硝酸盐氮的测定(紫外分光光度法)

合集下载

紫外光度法硝酸盐氮曲线

紫外光度法硝酸盐氮曲线

紫外光度法硝酸盐氮曲线【原创版】目录一、紫外分光光度法测定水中硝酸盐氮的原理二、紫外分光光度法测定水中硝酸盐氮的实验步骤三、紫外分光光度法测定水中硝酸盐氮的干扰因素及解决方法四、紫外分光光度法在测定水中硝酸盐氮的应用优势与局限性正文一、紫外分光光度法测定水中硝酸盐氮的原理紫外分光光度法是一种常用的测定水中硝酸盐氮的方法,其原理主要是通过紫外光度计测量水样在特定波长下的吸光度,从而推算出硝酸盐氮的含量。

在该方法中,通常选用两个波长进行测量,一是 220nm 波长,另一个是 275nm 波长。

这是因为在 220nm 波长下,硝酸根离子和水样中的有机物都会产生吸收,而 275nm 波长下,只有硝酸根离子会产生吸收,因此通过两个波长的测量可以消除有机物的干扰,从而更准确地测定硝酸盐氮的含量。

二、紫外分光光度法测定水中硝酸盐氮的实验步骤1.首先,需要对水样进行预处理,以去除其中的有机物和其它干扰物质。

2.然后,将预处理后的水样放入紫外光度计中,测量其在 220nm 和275nm 波长下的吸光度。

3.最后,通过计算吸光度的差值,可以得出水样中硝酸盐氮的含量。

三、紫外分光光度法测定水中硝酸盐氮的干扰因素及解决方法在紫外分光光度法测定水中硝酸盐氮的过程中,可能会受到一些干扰因素的影响,例如水中的悬浮物、有机物、氨氮和亚硝酸盐氮等。

