2021年中考数学 专题训练 与圆相关的计算(含答案)
2021中考数学 专题训练:圆的有关性质(含答案)

2021中考数学 专题训练:圆的有关性质一、选择题1. 如图,线段AB 经过☉O 的圆心,AC ,BD 分别与☉O 相切于点C ,D.若AC=BD=4,∠A=45°,则圆弧CD 的长度为 ( )A .πB .2πC .2πD .4π2. 如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 的度数是( )A .40°B .45°C .50°D .60°3. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P (0,-3),那么经过点P 的所有弦中,最短的弦的长为( )A .4B .5C .8D .104. 如图,AB 是⊙O的直径,点C ,D ,E 在⊙O 上.若∠AED =20°,则∠BCD的度数为( )A .100°B .110°C .115°D .120°5. 如图,AB 是⊙O的直径,弦CD ⊥AB 于点E.若AB =8,AE =1,则弦CD 的长是( )A.7 B .27 C .6 D .86. 在⊙O 中,M为AB ︵的中点,则下列结论正确的是( )A .AB >2AM B .AB =2AMC .AB <2AMD .AB 与2AM 的大小关系不能确定7. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 38. 如图,在⊙O内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19B .16C .18D .209. 如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则⊙O 的半径为( )A.2 3 B.3 C.4 D.4- 310. (2019•仙桃)如图,AB为的直径,BC为的切线,弦AD∥OC,直线CD交的BA延长线于点E,连接BD.下列结论:①CD是的切线;②;③;④.其中正确结论的个数有A.4个B.3个C.2个D.1个二、填空题11. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.12. 如图0,A,B是⊙O上的两点,AB=10,P是⊙O上的动点(点P与A,B 两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.13. 如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连接OD ,BE ,它们交于点M ,且MD =2,则BE 的长为________.14. 如图,AB ,CD是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是⊙O 的直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.15. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.三、解答题16.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)17.如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.18. 已知平面直角坐标系中两定点A (-1, 0)、B (4, 0),抛物线y =ax 2+bx -2(a≠0)过点A 、B ,顶点为C ,点P (m , n )(n <0)为抛物线上一点. (1)求抛物线的解析式和顶点C 的坐标; (2)当∠APB 为钝角时,求m 的取值范围;(3)若m >,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <)个单位,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得顺次首尾连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考数学 专题训练:圆的有关性质-答案一、选择题1. 【答案】B [解析]连接CO ,DO ,因为AC ,BD 分别与☉O 相切于C ,D ,所以∠ACO=∠BDO=90°,所以∠AOC=∠A=45°,所以CO=AC=4, 因为AC=BD ,CO=DO ,所以OD=BD ,所以∠DOB=∠B=45°,所以∠DOC=180°-∠DOB -∠AOC=180°-45°-45°=90°,==2π,故选B .2. 【答案】A[解析] ∵∠A =50°,OA =OB ,∴∠B =∠A =50°,∴∠AOB =180°-50°-50°=80°. ∵C 是AB ︵的中点, ∴∠BOC =12∠AOB =40°. 故选A.3. 【答案】C[解析] 过点P 作弦AB ⊥OP ,连接OB ,如图.则PB =AP ,∴AB =2BP =2OB2-OP2.再过点P 任作一条弦MN ,过点O 作OG ⊥MN 于点G ,连接ON . 则MN =2GN =2ON2-OG2.∵OP >OG ,OB =ON ,∴MN >AB , ∴AB 是⊙O 中的过点P 最短的弦.在Rt △OPB 中,PO =3,OB =5,由勾股定理,得PB =4,则AB =2PB =8.4. 【答案】B[解析] 连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵∠AED =20°,∴∠ACD =20°,∴∠BCD =∠ACB +∠ACD =110°.故选B.5. 【答案】B[解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.6. 【答案】C[解析] 如图,∵M 为AB ︵的中点,∴AM =BM.∵AM +BM >AB , ∴AB <2AM.故选C.7. 【答案】B[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB=2BE .∵OC =6,CD =2OD ,∴CD =4,OD =2,OB =6.由折叠的性质可得DE =12×(6×2-4)=4,∴OE =DE -OD =4-2=2.在Rt △OEB 中,BE =OB2-OE2=62-22=4 2,∴AB =8 2.故选B.8. 【答案】D[解析] 如图,延长AO 交BC 于点D ,过点O 作OE ⊥BC 于点E.∵∠A =∠B =60°,∴△DAB 是等边三角形,∴AD =DB =AB =12,∠ADB =∠A =60°,∴OD =AD -OA =12-8=4.在Rt △ODE 中,∵∠DOE =90°-∠ADB =30°,∴DE =12OD =2,∴BE =DB -DE =12-2=10.由垂径定理,知BC =2BE =20.9. 【答案】A[解析] 如图,设⊙O 与AC 的切点为E ,连接AO ,OE.∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°. ∵⊙O分别与边AB,AC相切,∴∠OEC=90°,∠BAO=∠CAO=12∠BAC=30°,∴∠AOC=90°,∴OC=12AC=4.在Rt△OCE中,∠OEC=90°,∠C=60°,∴∠COE=30°,∴CE=12OC=2,∴OE=2 3,∴⊙O的半径为2 3.10. 【答案】A【解析】如图,连接.∵为的直径,为的切线,∴,∵,∴,.又∵,∴,∴.在和中,,∴,∴.又∵点在上,∴是的切线,故①正确,∵,∴,∵,∴垂直平分,即,故②正确;∵为的直径,为的切线,∴,∴,∴,∵,∴,∴,∵,∴,故③正确;∵,,∴,∴,∵,∴,故④正确,故选A.二、填空题11. 【答案】10或70[解析]作OD⊥AB于C,OD交☉O于点D,连接OB.由垂径定理得:BC=AB=30 cm.在Rt△OBC中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm时,圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm时,水面上升的高度为:40+30=70(cm).综上可得,水面上升的高度为10 cm或70 cm.故答案为10或70.12. 【答案】5[解析] ∵OE过圆心且与PA垂直,∴PE=EA.同理PF=FB,∴EF是△PAB的中位线,∴EF=12AB=5.13. 【答案】8[解析] 连接AD,如图所示.∵以AB为直径的⊙O与BC交于点D,与AC交于点E,∴∠AEB=∠ADB=90°,即AD⊥BC.又∵AB=AC,∴BD=CD.又∵OA=OB,∴OD∥AC,∴OD⊥BE,∴BM=EM,∴CE=2MD=4,∴AE=AC-CE=6,∴BE=AB2-AE2=102-62=8.14. 