2:处理三角形PAB面积时,没能注意到角APB大小可求。
n 归因分析:知识遗忘;知识联想与迁移能力不够。
90--99
83
501
0.86
80--89
45
546
0.94
(前川校区参考人数不含借读生)
Page 4
根据理科数学得分情况:
以104分为准,全区过线26.9%,黄陂一中前川校区过线63.1% 以73分为准,全区过线66.5%,黄陂一中前川校区过线96.4% 基本符合近两年高考形势。
Page 5
n 学生在立体几何解答题练习中掌握比较熟练 了,并且正方体中建系、设点没有障碍;
n 处理法向量时,只有一个需要进行相对复杂 的坐标运算,运算量适中;
n 最后得出P点坐标满足的关系式后,如何理解 是难点;
n 空间图形转变为平面轨迹,能力要求高出不 少。
Page 15
二、选填题——重点小题分析——第12题
2018届新高三起点调研考试
质量分析及备考工作交流
•第一部分 起点考试数据分析及试题简评
一、整体点评
本次试卷,以大纲为本,以教材为基准,基本覆盖了高考主要知 识点。
不仅有基础题,也有具备区分度且设计精妙的压轴题,能很好地 考查学生对“双基”的掌握情况,体现课标、考纲的理念和要求。
试卷整体比较平和,注重了对学生数学能力的考查。 试题的广度和深度值得老师和学生特别留意。
330
1160 0.45
80--89
344
1504 0.58
前川校区理科数学总分情况(参考582人)
分数段
人数 累计
比例
150分
2
140--149
15
17
0.03
130--139
64
79
0.14
120--129
96
175
0.30
110--119 128
303
0.52
100--109 115
418
0.72
ห้องสมุดไป่ตู้
二、选填题——概述
选填题部分,考点覆盖全面,难度递进有序。 着重考查基础知识和基本技能,考点分布和近两年全国卷高度一致(见下表)

(起点考试卷和2017、2016年高考全国1卷选填题考点及难点比较表)
Page 6
Page 7
三、选填题——概述
大部分题目审题障碍小,和高考全国1卷特征一致; 需要学生熟练掌握常规问题的通性通法,对一轮复习起到很好的导向作用。
思路1:直接求解:
n 1.找两对二面角的棱线(作平行线GH是关键),
D1
n 2.作二面角的平面角,
n 3.表示角的大小,
n 4.探求P点位置特征。
A1
n 感觉像是跋山涉水,多数学生恐怕第一步就不会!
D
M
C1 G
B1 P C
H
A
B
I
Page 14
二、选填题——重点小题分析——第12题
思路2:向量法。
题号
12 3
全区失分人数 143 332 518
比例
0.06 0.13 0.20
前川校区失分人数 11 38 112
比例
0.02 0.07 0.19
选择题丢分情况
4 522 0.20 79 0.14
5 542 0.21 71 0.12
6 428 0.17 79 0.14
7 466 0.18 25 0.04
思路3:射影面积法。
n 属于间接法,基础扎实的学生应该 能很快找出三角形在两个面上的投 影三角形,并且准确表示面积,得 出P点特征,最后得到轨迹:两条 平行线。
n 这应该是本题最理想的解法,而射 影面积法在这里操作也还简便。
Page 16
二、选填题——重点小题分析——第12题
n 反思:
D1
C1
n 归近几因年分高析考:题对立体几何的考察,无论是小题还是大题,
8 603 0.23 107 0.18
9 1238 0.48 249 0.43
10 341 0.13 29 0.05
11 1183 0.46 212 0.36
12 1488 0.58 287 0.49
Page 9
二、选填题——重点小题分析
个人认为,对学生丢分较多试题的分析,还需从学生角度出发。可 以在评讲试卷前,抽取典型学生当面交流,了解学生的“盲点”、 “卡点”、“易错点”。 借助学生回忆自己做题时的心路历程,“复盘”思维受阻的全过程, 找出学生分析和解决问题过程中的能力不足,可以让试卷评讲更有针 对性,也可以让学生克难攻坚更高效。 特别要注意指导学生充分挖掘“好题”的价值,引导学生独立思考、 自学自强。 下面就第9题和第12题进行简要分析:
相关文档
最新文档