为了消除这些干扰,可以采取以下措施:1.对水样进行预处理,如过滤、加热等,以去除悬浮物和有机物。

2.在测定前,加入一些试剂,如过硫酸钾,可以将水中的氨氮、亚硝酸盐氮和有机氮化合物氧化为硝酸盐,从而消除它们的干扰。

3.在测定过程中,选用合适的波长,以避免其它物质的吸光度对测定结果的影响。

四、紫外分光光度法在测定水中硝酸盐氮的应用优势与局限性紫外分光光度法在测定水中硝酸盐氮方面具有以下优势:1.操作简单,仪器设备成本较低,便于推广应用。

2.测量速度快,结果准确,可以满足实时监测的需求。

3.可以同时测定多个样品,便于进行批量分析。

水质硝酸盐氮的测定紫外分光光度法

水质硝酸盐氮的测定紫外分光光度法

标题:水质硝酸盐氮的测定:紫外分光光度法摘要:随着环境保护意识的提高,对水质的监测和评估变得越来越重要。

硝酸盐氮是水质中常见的一种污染物,其准确、快速的测定对于保护水环境具有重要意义。

本文将探讨硝酸盐氮的测定方法之一——紫外分光光度法,介绍其原理、操作步骤和优缺点,并结合个人观点进行深入分析。

一、硝酸盐氮的测定方法硝酸盐氮是水体中的一种重要营养盐,但过量的硝酸盐氮会导致水体富营养化甚至造成水质污染。

对水中硝酸盐氮的测定十分重要。

目前常用的测定方法包括化学法、光谱法、电化学法等,其中光谱法又分为紫外分光光度法、原子吸收光谱法等。

二、紫外分光光度法的原理紫外分光光度法是一种常用的分析方法,其原理是利用物质对紫外光的吸收来测定其浓度。

硝酸盐离子在特定波长范围内吸收紫外光,根据其吸光度与浓度之间的线性关系,可以通过测定吸光度来计算硝酸盐氮的浓度。

三、操作步骤1. 样品处理:将水样处理成适合紫外分光光度法测定的状态,通常包括滤过、稀释等步骤。

2. 仪器准备:对紫外分光光度计进行预热、波长选择和基准校准等操作。

3. 测定过程:按照标准操作步骤,将处理好的样品注入光度计进行测定,并记录吸光度值。

4. 结果计算:根据吸光度值和标准曲线,计算出硝酸盐氮的浓度。

四、紫外分光光度法的优缺点优点:1. 灵敏度高:紫外分光光度法对硝酸盐氮的测定具有较高的灵敏度,可以测定较低浓度的样品。

2. 操作简便:相比于其他分析方法,紫外分光光度法的操作相对简便快捷。

3. 成本较低:仪器设备和试剂成本相对较低,适合在实验室中常规使用。

缺点:1. 干扰物影响大:部分有机物、其他离子等会对硝酸盐氮的测定结果产生干扰,需要进行干扰校正。

2. 波长选择困难:在某些情况下,样品中的其他物质吸收的波长会与硝酸盐氮重叠,需要进行波长的选择和优化。

五、个人观点和理解紫外分光光度法作为一种常用的分析方法,在水质硝酸盐氮测定中具有一定的优势。

然而,要充分发挥其优势,还需要结合实际情况,对样品进行充分的前处理,以及对干扰物进行合理的处理和校正。

硝酸盐氮的测定(紫外分光光度法)

硝酸盐氮的测定(紫外分光光度法)

xx行业标准硝酸盐氮的测定(紫外分光光度法)SL84—1994Determination of nitrogen (nitrate)(Ultraviolet spectrophtometric method)水利部1995/05/01批准1995/05/01实施1总则1.1主题内容本标准规定了用紫外分光光度法测定水中的硝酸盐氮。

1.2适用范围本方法适用于清洁地面水和未受明显污染的地下水中硝酸盐氮的测定,其最低检出浓度为0.08mg/L,测量上限为4mg/L硝酸盐氮。

1.3干扰及消除溶解的有机物、表面活性剂、亚硝酸盐、六价铬、溴化物、碳酸氢盐和碳酸盐等干扰测定,需进行适当的预处理。

本法采用絮凝共沉淀和大孔中性吸附树脂进行处理,以去除水样中大部分常见有机物、浊度和Fe3+、Cr6+对测定的干扰。

2方法原理利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。

溶解的有机物在220nm处和275nm处均有吸收,而硝酸根离子在275nm处没有吸收。

因此,在275nm处作另一次测量,以校正硝酸盐氮值。

3仪器3.1紫外分光光度计。

3.2离子交换柱(Ǿ1.4cm,装树脂高5~8cm)。

3.3常用实验设备。

4试剂4.1氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]或硫酸铝铵[NH4Al(SO4)12H2O]于1000mL水中,加热至60℃。