【答案】7 2[解析] 如图,连接OB,OC,BC,则BC的长即为P A+PC 的最小值.过点C作CH⊥AB于点H,则四边形EFCH为矩形,∴CH=EF,EH=CF.根据垂径定理,得BE=12AB=4,CF=12CD=3,∴OE=OB2-BE2=52-42=3,OF=OC2-CF2=52-32=4,∴CH=EF=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7.在Rt△BCH中,由勾股定理,得BC=7 2,则P A+PC的最小值为7 2.15. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.三、解答题16. 【答案】(1)证明:如解图,连接OD,(1分)∵DF是⊙O的切线,D为切点,解图∴OD⊥DF,∴∠ODF=90°,(2分)∵BD=CD,OA=OB,∴OD是△ABC的中位线,(3分)∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(4分)(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°-∠CDF-∠ODF=60°,∵OB=OD,∴△OBD是等边三角形,(7分)∴∠BOD=60°,∴lBD ︵=nπR 180=60π×5180=53π.(8分)17. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°,∴△COP 和△BOP 都为等边三角形,∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CP A (HL).18. 【答案】(1)因为抛物线y =ax 2+bx -2与x 轴交于A (-1, 0)、B (4, 0)两点, 所以y =a (x +1)(x -4)=ax 2-3ax -4a .所以-4a =-2,b =-3a .所以,.所以。
2021年九年级中考数学 几何专题:与圆相关的计算(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2021中考数学几何专题:与圆相关的计算一、选择题(本大题共10道小题)1. 如图,AB,CD是⊙O的两条互相垂直的直径,O1,O2,O3,O4分别是OA,OB,OC,OD的中点.若⊙O的半径是2,则阴影部分的面积为()A.8 B.4C.4π+4 D.4π-42. 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB =5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.93. 如图半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()图A.35π B.45π C.34π D.23π4.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=2,则图中阴影部分的面积是( )A. π4B.12+π4C.π2D.12+π25. 一元硬币的直径约为24 mm,则用它能完全覆盖住的正六边形的边长最大为()A.12 mm B.12 3 mm C.6 mm D.6 3mm6. (2020·云南)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆椎的底面圆的半径是()A.B.1 C.D.7. 若正方形的外接圆的半径为2,则其内切圆的半径为()A. 2 B.2 2 C.22D.18. 如图,将两张完全相同的正六边形纸片(边长为2a)重合在一起,下面一张纸片保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分的面积之比是()A.5∶2 B.3∶2 C.3∶1 D.2∶19. 已知一个圆心角为270°的扇形工件,未搬动前如图所示,A,B两点触地放置,搬动时,先将扇形以B为圆心,作如图所示的无滑动旋转,再使它紧贴地面滚动,当A,B两点再次触地时停止,扇形工件所在圆的直径为6 m,则圆心O所经过的路线长是(结果用含π的式子表示)()A.6π m B.8π m C.10π m D.12π m10. (2020·株洲)如图所示,点A、B、C对应的刻度分别为0、2、4、将线段CA绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点1A,则此时线段CA扫过的图形的面积为()A. 4πB. 6C. 43D. 8 3π二、填空题(本大题共6道小题)11. 在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.12. (2020·黑龙江龙东)小明在手工制作课上,用面积为150πcm2,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为cm.13. (2020·玉林)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF 绕顶点A顺时针旋转到四边形AD/E/F/处,此时边AD/与对角线AC重叠,则图中阴影部分的面积是.14. (2019•十堰)如图,AB为半圆的直径,且6AB=,将半圆绕点A顺时针旋转60︒,点B旋转到点C的位置,则图中阴影部分的面积为__________.15. (2020·广西北部湾经济区)如图,在边长为2的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E 从点A运动到点B时,则点P的运动路径长为.16. (2020·青岛)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,弧MN的长为π,则图中阴影部分的面积为.三、解答题(本大题共5道小题)17. 如图,BE是☉O的直径,点A和点D是☉O上的两点,过点A作☉O的切线交BE的延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求☉O的半径长.18.如图,AB为⊙O的直径,C,D是半圆O的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.19. (2020·河北)如图13,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD,以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆,点P 为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE ,CP .(1)①求证:△AOE ≌△POC ;②写出∠1,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S 扇形EOD (答案保留π).备用图图1321BAO BAO CDDCPE20. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG . (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.21. (2020•呼和浩特)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比≈0.618.如图,圆内接正五边形ABCDE ,圆心为O ,OA 与BE 交于点H ,AC 、AD 与BE 分别交于点M 、N .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)(1)求证:△ABM是等腰三角形且底角等于36°,并直接说出△BAN的形状;(2)求证:,且其比值k=;(3)由对称性知AO⊥BE,由(1)(2)可知也是一个黄金分割数,据此求sin18°的值.2021中考数学几何专题:与圆相关的计算-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】A3. 【答案】B[解析] 连接OA,OC,则∠OAE=∠OCD=90°.∵五边形ABCDE为正五边形,∴∠E=∠D=108°,∴∠AOC=540°-∠OAE-∠OCD-∠E-∠D=144°,∴劣弧AC的长度为144180×π×1=45π.4. 【答案】A 【解析】∵AB为直径,∴∠ACB=90°,∵AC=BC=2,∴AB=2,则半径OA =OB=1,∵△AOC≌△BOC,∴△AOC的面积与△BOC的面积相等,∴阴影部分的面积刚好是四分之一圆的面积,即为14π×12=π4.5. 【答案】A[解析] 正六边形外接圆的直径等于正六边形边长的2倍.6. 【答案】D .【解析】设圆椎的底面圆的半径为r ,根据题意可知:AD =AE =4,∠DAE =45°,∴2πr =,解得r =.所以该圆椎的底面圆的半径是. 7. 【答案】A[解析] 如图所示,连接OA ,OE.∵AB 是小圆的切线, ∴OE ⊥AB.∵四边形ABCD 是正方形, ∴AE =OE.在Rt △AOE 中,由勾股定理,得OA2=AE2+OE2,∴22=AE2+OE2, ∴OE = 2.故选A.8. 【答案】C[解析] 正六边形的面积=6×34×(2a )2=6 3a 2,阴影部分的面积=a ·2 3a =2 3a 2,∴空白部分与阴影部分的面积之比是=6 3a 2∶2 3a 2=3∶1.9. 【答案】A[解析] 如图,∠AOB =360°-270°=90°,则∠ABO =45°,则∠OBC =45°,点O 旋转的长度是2×45π×3180=32π(m),点O 移动的距离是270π×3180=92π(m),则圆心O 所经过的路线长是32π+92π=6π(m).10. 【答案】D【解析】求线段CA 扫过的图形的面积,即求扇形ACA 1的面积. 由题意,知AC=4,BC=4-2=2,∠A 1BC=90°.由旋转的性质,得A 1C=AC=4. 在Rt △A 1BC 中,cos ∠ACA 1=1BC A C =12.∴∠ACA 1=60°. ∴扇形ACA 1的面积为2460360π⨯⨯=83π. 即线段CA 扫过的图形的面积为83π.故选:D二、填空题(本大题共6道小题)11. 【答案】5 [解析]如图,已知☉O ,圆内接正方形ABCD.连接OB ,OC ,过O 作OE ⊥BC ,设此正方形的边长为a ,由垂径定理及正方形的性质得出OE=BE=,由勾股定理得OE 2+BE 2=OB 2,即2+2=52,解得a=5.12. 【答案】10【解析】本题考查了圆锥侧面的展开图,解:∵S l•R ,∴•l•15=150π,解得l =20π,设圆锥的底面半径为r ,∴2π•r =20π,∴r =10(cm ). 故答案为:10. 13. 【答案】3π 【解析】先观察图中阴影部分的面积应该等于哪几个规则图形面积的和或差,然后再根据公式进行计算.∵六边形ABCDEF 是正六边形∴每个内角的度数为180°-3606=120°,且AB =BC ,∴∠F AB =∠E =∠B =120°,∵AB =BC ,∴∠CAB =∠ACB =30°,∵任何正六边形都有一个外接圆,∴四边形ADEF 是正六边形外接圆中的内接四边形且AD 为直径,∴AD =6,∠E +∠F AD =180°,∴∠F AD =60°,∴∠DAC =120°-∠F AD -∠CAB =30°,由旋转的性质得:四边形AD /E /F /≌四边形ADEF ,则图中阴影部分的面积=四边形ADEF 的面积+扇形ADD '的面积-四边形AD /E /F /的面积=扇形ADD '的面积=2306360π⨯=3π;故答案为:3π.14. 【答案】6π【解析】由图可得,图中阴影部分的面积为:22260π6π(62)π(62)6π36022⨯⨯⨯÷⨯÷+-=,故答案为:6π.15. 【答案】π【解析】如图,作△CBD 的外接圆⊙O ,连接OB ,OD .∵四边形ABCD 是菱形,∵∠A =∠C =60°,AB =BC =CD =AD , ∴△ABD ,△BCD 都是等边三角形,∴BD =AD ,∠BDF =∠DAE ,∵DF =AE ,∴△BDF ≌△DAE (SAS ), ∴∠DBF =∠ADE , ∵∠ADE +∠BDE =60°, ∴∠DBF +∠BDP =60°, ∴∠BPD =120°,∵∠C =60°,∴∠C +∠DPB =180°, ∴B ,C ,D ,P 四点共圆, 由BC =CD =BD =2,可得OB =OD =2,∵∠BOD =2∠C =120°, ∴点P 的运动的路径的长π.,因此本题答案是π.16. 【答案】π33324--【解析】本题考查了切线的性质、四边形的内角和、弧长公式、三角形的面积公式、切线长定理、三角函数、组合图形的面积计算,解答过程如下:如图所示,连接OM 、ON 、OA ,设BC 与半圆O 分别交于点D 、E ,∵以O 为圆心的半圆分别与AB ,AC 相切于点M ,N ,∴OM ⊥AB ,ON ⊥AC ,∠MAO=∠NAO=21∠BAC=21×120°=60°,AN=AM ,∴∠MON=360°-90°-90°-120°=60°,∴∠BOM+∠CON=180°-∠MON=180°-60°=120°.∵弧MN 的长为π,∴ππ=⋅18060OM,∴OM=ON=3.∵MAO AM OM ∠=tan ,∴306tan 3=︒=AM,∴3==AM AN . ∴图中阴影部分的面积为:NOE DOM AMON ABC S S S S 扇形扇形四边形△--- =)(2NOE DOM AOM ACO ABO S S S S S 扇形扇形△△△+--+=36012021221212OM OM AM ON AC OM AB ⋅-⋅⨯-⋅+⋅π =3)(212OM OM AM OM AC AB ⋅-⋅-⋅+π =3333316212⋅--⨯⨯π =π33324--.因此本题答案为π33324--.三、解答题(本大题共5道小题)17. 【答案】解:(1)如图,连接OA ,∵AC 为☉O 的切线,OA 是☉O 的半径,∴OA ⊥AC.∴∠OAC=90°.∵∠ADE=25°,∴∠AOE=2∠ADE=50°.∴∠C=90°-∠AOE=90°-50°=40°.(2)∵AB=AC ,∴∠B=∠C.∵∠AOC=2∠B ,∴∠AOC=2∠C.∵∠OAC=90°,∴∠AOC +∠C=90°,∴3∠C=90°,∠C=30°.∴OA=OC.设☉O 的半径为r ,∵CE=2,∴r=(r +2).∴r=2.∴☉O 的半径为2.18. 【答案】解:(1)证明:连接OC .∵C ,D 为半圆O 的三等分点,∴AD ︵=CD ︵=BC ︵,∴∠DAC =∠BAC .∵OA =OC ,∴∠BAC =∠ACO ,∴∠DAC =∠ACO ,∴OC ∥AD .∵CE ⊥AD ,∴CE ⊥OC ,∴CE 为⊙O 的切线.(2)连接OD .∵AD ︵=CD ︵=BC ︵,∴∠AOD =∠COD =∠BOC =13×180°=60°.又∵OC =OD ,∴△COD 为等边三角形,∴∠CDO =60°=∠AOD ,∴CD ∥AB ,∴S △ACD =S △COD ,∴图中阴影部分的面积=S 扇形COD =60×π×22360=2π3.19. 【答案】解:解:(1)①证明:∵OA=OB ,OE=OC ,∠AOE=∠POC ,∴△AOE ≌△POC ; ②∠1+∠C=∠2.理由:∵△AOE ≌△POC ,∴∠E=∠C.∵∠1+∠E =∠2,∴∠1+∠C=∠2.(2)相切.如图,∵CP 与小半圆相切,∴CP ⊥OP.在Rt △OPC 中,∵OP=1,OC=2,∴cos ∠COP=12,∴∠COP=60°.∴∠DOE=120°.∴S 扇形EOD=2120243603ππ⨯=. 【解析】本题考查了平行四边形的性质、垂直的性质、三角形内角和定理、平行线的性质和全等三角形的判定和性质等知识.(1)在△AOE 中,由∠AEO 和∠AOE 的度数求得∠EAO 的度数,再由AC 平分∠DAE 求得∠OAD 的度数,进而由AD ∥BC 得到∠ACB =∠OAD ,问题得解;(2)先根据AAS 证明△AEO ≌△CFO ,再根据相似三角形对应边相等得到AE =CF.20. 【答案】解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC =AD =2,∠ABC =90°.∵△BEC 绕点B 逆时针旋转90°得△BFA ,∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =CE ,∴∠AFB+∠FAB=90°.∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,AF=FG,∴∠CFG=∠FAB=∠ECB,CE=FG,∴CE綊FG,∴四边形EFGC是平行四边形,∴EF∥CG.(2)∵E是AB的中点,∴AE=BE=12AB.∵△BFA≌△BEC,∴BF=BE=12AB=1,∴AF=AB2+BF2= 5.由(1)知四边形EFGC是平行四边形,FC为其对角线,∴点G到FC的距离等于点E到FC的距离,即BE的长,∴S阴影=S扇形BAC+S△ABF+S△FGC-S扇形FAG=90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.21. 【答案】解:(1)连接圆心O与正五边形各顶点,在正五边形中,∠AOE=360°÷5=72°,∴∠ABE=∠AOE=36°,同理∠BAC=×72°=36°,∴AM=BM,∴△ABM是等腰三角形且底角等于36°,∵∠BOD=∠BOC+∠COD=72°+72°=144°,∴∠BAD=∠BOD=72°,∴∠BNA=180°﹣∠BAD﹣∠ABE=72°,∴AB=NB,即△ABN为等腰三角形;(2)∵∠ABM=∠ABE,∠AEB=∠AOB=36°=∠BAM,∴△BAM∽△BEA,∴,而AB=BN,∴,设BM=y,AB=x,则AM=AN=y,AB=AE=BN=x,∵∠AMN=∠MAB+∠MBA=72°=∠BAN,∠ANM=∠ANB,∴△AMN∽△BAN,∴,即,则y2=x2﹣xy,两边同时除以x2,得:,设=t,则t2+t﹣1=0,解得:t=或(舍),∴=;(3)∵∠MAN=36°,根据对称性可知:∠MAH=∠NAH=∠MAN=18°,而AO⊥BE,∴sin18°=sin∠MAH===.一天,毕达哥拉斯应邀到朋友家做客。