2·然后边搅拌边缓缓加入55mL浓氨水。

放置约1h后,移至一个大瓶中,用倾泻法反复洗涤沉淀物,直到该溶液不含铵离子为止。

最后加300mL纯水成悬浮液。

使用前振荡均匀。

4.2硫酸锌溶液:10%(m/V)。

4.3氢氧化钠溶液:C(NaOH)=5mol/L。

4.4大孔型中性树脂:CAD/40或XAD/2型及类似型号树脂。

4.5甲醇。

4.6盐酸溶液:C(HCl)=1mol/L(盐酸系优级纯)。

4.7氨基磺酸(H2NSO3H)溶液:0.8%(m/V),避光保存于冰箱中。

硝酸盐氮分光光度法

硝酸盐氮分光光度法

硝酸盐氮分光光度法是一种常用的分析方法,用于测定水样中的硝酸盐氮含量。

本文将详细介绍硝酸盐氮分光光度法的原理、操作步骤和应用范围。

一、原理硝酸盐氮分光光度法是基于硝酸盐离子(NO3-)对紫外可见光的吸收特性进行分析的方法。

在特定波长下,硝酸盐离子会吸收一定量的光能,其吸收量与硝酸盐氮的浓度成正比关系。

通过测定吸光度的变化,可以确定水样中硝酸盐氮的含量。

二、操作步骤1. 样品的制备:首先,取一定量的水样,加入适量的稀硫酸溶液,并加热至沸腾,使硝酸盐完全转化为硝酸校准液。

然后,冷却并过滤样品,得到待测溶液。

2. 标准曲线的制备:取一系列浓度已知的硝酸盐标准溶液,分别进行相同的处理,并测定其吸光度。

然后,利用吸光度与浓度的线性关系绘制标准曲线。

3. 测定待测溶液的吸光度:将待测溶液置于分光光度计中,选择适当的波长进行测定,并记录吸光度数值。

4. 计算硝酸盐氮含量:根据标准曲线,将待测溶液的吸光度数值代入计算公式中,计算出硝酸盐氮的浓度。

三、应用范围硝酸盐氮分光光度法广泛应用于环境监测、水质评价、农业生产等领域。

具体的应用包括:1. 水质监测:用于测定地下水、河流、湖泊等水体中的硝酸盐氮含量,评估水体的污染程度。

2. 农业生产:用于土壤中硝酸盐氮含量的测定,帮助合理调控农作物的施肥量,提高农作物的产量和品质。

3. 环境保护:用于监测大气中的硝酸盐氮含量,评估大气污染物的来源和影响。

4. 工业生产:用于测定废水中的硝酸盐氮含量,指导废水处理工艺和控制排放标准。

总之,硝酸盐氮分光光度法是一种简便、快速、准确的分析方法,可广泛应用于水质监测、农业生产、环境保护和工业生产等领域,为相关领域的研究和实践提供了重要的技术支持。

水中硝酸盐氮的测定

水中硝酸盐氮的测定

水中硝酸盐氮的测定——紫外分光光度法一、实验目的1、熟悉并掌握紫外分光光度计的原理及使用方法2、学习运用紫外分光光度法测定水中的NO3-N。

二、实验原理硝酸盐中的氮称为硝酸盐氮,水中的有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等几项指标的相对含量,在一定程度上反映了含氮有机物存在于水体的时间长短,从而对探讨水体污染历史、它们的分解趋势和水体自净情况有一定的参考价值。

在紫外光谱区,硝酸根有强烈的吸收,其吸收值与硝酸根的浓度成正比。

在波长210-220nm处,可测定其吸光度。

水中溶解的有机物,在波长220及275nm下均有吸收,而硝酸根在275nm 时没有吸收。

这样,需在275nm处作一次测定,以校正硝酸根的吸光度。

三、主要仪器紫外分光光度计;石英比色皿。

四、主要试剂(1)盐酸溶液(c(HCl)=l mol/L):量取浓盐酸83mL,用蒸馏水稀释至1000mL;(2)硝酸根标准贮备溶液(100mg/L):准确称取在105~110℃烘干1h的硝酸钾0.1631g,溶于蒸馏水中,定容至1000mL。

(3)硝酸根标准溶液(10mg/L):取硝酸根标准贮备溶液(2)10.0mL于100mL 容量瓶中,用蒸馏水定容。

五、实验步骤(1)待测水样前处理:取25ml待测水样加入到50ml容量瓶中,加入盐酸溶液(l mol/L)1mL,用蒸馏水稀释至刻度,摇匀。

(2)空白样前处理:取25ml无氨水加入到50ml容量瓶中,加入盐酸溶液1mL,用蒸馏水稀释至刻度。

(3)标准液前处理:向7支50ml容量瓶中分别加入硝酸根标准溶液(10mg/L)1.0,2.0,4.0,10.0,15.0,20.0,40.0mL,各加入盐酸溶液1mL,用蒸馏水稀释至刻度。

7支容量瓶中的NO3-N的质量分别为10,30,40,100,150,200,400 µg。

(4)分光光度计测定:①标准液吸光度的测定,分别在220nm与275nm波长处测定7支装有不同浓度标准液和空白样溶液的吸光度,并且按照下列式进行校正:As=As220-2As275Ab=Ab220-2Ab275Ar=As-Ab其中As220为标准溶液在220nm的吸光度,As275为标准溶液在275nm的吸光度,Ab220为空白液在220nm的吸光度,Ab275为空白液在275nm的吸光度。

水质 硝酸盐氮的测定原始记录(紫外法)

水质 硝酸盐氮的测定原始记录(紫外法)