2021年中考数学 专题训练:与圆相关的计算(含答案)

2021中考数学专题训练:与圆相关的计算一、选择题1. 如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB 和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A. l1∶l2=1∶2,S1∶S2=1∶2B. l1∶l2=1∶4,S1∶S2=1∶2C. l1∶l2=1∶2,S1∶S2=1∶4D. l1∶l2=1∶4,S1∶S2=1∶42. 正八边形的中心角是()A.45°B.135°C.360°D.1080°3. 如图,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弓形弦AB的长为()A. 10 cmB. 16 cmC. 24 cmD. 26 cm4. (2019•贵阳)如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是A.30°B.45°C.60°D.90°5. 2018·宁夏用一个半径为30,圆心角为120°的扇形纸片围成一个圆锥(接缝处忽略不计),则这个圆锥的底面圆半径是()A.10 B.20 C.10π D.20π6. 如图某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以点A为圆心,AB长为半径的扇形(忽略铁丝的粗细),则所得扇形ADB的面积为()A.6 B.7 C.8 D.97. 2019·天水模拟一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是()A.60°B.90°C.120°D.180°8. 如图,边长为3的正五边形ABCDE的顶点A,B在半径为3的圆O上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆O 上时,点C转过的度数为()A.12°B.16°C.20°D.24°9. 2019·宁波如图所示,在矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形BAF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5 cm B.4 cm C.4.5 cm D.5 cm10. 2018·黑龙江如图在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A 按逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,则图阴影部分的面积为( )图A.143π-6B.259πC.338π-3 D.33+π二、填空题11. 如图①,把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图②所示的恒星图形,那么这个恒星图形的面积等于 .12. 若一个圆锥的底面圆半径为3 cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是________cm .13. 若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角是________°.14. (2019•扬州)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且B C 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__________.15. 2018·烟台如图,点O 为正六边形ABCDEF 的中心,M 为AF 的中点,以点O为圆心,OM 长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,DE 长为半径画弧得到扇形DEF .将扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1∶r 2=________.16. 佳佳对科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折(如图①所示),旋转放置,做成科学方舟模型(如图②所示).图①中正五边形的边心距OB 为2,图②中AC 为科学方舟船头A 到船底的距离,请你计算AC +12AB =________.三、解答题17. 如图,以△ABC 的边BC 为直径作☉O ,点A 在☉O 上,点D 在线段BC 的延长线上,AD=AB ,∠D=30°. (1)求证:直线AD 是☉O 的切线;(2)若直径BC=4,求图中阴影部分的面积.18. 如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作☉O ,点D 为☉O 上一点,且CD=CB ,连接DO 并延长交CB 的延长线于点E. (1)判断直线CD 与☉O 的位置关系,并说明理由; (2)若BE=2,DE=4,求☉O 的半径及AC 的长.19. 如图,☉O与△ABC的AC边相切于点C,与AB,BC边分别交于点D,E,DE∥OA,CE是☉O的直径.(1)求证:AB是☉O的切线;(2)若BD=4,CE=6,求AC的长.20. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE21. 如图,AB是⊙O的直径,点E为线段OB上一点(不与O、B重合),作EC⊥OB 交⊙O于点C,作直径CD过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE·CP;(3)当AB=43且CFCP=34时,求劣弧BD︵的长度.2021中考数学专题训练:与圆相关的计算-答案一、选择题1. 【答案】A【解析】∵∠ABC=90°,AB=2,BC=1,∴勾股定理得,AC= 5.①当△ABC绕AB旋转时,则底面周长l1=2π×BC=2π,侧面积为S1=π×BC×AC =5π;②当△ABC绕BC旋转时,则底面周长l2=2π×AB=4π,侧面积为S2=π×AB×AC=25π,∴l1∶l2=2π∶4π=1∶2,S1∶S2=5π∶25π=1∶2.2. 【答案】A3. 【答案】C【解析】设弓形高为CD,则DC的延长线过点O,且OC⊥AB,因为半径为13,所以OB=OD=13,因为弓形高为8,所以CD=8,在RtΔOBC 中,根据勾股定理得OC2+BC2=OB2,即BC=OB2-OC2=132-(13-8)2=12,由垂径定理得AB=2BC=24 cm.4. 【答案】A【解析】∵在正六边形ABCDEF中,∠BCD=(62)1806-⨯︒=120°,BC=CD,∴∠CBD=12(180°-120°)=30°,故选A.5. 【答案】A6. 【答案】D[解析] ∵正方形的边长为3,∴BD ︵的长度为6,∴S 扇形ADB =12lR =12×6×3=9.7. 【答案】D8. 【答案】A[解析] 设点E 第一次落在圆上时的对应点为E ′,连接OA ,OB ,OE ′,如图.∵五边形ABCDE 为正五边形, ∴∠EAB =108°.∵正五边形ABCDE 绕点A 逆时针旋转,点E 第一次落在圆O 上的点E ′处, ∴AE ′=AE =3.∵OA =AB =OB =OE ′=3,∴△OAE ′,△OAB 都为等边三角形, ∴∠OAB =∠OAE ′=60°, ∴∠E ′AB =120°, ∴∠EAE ′=12°,∴当点E 第一次落在圆O 上时,点C 转过的度数为12°.9. 【答案】B10. 【答案】B[解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.二、填空题11. 【答案】4-π[解析]如图,∵新的正方形的边长为1+1=2,∴恒星的面积=2×2-π×12=4-π,故答案为:4-π.12. 【答案】9【解析】由n=360rl得120=360×3l,解得l=9.13. 【答案】120【解析】圆锥的侧面展开图是扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.设扇形的圆心角为n°,则2π×2=nπ·6180,解得n=120.14. 【答案】15【解析】如图,连接OB,∵AC是⊙O的内接正六边形的一边,∴∠AOC=360°÷6=60°,∵BC是⊙O的内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOB=60°–36°=24°,即360°÷n=24°,∴n=15,故答案为:15.15. 【答案】3∶2[解析] 如图连接OA,OB,OF.∵六边形ABCDEF为正六边形,∴OA=OF,∠AOF=∠AOB=60°,∠E=120°.∵M为AF的中点,∴∠AOM=30°.由题意,得ON=OM.易证△BON≌△AOM,∴∠BON=∠AOM=30°,∴∠MON=120°.设AM=a,则AB=OA=2a,OM=3 a,∴扇形MON的弧长为120×π×3a180=2 33πa,则r1=33a.同理可得,扇形DEF 的弧长为120×π×2a 180=43πa ,则r 2=23a ,∴r 1∶r 2=3∶2.16. 【答案】522 [解析] 如图①,连接OF ,OE .由题意,知AB ⊥EF ,则S 正五边形AGFED =5×S △OEF =5×(12EF ·OB )=2.5×2EF =5 2BE .如图②,连接AE .S 正五边形AGFED =2×S 四边形ABED =2×(S △ABE +S △ADE )=2×(12AB ·BE +12DE ·AC )=AB ·BE +DE ·AC =AB ·BE +2BE ·AC =BE ·(AB +2AC ),∴5 2BE =BE ·(AB +2AC ). ∴AB +2AC =5 2,∴AC +12AB =52 2.三、解答题17. 【答案】解:(1)证明:如图,连接OA ,∵AD=AB ,∠D=30°,∴∠B=30°,∠DAB=120°. ∵BC 是直径, ∴∠BAC=90°,∴∠DAC=30°,∠BCA=60°, ∵AO=CO ,∴△ACO 是等边三角形, ∴∠CAO=60°,∴∠DAO=∠CAO +∠DAC=90°, ∴直线AD 是☉O 的切线.(2)由(1)知,Rt △ADO 中,AO=2,∠D=30°, ∴AD=2,∴S Rt △ADO =×2×2=2,又∵S==,扇形AOC=S Rt△ADO-S扇形AOC=2.∴S阴影18. 【答案】解:(1)直线CD与☉O相切.理由如下:连接CO.∵点D在圆上,∴OD=OB,又∵CD=CB,CO=CO,∴△COD≌△COB(SSS).∵∠ABC=90°,∴∠ODC=∠ABC=90°,∴OD⊥DC,∴直线CD与☉O相切.(2)设☉O的半径为x,∵DE=4,∴OE=4-x.在Rt△OBE中,BE2+BO2=OE2,即22+x2=(4-x)2,解得x=1.5,∴OD=OB=1.5.AB=2OB=3.∵CB,CD是圆的切线,∴CB=CD.则设CB=CD=y,在Rt△CDE中,CD2+DE2=CE2,即y2+42=(y+2)2,解得y=3,∴BC=3.在Rt△ABC中,AC==3.19. 【答案】解:(1)证明:连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA ,OD=OC ,∴△AOC ≌△AOD (SAS),∴∠ADO=∠ACO. ∵CE 是☉O 的直径,AC 为☉O 的切线, ∴OC ⊥AC ,∴∠OCA=90°,∴∠ADO=∠OCA=90°,∴OD ⊥AB.∵OD 为☉O 的半径,∴AB 是☉O 的切线.(2)∵CE=6,∴OD=OC=3,∵∠BDO=180°-∠ADO=90°,∴BO 2=BD 2+OD 2,∴OB==5,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B ,∴△BDO ∽△BCA , ∴=, ∴=, ∴AC=6.20. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π-21. 【答案】(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径, ∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠CAF =∠OAC ,∴AC 平分∠FAB ;(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠DCP =90°,∴∠ACB =∠DCP =90°,又∵∠BAC =∠D ,∴△ACB ∽△DCP ,∴∠EBC =∠P ,∵CE ⊥AB ,∴∠BEC =90°,∵CD 是⊙O 的直径,∴∠DBC =90°,∴∠CBP =90°,∴∠BEC =∠CBP ,∴△CBE ∽△CPB ,∴BC PC =CE CB ,∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB , ∴CF =CE ,∵CF CP =34,∴CE CP =34,设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k=32, ∴∠EBC =60°,∴△OBC 是等边三角形, ∴∠DOB =120°,∴BD ︵=120π·23180=43π3.。
2021中考数学复习圆的综合题专项训练6(附答案详解)

2021中考数学复习圆的综合题专项训练6(附答案详解)1.如图,四边形ABCD 内接于O ,AD ,BC 的延长线交于点E ,F 是BD 延长线上一点,1602CDE CDF ∠=∠=︒.()1求证:ABC 是等边三角形;()2判断DA ,DC ,DB 之间的数量关系,并证明你的结论.2.如图,B E ,是O 上的两个定点,A 为优弧BE 上的动点,过点B 作BC AB ⊥交射线AE 于点C ,过点C 作CF BC ⊥,点D 在CF 上,且EBD A ∠=∠. (1)求证:BD 与O 相切;(2)已知:30A ∠=①若3BE =,求BD 的长;②当O C ,两点间的距离最短时,判断A B C D ,,,四点所组成的四边形的形状,并说明理由.3.小明家的门框上装有一把防盗门锁(如图1),其平面结构图如图2所示,锁身可以看成由两条等弧AD ,BC 和矩形ABCD 组成的,BC 的圆心是倒锁按钮点M .已知AD 的弓形高2GH cm =,8AD cm =,11 EP cm =.当锁柄PN 绕着点N 顺时针旋转至NQ 位置时,门锁打开,此时直线PQ 与BC 所在的圆相切,且PQDN ∥, tan 2NQP ∠=.(1)求BC 所在圆的半径;(2)求线段AB 的长度.(5 2.236≈,结果精确到0.1cm )4.如图,已知直线483l y x =-+:交x 轴于点E ,点A 为x 轴上的一个动点(点A 不与点E 重合),在直线l 上取一点B (点B 在x 轴上方),使5BE AE =,连结AB ,以AB 为边在AB 的右侧作正方形ABCD ,连结OB ,以OB 为直径作P .(1)当点A 在点E 左侧时,若点B 落在y 轴上,则AE 的长为______,点D 的坐标为_______;(2)若P 与正方形ABCD 的边相切于点B ,求点B 的坐标; (3)P 与直线BE 的交点为Q ,连结CQ ,当CQ 平分BCD ∠时,BE 的长为______.(直接写出答案)5.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=10,AD=8,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.6.如图,AB为⊙O的直径,且AB=m(m为常数),点C为AB的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.(1)当DC⊥AB时,则DA DBDC+=;(2)①当点D在AB上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;②设CD长为t,求△ADB的面积S与t的函数关系式;(3)当9220PDAC=时,求DEOA的值.7.如图,已知⊙O 半径为3,直径AB 垂直弦CD 于E ,过点A 作∠DAF =∠DAB ,过点D 作AF 的垂线,垂足为点F ,交AB 的延长线于点P ,连接CO 并延长与圆交于点G ,连接EG .(1)求证:DF 是⊙O 的切线;(2)若AD =DP ,求BD 的长度;(3)若tan C =25,求线段EG 的长.8.如图,O 是ABC ∆的外接圆,且5AB AC ==,延长AB 至点E ,使得2BE =,点D 是ACB 上的一个动点,连结AD ,BD ,ED .(1)当DE BC ∥时,求证:ADB E ∠=∠;(2)若6BC =,则:①求O 的半径;②当ABD ∆为直角三角形时,求DE 的长.9.