测定条件 测定波长: 220 nm; 275 nm;比色皿规格: 10 mm;参比液: 1mol/L 盐酸溶液
标准溶液 硝酸盐氮标准溶液 标准溶液浓度(mg/L)
配制日期
校准曲线信息[制备日期:
]Y=bX+a;a=
;b=
;r=空白 A0220空白 A0275空白 A0(A0220-2A0275)
校准点浓度(mg/L)
校准相对偏差要求
≤5%
曲线校准
校准点吸光度 A
校准点测值(mg/L)
相对偏差(%)
核查结论
□合格 □不合格
测定样品信息[样品种类:地表水 地下水 其他
收样日期:
]
样品编号
取样体 稀释倍数
积 V(mL)
f
吸光度 A220
;样品状态: 液体 ;
吸光度 A275
浓度 C(mg/L)
备注
分析:
复核:
日期:
年月日
- -J179
有限公司
年 月 日颁布
水质 硝酸盐氮的测定原始记录 第 页 共 页
项目编号
温度(℃)
湿度(RH%)
检测依据 水质 硝酸盐氮的测定 紫外分光光度法(试行)HJ/T 346-2007[检出限:0.08mg/L]
仪器名称 紫外可见分光光度计
仪器型号
仪器编号
计算公式
公式:C=[(A220-2×A275)-A0-a]×f/b 式中: A220:220nm 波长测得的吸光度 A275:275nm 波长测得的吸光度
有限公司
年 月 日颁布
- -J179 水质 硝酸盐氮的测定原始记录(续表) 第 页 共 页
样品编号
取样体 稀释倍数

硝酸盐氮(HJ_T346-2007)

硝酸盐氮(HJ_T346-2007)

1 分析方法紫外分光光度法2 方法依据HJ/T346-2007《水质硝酸盐氮的测定紫外分光光度法》3 适用范围本标准适用于地表水、地下水中硝酸盐氮的测定。

4方法检测范围方法最低检出质量浓度为0.08mg/l,测定下限为0.32 mg/l ,测定上限为4 mg/l。

5 原理利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。

溶解的有机物在220nm处也会有吸收,而硝酸根离子在2785nm处没有吸收. 因此,在275nm处作另一次测量,以校正硝酸盐氮值。

6 试剂和材料本标准所用试剂除另有注明外,均为符合国家标准的分析纯化学试剂;实验用水为新制备的去离子水。

6.1 盐酸:c(HCl)=1mol/L。

6.2硝酸盐氮标准贮备液:称取0.722g经105~110℃干燥2h的优级纯硝酸钾(KNO3)溶于水,移入1000ml容量瓶中,稀释至标线,加2ml三氯甲烷作保存剂,混匀,至少可稳定6个月。

该标准贮备液每毫升含0.100mg硝酸盐氮(100mg/L)。

6.30.8%氨基磺酸溶液:避光保存于冰箱中。

6.4硝酸盐氮标准使用液:将100mg/L的硝酸盐氮标准贮备液稀释十倍,浓度为10mg/L。

7 仪器7.1紫外分光光度计。

7.2 分光光度计,10mm 比色皿。

8采样采集样品应置于采样瓶中注满,立即用盐酸酸化至pH<1保存。

9 分析步骤9.1取50ml以上水样置于烧杯中,用经去离子水煮过三次的0.45mm微孔滤膜抽滤,取出50ml抽滤出的水样至于50ml比色管中。

9.2 加1.0ml盐酸溶液( 6.1 ), 0.1ml氨基磺酸溶液( 6.3 )于比色管中,当亚硝酸盐氮低于0.1mg/L时,可不加氨基磺酸溶液( 6.3 )。

9.3 用光程长10mm石英比色皿,在 220nm和275nm波长处,以的新鲜去离子水50ml加1ml 盐酸溶液(6.1 )为参比,测量吸光度。

9.4校准曲线的绘制:于 5个50ml比色管中分别加入 0.50 、 1.00 、 2.00 、 3.00 、 4.00 ml硝酸盐氮标准贮备液( 6.4 ),用新鲜去离子水稀释至标线,其质量浓度分别为0.5 、 1.00 、2.00 、3.00 、4.00 mg/ L硝酸盐氮。