如图,在平面直角坐标系xOy 中,已知点()1,0A -,()3,0D -,()4,3C -,四边形ABCD 是平行四边形.现将ABCD 沿x 轴方向平移n 个单位,得到1111A B C D ,抛物线M 经过点1A ,1C ,1D .(1)若抛物线M 的对称轴为直线4x =,求抛物线M 的解析式;(2)抛物线M 的顶点为E ,若以A ,E ,1C 为顶点的三角形的面积等于ABCD 的面积的一半,求n 的值;(3)在(2)的条件下,在y 轴上是否存在点P ,使得11C PA C EA ∠=∠?若存在,请直接写出点P 的坐标;若不存在,请说明理由.10.已知锐角△ABC 内接于⊙O ,AD ⊥BC 于点D ,连接AO .(1)如图1,求证:∠BAO =∠CAD ;(2)如图2,CE ⊥AB 于点E ,交AD 于点F ,过点O 作OH ⊥BC 于点H ,求证:AF =2OH ;(3)如图3,在(2)的条件下,若AF =AO ,tan ∠BAO =13,BC =215,求AC 的长.11.如图,在平面直角坐标系中,⊙P 切x 轴、y 轴于C 、D 两点,直线交x 轴、y 轴的正半轴于A 、B 两点,且与⊙P 相切于点 E .若AC =4,BD =6.(1)求⊙P 的半径;(2)求切点E 的坐标.12.如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,OC ⊥OB ,连接AB 交OC 于点D .(1)求证:AC =CD ;(2)如果OD =1,tan ∠OCA =52,求AC 的长.13.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当⊙O 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围. 14.在Rt △ABC 中,∠A =90°,AB =AC =4,O 是BC 边上的点且⊙O 与AB 、AC 都相切,切点分别为D 、E .(1)求⊙O 的半径;(2)如果F 为DE 上的一个动点(不与D 、E ),过点F 作⊙O 的切线分别与边AB 、AC 相交于G 、H ,连接OG 、OH ,有两个结论:①四边形BCHG 的周长不变,②∠GOH 的度数不变.已知这两个结论只有一个正确,找出正确的结论并证明;(3)探究:在(2)的条件下,设BG =x ,CH =y ,试问y 与x 之间满足怎样的函数关系,写出你的探究过程并确定自变量x 的取值范围,并说明当x =y 时F 点的位置.15.如图,AB为⊙O的直径,C为⊙O上一点,过点C做⊙O的切线,与AE的延长线交于点D,且AD⊥CD.(1)求证:AC平分∠DAB;(2)若AB=10,CD=4,求DE的长.16.如图,矩形ABCD中,AB=5,AD=3.点E是CD上的动点,以AE为直径的⊙O 与AB交于点F,过点F作FG⊥BE于点G.(1)若E是CD的中点时,证明:FG是⊙O的切线(2)试探究:BE能否与⊙O相切?若能,求出此时DE的长;若不能,请说明理由.17.如图Rt△ABC中,∠ACB=90°,AC=4,BC=2,点P在边AC上运动(点P与点A、C不重合).以P为圆心,PA为半径作⊙P交边AB于点D、过点D作⊙P的切线交射线BC于点E(点E与点B不重合).(1)求证:BE=DE;(2)若PA=1.求BE的长;(3)在P点的运动过程中.(BE+PA)•PA的值是否有最大值?如果有,求出最大值;如果没有,请说明理由.18.如图,以O 的弦AB 为斜边作Rt ABC ,C 点在圆内,边BC 经过圆心O ,过A 点作O 的切线AD .(1)求证:2DAC B ∠=∠;(2)若3sin 5B =,6AC =,求O 的半径.19.如图,在△ABC 中,AB=AC ,AE 是∠BAC 的平分线,∠ABC 的平分线 BM 交 AE 于点 M ,点 O 在 AB 上,以点O 为圆心,OB 的长为半径的圆经过点 M ,交 BC 于点G ,交 AB 于点 F .(1)求证:AE 为⊙O 的切线.(2)当 BC=8,AC=12 时,求⊙O 的半径.(3)在(2)的条件下,求线段 BG 的长.20.如图,AB 是O 的直径,C 为O 上一点,OE BC ⊥于点E ,交O 于点F ,AF 与BC 交于点,M D 为OF 延长线上一点,且ODB AFC ∠=∠.(1)求证:BD 是O 的切线;(2)求证:2CF FM FA =⋅;(3)若310,sin 5AB BAF =∠=,求BM 的长.21.如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.(1)求证:△AED是等腰直角三角形;(2)如图1,已知⊙O的半径为5.①求CE的长;②若D为EB中点,求BC的长.(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.22.如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA 交CA的延长线于点E.(1)连接AD,则∠OAD=°;(2)求证:DE与⊙O相切;(3)点F在BC上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.23.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;24.已知,AB为⊙O的直径,弦BC、AF相交于点E,过点E作ED⊥AB,∠AEC=∠BED.(1)如图1,求证:AC CF;(2)如图2,当∠BAF=45°时,OC交AF于点H,作FG⊥BH于点Q,交AB于点G,连接GH,求证:∠AGH=∠BGF;(3)如图3,在(2)的条件下,射线HG与⊙O交于点P,过点P作PK⊥BH交AB于点M,垂足为点K,点N为BH的中点,MN=10,求⊙O的半径.25.如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A =∠CBD,过点C作CF⊥AB于点F,交BD于点G过C作CE∥BD交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=8,求BE的长.26.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC 于F交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=34,求CF的长.(1)如图①,点O 在斜边AB 上,以点O 为圆心,OB 长为半径的圆交AB 于点D ,交BC 于点E ,与边AC 相切于点F .求证:∠1=∠2;(2)在图②中作⊙M ,使它满足以下条件:①圆心在边AB 上;②经过点B ;③与边AC 相切.(尺规作图,只保留作图痕迹,不要求写出作法)28.已知 AB 是⊙ O 的直径,点 D 是弧 AB 上一点,AD 的延长线交⊙ O 的切线 BM 于点 C ,点 E 为 BC 的中点;(1) 求证:DE 是⊙ O 的切线;(2)如图2,若 DC=4,1tan A 2∠=延长 OD 交切线 BM 于点 H ,求 DH 的值; (3)如图 3,若 AB=8,点 F 是弧 AB 的中点,当点 D 在弧 AB 上运动时,过 F 作 FG ⊥AD 于 G ,连接 BG ,求 BG 的最小值.29.对于平面直角坐标系xOy 中的点()(),0Q x y x ≠,将它的纵坐标y 与横坐标x 的比y x称为点Q 的“理想值”,记作Q L .如()1,2Q -的“理想值”221Q L ==--.(1)①若点()1,Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_______;②如图,()3,1C ,C 的半径为1.若点Q 在C 上,则点Q 的“理想值”Q L 的取值范围是_______.(2)点D 在直线333y x =-+上,D 的半径为1,点Q 在D 上运动时都有03Q L ≤≤,求点D 的横坐标D x 的取值范围;(3)()()2,0M m m >,Q 是以r 为半径的M 上任意一点,当022Q L ≤≤时,画出满足条件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)30.如图,点O 为∠ABC 的边BC 上的一点,过点O 作OM ⊥AB 于点M ,到点O 的距离等于线段OM 的长的所有点组成图形W .图形W 与射线BC 交于E ,F 两点(点在点F 的左侧).(1)过点M 作MH BC ⊥于点H ,如果BE=2,2sin 3ABC ∠=,求MH 的长; (2)将射线BC 绕点B 顺时针旋转得到射线BD ,使得∠CBD 90MOB +∠=︒,判断射线BD 与图形W 公共点的个数,并证明.参考答案1.(1)详见解析;(2).DA DC DB +=【解析】【分析】(1)根据圆内接四边形的性质得到∠CDE=∠ABC=60°,根据圆周角定理、等边三角形的判定定理证明;(2)在BD 上截取PD=AD ,证明△APB ≌△ADC ,根据全等三角形的性质证明结论.【详解】()1证明:1602CDE CDF ∠=∠=︒, 60CDE EDF ∴∠=∠=︒,四边形ABCD 内接于O ,60CDE ABC ∴∠=∠=︒,由圆周角定理得,60ACB ADB EDF ∠=∠=∠=︒,ABC ∴是等边三角形;()2解:DA DC DB +=,理由如下:在BD 上截取PD AD =,60ADP ∠=︒,APD ∴为等边三角形,AD AP ∴=,60APD ∠=︒,120APB ∴∠=︒,1602CDE CDF ∠=∠=︒, 120ADC APB ∴∠=︒=∠,由圆周角定理得,ABP ACD ∠=∠,在APB △和ADC 中,,APB ADC ABP ACD AP AD ∠=∠⎧⎪∠=∠⎨⎪=⎩APB ∴≌()ADC AAS ,BP CD ∴=,BD BP PD CD AD ∴=+=+.【点睛】本题考查的是圆内接四边形的性质、等边三角形的性质、全等三角形的判定和性质,掌握圆内接四边形的性质是解题的关键.2.(1)详见解析;(2)①BD =②四边形ABDC 是平行四边形,理由详见解析【解析】【分析】(1)如图1,作直径BG ,连接GE ,证∠EBD=∠G ,则∠EBD+∠GBE=90°,即可推出结论;(2)①如图2,连接AG ,证△BCD ∽△BAG,推出BD BG =,在Rt △BGE 中,求出BG 的长,可进一步求出BD 的长;②由①推出2BE BD =,因为B ,E 为定点,BE 为定值,所以BD 为定值,D 为定点,因为∠BCD=90°,所以点C 在以BD 为直径的⊙M 上运动,当点C 在线段OM 上时,OC 最小,证BM OB =∠OMB=60°,依次推出AB ∥CD ,AC ∥BD 即可. 【详解】(1)如图1,作直径BG ,连接GE ,则∠GEB=90°,∴∠G+∠GBE=90°,∵∠A=∠EBD,∠A=∠G,∴∠EBD=∠G,∴∠EBD+∠GBE=90°,∴∠GBD=90°,∴BD⊥OB,∴BD与⊙O相切;(2)①如图2,连接AG,∵BC⊥AB,∴∠ABC=90°,由(1)知∠GBD=90°,∴∠GBD=∠ABC,∴∠GBA=∠CBD,又∵∠GAB=∠DCB=90°,∴△BCD∽△BAG,∴3tan 30BD BC BG BA === 又Rt BGE ∆中,30A ∠=︒,3BE =∴26BG BE ==∴63BD =⨯= ②四边形ABDC 是平行四边形.理由如下: 由①知12BE BG =,BD BG = ∴BE BD = ∵B E ,为定点,BE 为定值∴BD 为定值,D 为定点90BCD ∠=︒∴点C 在BD 为直径的M 上运动,∴当点C 在线段OM 上时,OC 最小此时在Rt OBM∆中,1212BD BM OB BG == ∴60OMB ∠=︒∴MC MD =∴30MDC MCD A ∠=∠=︒=∠AB BC ⊥,CD BC ⊥∴90ABC DCB ∠=∠=︒∴//AB CD∴180A ACD ∠+∠=︒∴180BDC ACD ∠+∠=︒∴//AC BD∴四边形ABDC 为平行四边形.【点睛】本题考查了圆的有关性质,相似三角形的判定与性质,平行四边形的判定与性质等,解题关键是在第②问中能够确定点C 在以BD 为直径的⊙M 上运动,当点C 在线段OM 上时,OC 最小,并可根据此条件对四边形ABCD 的形状进行判定等.3.(1)即BC 所在圆的半径为5cm ;(2)29.8AB ≈cm .【解析】【分析】(1)连结BM ,设HM 交 BC 于点K ,设BM r =,在Rt BMK △中,根据勾股定理,列方程,即可求解;(2)延长PQ 交NM 的延长线于点T ,设直线PQ 与BC 所在的圆相切于点 J ,连结M J .由//DN PQ ,NP NQ =得DNE NQP ∠=∠,结合tan 2NQP ∠=,8DE NG ==cm ,15NP =cm ,由tan tan 2TMJ P ∠==,得30NT cm =,10TJ cm =,进而得(305)MN cm =-,即可求解.【详解】(1)如图,连结BM ,设HM 交 BC 于点K . ∴BK=AG=142AD cm =, 设BM r =,∴在Rt BMK △中,2224(2)r r =+-,解得:=5r ,即BC 所在圆的半径为5cm ;(2)如图,延长PQ 交NM 的延长线于点T ,设直线PQ 与BC 所在的圆相切于点 J ,连结 M J .//DN PQ ,DNE P ∴∠=∠.NP NQ =,P NQP ∴∠=∠,DNE NQP ∴∠=∠,tan tan 2DE DNE NQP NE∴∠=∠==. 4NE DG ==cm ,8DE NG ∴==cm ,41115NP NE EP ∴=+=+=cm .直线PQ 与BC 所在的圆相切于点 J ,MJ PQ ∴⊥,5MJ =cm ,TMJ P ∴∠=∠,tan tan 2TMJ P ∴∠==,12MJ NP TJ NT ∴==, 15230NT cm ∴=⨯=,5210TJ cm =⨯=,MT ∴=cm ,(30MN NT MT cm ∴=-=-,83034129.8AB GN MN MK ∴=++=+-=-≈cm .【点睛】本题主要考查圆的性质,切线的性质以及锐角三角函数的综合,掌握垂径定理,切线的性质定理和正切三角函数的定义,是解题的关键.4.(1)2,(12,4);(2)点B 的坐标为(-12,24)或2424(,)77或4824(,)1111;(3)785. 【解析】【分析】(1)先求出直线483l y x =-+:交 x 轴于点0(6)E ,,交y 轴于点(0)8,,进而求出2AE =,得到(4,0)A ,过点D 作DM ⊥x 轴,得∆OBA ≅∆DAM ,进而即可求解;(2)分3种情况:①如图1,当P 与BC 相切于点B 时,90OBC ∠=︒,点A 与点O 重合,②如图2,当P 与直线AB 相切于点B ,点A 在点E 右侧时,则90OBA ∠=︒,③如图3,,当P 与直线AB 相切于点B ,点A 在点E 左侧时,则90OBA ∠=︒,分别求解,即可;(3)如图4,作BG OA 于点G ,连结OQ .设AE m =,可得(63,4)B m m -,(6,0)A m -,(6,6)C m m +,再求出9672(,)2525Q ,由条件可知:C ,Q ,A 三点共线,列出关于m 的比例式,求出m 的值,进而即可求解.【详解】(1)直线483l y x =-+:交 x 轴于点0(6)E ,,交y 轴于点(0)8,, (0,8)B ∴,6OE ∴=,8OB =,10BE =.5BE AE =,2AE ∴=,∵点A 在点E 左侧,(4,0)A ∴,如图1,过点D 作DM ⊥x 轴,∵∠OBA+∠OAB=∠OAB+∠DAM=90°,∴∠OBA=∠DAM ,又∵AB=DA ,∠AOB=∠DMA=90°,∴∆OBA ≅∆DAM (AAS ),∴DM=OA=4,OB=AM=8,∴OM=8+4=12,(12,4)D ∴;(2)①如图2,当P 与BC 相切于点B 时,90OBC ∠=︒,又∵∠ABC=90°,点A 为x 轴上的一个动点,∴点A 与点O 重合,∴530BE OE ==,设P 与x 轴的交点为点N ,连接BN ,则∠BNO=90°,设直线l 与y 轴交于点K ,则OK=8, ∵BN ∥OK , ∴BN NE BE OK OE KE ==,即:308610BN NE ==, ∴BN=24,NE=18,∴ON=18-6=12,∴(12,24)B -;.②如图3,当P 与直线AB 相切于点B ,点A 在点E 右侧时,则90OBA ∠=︒, 设P 与x 轴交于点H ,连接BH ,则∠OHB=90°,设AE m =,则5BE m =,∵sin ∠BEH=45, 4BH m ∴=,3EH m =,4AH BH m ∴==,45BAO ∴∠=︒.90OBA ∠=︒,45BOA ∴∠=︒,即点B 在直线y x =上, 联立483y x y x ⎧=-+⎪⎨⎪=⎩,解得:247247x y ⎧=⎪⎪⎨⎪=⎪⎩∴点2424,77B ⎛⎫ ⎪⎝⎭; ③如图4,当P 与直线AB 相切于点B ,点A 在点E 左侧时,则90OBA ∠=︒, 设P 与x 轴交于点F ,连接BF ,则∠OFB=90°,设AE m =,则5BE m =,∵sin ∠BEF=45, ∴4BF m =,3EF m =,∴2AF m =.90OBA OFB ∠=∠=︒,∴∠ABF+∠OBF=∠BOF+∠OBF=90°,∴∠ABF=∠BOF ,∵∠AFB=∠BFO=90°,∴OFB BFA △∽△,∴2BF OF AF =⋅,216(63)2m m m ∴=-⋅,解得:126011m m ==,(舍去), ∴点48241111B ⎛⎫ ⎪⎝⎭,. 