水质 硝酸盐氮紫外分光光度法

水质 硝酸盐氮紫外分光光度法

水质硝酸盐氮紫外分光光度法摘要:一、硝酸盐氮的概述二、紫外分光光度法的原理三、水质硝酸盐氮紫外分光光度法的检测步骤四、水质硝酸盐氮紫外分光光度法的实用性五、结论正文:一、硝酸盐氮的概述硝酸盐氮(NO3-N)是水体中的一种重要氮化合物,主要由有机物分解、土壤中硝酸盐淋溶和工业废水排放等因素导致。

硝酸盐氮在水体中含量过高,会对水生生物和人类健康产生危害。

因此,对水质中硝酸盐氮的检测具有重要意义。

二、紫外分光光度法的原理紫外分光光度法是一种基于硝酸盐氮与紫外光吸收关系的分析方法。

硝酸盐氮在紫外光区域有一定的吸收特性,通过测量水样在特定波长下的吸光度,可以推算出硝酸盐氮的浓度。

三、水质硝酸盐氮紫外分光光度法的检测步骤1.样品处理:首先对水样进行过滤、蒸馏等预处理,以消除杂质对检测结果的影响。

2.标准曲线制备:制备一系列不同浓度硝酸盐氮的标准溶液,并用紫外分光光度计测定其吸光度,绘制标准曲线。

3.样品测定:将处理后的水样与硝酸盐氮显色剂反应,生成显色产物。

然后用紫外分光光度计测定水样在特定波长下的吸光度。

4.结果计算:根据测得的吸光度和标准曲线,计算出水样中硝酸盐氮的浓度。

四、水质硝酸盐氮紫外分光光度法的实用性水质硝酸盐氮紫外分光光度法具有以下优点:1.灵敏度高:紫外分光光度法能检测到较低浓度的硝酸盐氮,有利于发现水体中潜在的污染问题。

2.准确度高:该方法受其他水体成分的干扰较小,测定结果较为准确。

3.分析速度快:紫外分光光度法操作简便、分析速度快,有利于提高检测效率。

4.成本低:与其他分析方法相比,紫外分光光度法仪器设备简单,降低了检测成本。

五、结论水质硝酸盐氮紫外分光光度法作为一种实用的水质检测方法,具有较高的准确度和灵敏度,操作简便,成本低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中华人民共和国行业标准
硝酸盐氮的测定
(紫外分光光度法)
SL84—1994
Determination of nitrogen (nitrate)
(Ultraviolet spectrophtometric method)
水利部1995/05/01批准1995/05/01实施
1 总则
1.1主题内容
本标准规定了用紫外分光光度法测定水中的硝酸盐氮。

1.2 适用范围
本方法适用于清洁地面水和未受明显污染的地下水中硝酸盐氮的测定,其最低检出浓度为0.08mg/L,测量上限为4mg/L硝酸盐氮。

1.3干扰及消除溶解的有机物、表面活性剂、亚硝酸盐、六价铬、溴化物、碳酸氢盐和碳酸盐等干扰测定,需进行适当的预处理。

本法采用絮凝共沉淀和大孔中性吸附树脂进行处理,以去除水样中大部分常见有机物、浊度和Fe3+、Cr6+对测定的干扰。

2 方法原理
利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。

溶解的有机物在220nm处和275nm处均有吸收,而硝酸根离子在275nm处没有吸收。

因此,在275nm处作另一次测量,以校正硝酸盐氮值。

3仪器
3.1紫外分光光度计。

3.2离子交换柱(Ǿ1.4cm,装树脂高5~8cm)。

3.3常用实验设备。

4 试剂
4.1氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]或硫酸铝铵[NH4Al(SO4)2·12H2O]于1000mL水中,加热至60℃。

然后边搅拌边缓缓加入55mL浓氨水。

放置约1h后,移至一个大瓶中,用倾泻法反复洗涤沉淀物,直到该溶液不含铵离子为止。

最后加300mL纯水成悬浮液。

使用前振荡均匀。

4.2硫酸锌溶液:10%(m/V)。

4.3氢氧化钠溶液:C(NaOH)=5mol/L。

4.4大孔型中性树脂:CAD/40或XAD/2型及类似型号树脂。

4.5甲醇。

4.6盐酸溶液:C(HCl)=1mol/L(盐酸系优级纯)。

4.7氨基磺酸(H2NSO3H)溶液:0.8%(m/V),避光保存于冰箱中。

4.8硝酸盐氮标准溶液:C(NO3-N)=100mg/L。

将0.7218g经105~110℃干燥2h的硝酸钾(KNO3)溶于水中,移入1000mL容量瓶,用水稀释至标线,混匀。

加2mL氯仿作保存剂,至少可稳定6个月。

每毫升此标准溶液含0.100mg硝酸盐氮。

5 步骤
5.1水样预处理:
5.1.1吸附柱制备:新的树脂先用200mL去离子水分两次洗涤,用甲醇(4.5)
浸泡过夜,弃去甲醇,再用40mL甲醇分两次洗涤,用新鲜去离子水洗到柱中流出液滴落于烧杯中无乳白色为止;树脂装入柱中时,树脂间绝对不允许存在气泡。

5.1.2量取200mL水样置于锥形瓶中,加入硫酸锌溶液(4.2)2mL,在搅拌下滴加氢氧化钠溶液(4.3),调节pH等于7。

或将200ml水样调节pH=7,加4mL氢氧化铝悬浮液(4.1)。

5.1.3待絮凝胶团下沉后,吸取上清液(或离心分离)注入吸附树脂柱中,以取每秒1~2滴的流速流出(注意各个水样间的流速保持一致)。

先用100mL水样上清液分两次洗涤柱子,弃去。

再使水样上清液通过柱子,收集50mL于比色管中,备测定用,树脂用150mL水分三次洗涤,备用。

5.2水样测定:
5.2.1在盛有水样的比色管中加1.0mL盐酸溶液(4.6),0.1mL氨基磺酸溶液(4.7)(若亚硝酸盐氮低于0.1mg/L时,可不加氨基磺酸溶液)。

5.2.2用1cm石英比色皿在紫外分光光度计上,用新鲜去离子水50mL,加1mL盐酸溶液(4.6)作参比,测定水样在220nm及275nm波长处的吸光度。

5.3校准曲线的绘制:向6支100mL容量瓶中依次加入0、0.25、0.50、1.00、1.50、2.00mL硝酸钾标准溶液(4.8),用新鲜去离子水稀释到100mL(其相应浓度为0、0.25、0.50、1.00、1.50、2.0.0mg/L硝酸盐氮,若测较高含量的样品时需适当扩展系列)。

按水样测定相同步骤测量吸光度。

根据220nm与二倍275nm波长吸光度值之差对浓度作图,绘制校准曲线。

6 结果表示
6.1校正吸光度计算
式中:Ar———校正吸光度;
A220nm———220nm波长处测得的吸光度;
A275nm———275nm波长处测得的吸光度。

6.2硝酸盐氮含量计算
式中:C———水样中硝酸盐氮浓度,mg/L;
m———依校正吸光度值Ar从校准曲线上查出的相应硝酸盐氮含量,mg;
V———所取水样的体积,mL。

7 精密度和准确度
经六个实验室分析含 1.80mg/L硝酸盐氮的统一标样,实验室内相对标准偏差为2.6%;实验室间总相对标准偏差为5.1%;相对误差为1.1%。

8 注意事项
8.1为了解水中受污染程度和变化情况,需对水样进行紫外吸收光谱分布曲线的扫描,如无扫描装置时,可手动在220~280nm间,每隔2~5nm测量吸光度,绘制波长-吸光度曲线。

水样与近似浓度的标准溶液分布曲线应类似,且在220nm及275nm附近不应有肩状或折线出现。

参考吸光度比值应小于20%,越小越好。

水样经上述方法适用情况检验后,符合要求时,应不经预处理,直接
取50mL水样于比色管中,加盐酸和氨基磺酸溶液后,进行吸光度测量。

如经絮凝后水样亦达到上述要求,则也可只进行絮凝预处理,省略树脂吸附操作。

8.2含有有机物的水样,而硝酸盐含量较高时,必须先进行预处理后再稀释。

8.3大孔中性吸附树脂对环状、空间结构大的有机物吸附能力强,对低碳链、有较强极性和亲水性的有机物吸附力差。

8.4当水样存在六价铬时,絮凝剂应采用氢氧化铝,并放置0.5h以上再取上清液供测定用。

相关文档
最新文档