综上所述,点B 的坐标为(-12,24)或2424(,)77或4824(,)1111; (3)如图5,作BG OA 于点G ,连结OQ .设AE m =,则5BE m =,由第(2)题,可知4BG m =,3EG m =,2AG m =,(63,4)B m m ∴-,(6,0)A m -,过点C 作CT ⊥GB ,交GB 的延长线于点T ,∵∠CBT+∠ABG=∠ABG+∠BAG=90°,∴∠CBT=∠BAG ,又∵∠CTB=∠BGA=90°,CB=BA ,∴∆CTB ≅∆BGA (AAS ),∴CT=BG=4m ,BT=AG=2m ,∴TG=6m ,点C 的横坐标=CT-OG=4m-(3m-6)=m+6,∴(6,6)C m m +,∵OB 是P 的直径,∴OQ ⊥直线l ,且过原点O ,∴直线OQ 的解析式为:34y x =, 联立48334y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得:96257225x y ⎧=⎪⎪⎨⎪=⎪⎩, 9672(,)2525Q ∴. CQ 平分BCD ∠,C ∴,Q ,A 三点共线,606(6)72960(6)2525m m m m -+--∴=---,解得:7825m =, 7825AE ∴=, 785BE ∴=. 故答案是:785.图1 图2图3 图4图5【点睛】本题主要考查圆的基本性质,正方形的性质,一次函数的图象和性质,切线的性质定理的综合,添加辅助线,构造全等三角形和直角三角形,是解题的关键.5.(1)见解析;(2)AC的长为5(3)AC=BC2EC,理由见解析【解析】【分析】(1)连接OC,由直径所对圆周角是直角可得∠ACB=90°,由OC=OB得出∠OCB=∠B,由因为∠DCA=∠B,从而可得∠DCA=∠OCB,即可得出∠DCO=90°;(2) 由题意证明△ACD∽△ABC,根据对应边成比例列出等式求出AC即可;(3) 在AC上截取AF使AF=BC,连接EF、BE,通过条件证明△AEF≌△BEC,根据性质推出△EFC为等腰直角三角形,即可证明AC、EC、BC的数量关系.【详解】(1)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切线;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴AC ADAB AC=,即810AC AC =, ∴AC =45,即AC 的长为45;(3)解:AC =BC +2EC ;理由如下:在AC 上截取AF 使AF =BC ,连接EF 、BE ,如图2所示:∵AB 是直径,∴∠ACB =∠AEB =90°,∵∠DAB =45°,∴△AEB 为等腰直角三角形,∴∠EAB =∠EBA =∠ECA =45°,AE =BE ,在△AEF 和△BEC 中,AE BE EAF EBC AF BC =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BEC (SAS ),∴EF =CE ,∠AFE =∠BCE =∠ACB +∠ECA =90°+45°=135°,∴∠EFC =180°﹣∠AFE =180°﹣135°=45°,∴∠EFC =∠ECF =45°,∴△EFC 为等腰直角三角形.∴CF 2EC ,∴AC =AF +CF =BC 2EC .【点睛】本题考查圆与三角形的结合,关键在于牢记基础性质,利用三角形的相似对应边以及三角形的全等进行计算.6.(1;(2)①DA+DB DC ,②S =12t 2﹣14m 2 ;(3)35DE OA =. 【解析】【分析】(1)首先证明当DC ⊥AB 时,DC 也为圆的直径,且△ADB 为等腰直角三角形,即可求出结果;(2)①分别过点A ,B 作CD 的垂线,连接AC ,BC ,分别构造△ADM 和△BDN 两个等腰直角三形及△NBC 和△MCA 两个全等的三角形,容易证出线段DA ,DB ,DC 之间的数量关系;②通过完全平方公式(DA+DB )2=DA 2+DB 2+2DA•DB 的变形及将已知条件AB =m 代入即可求出结果;(3)通过设特殊值法,设出PD 的长度,再通过相似及面积法求出相关线段的长度,即可求出结果.【详解】解:(1)如图1,∵AB 为⊙O 的直径,∴∠ADB =90°,∵C 为AB 的中点,∴AC BC =,∴∠ADC =∠BDC =45°,∵DC ⊥AB ,∴∠DEA =∠DEB =90°,∴∠DAE =∠DBE =45°,∴AE =BE ,∴点E 与点O 重合,∴DC 为⊙O 的直径,∴DC =AB ,在等腰直角三角形DAB 中,DA =DB=2AB , ∴DA+DB =2AB =2CD ,∴DA DB DC+=2;(2)①如图2,过点A 作AM ⊥DC 于M ,过点B 作BN ⊥CD 于N ,连接AC ,BC , 由(1)知AC BC =,∴AC =BC ,∵AB 为⊙O 的直径,∴∠ACB =∠BNC =∠CMA =90°,∴∠NBC+∠BCN =90°,∠BCN+∠MCA =90°,∴∠NBC =∠MCA ,在△NBC 和△MCA 中,BNC CMA NBC MCA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NBC ≌△MCA (AAS ), ∴CN =AM ,由(1)知∠DAE =∠DBE =45°,AM 2DA ,DN 2DB , ∴DC =DN+NC =22DB+22DA =22(DB+DA ), 即DA+DB 2DC ;②在Rt△DAB中,DA2+DB2=AB2=m2,∵(DA+DB)2=DA2+DB2+2DA•DB,且由①知DA+DB2DC2t,∴2t)2=m2+2DA•DB,∴DA•DB=t2﹣12m2,∴S△ADB=12DA•DB=12t2﹣14m2,∴△ADB的面积S与t的函数关系式S=12t2﹣14m2;(3)如图3,过点E作EH⊥AD于H,EG⊥DB于G,则NE=ME,四边形DHEG为正方形,由(1)知AC BC=,∴AC=BC,∴△ACB为等腰直角三角形,∴AB2AC,∵220 PDAC=,设PD=2,则AC=20,AB=2,∵∠DBA=∠DBA,∠PAB=∠ADB,∴△ABD∽△PBA,∴AB BD ADPB AB PA==,20292202 DB=+,∴DB=162,∴AD=22AB DB-=122,设NE=ME=x,∵S△ABD=12AD•BD=12AD•NE+12BD•ME,∴12×122×162=12×122•x+12×162•x,∴x=4827,∴DE=2HE=2x=967,又∵AO=12AB=102,∴96242735102DEOA=⨯=.【点睛】本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.7.(1)证明见解析;(2)π;(3)21【解析】【分析】(1)连接OD,如图1,先证明∠ADO=∠DAF得到OD∥AF,然后根据平行线的性质判断DF⊥OD,然后根据切线的判定定理得到结论;(2)先证明∠P=∠DAF=∠DAB,然后根据三角形内角和计算出∠P=30°,从而得到∠POD=60°,然后根据弧长公式计算;(3)如图,连接GD,根据tan C 25,设GD=2a,5a,由勾股定理列出方程求出GD 与CD,再由垂径定理得出DE,在Rt△GED中,利用勾股定理即可求出EG的长度.【详解】(1)证明:连接OD,如图1,∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB,而∠P+∠DAF+∠DAB=90°,∴∠P=30°,∴∠POD=60°,又∵半径为3,∴BD的长度603180ππ⨯==,(3)如图,连接GD,∵CG是直径,半径为3,∴∠CDG=90°,CG=6,∵tan C 25,即255GDCD=∴设GD=2a ,CD=5a (a >0)在Rt △CGD 中,由勾股定理可得:222GD CD CG +=,即224536a a +=,解得:2a =或a=-2(舍去)∴GD=4,CD=25,又∵AB ⊥CD ,∴DE=CE=152CD = 在Rt △GED 中,EG=()22224521GD DE +=+=,∴EG=21.【点睛】本题考查了切线的判定与性质,弧长的计算以及三角函数在圆中的计算问题,解题的关键是熟悉圆的性质以及锐角三角函数的定义.8.(1)证明见解析;(2)①258r =;②174DE =或1009DE = 【解析】【分析】(1)根据平行线的性质得到∠ABC=∠E ,根据圆周角定理得到∠ADB=∠ACB ,等量代换证明结论;(2)①连接AO 并延长交BC 于F ,连接OC ,根据垂径定理得到AF ⊥BC ,根据等腰三角形的性质求出CF ,根据勾股定理求出AF ,根据勾股定理列式计算即可;②分∠ABD=90°、∠BAD=90°两种情况,根据勾股定理计算,得到答案.【详解】解:(1)∵//DE BC ,∴ABC E ∠=∠,∵AB AC =,∴∠=∠ACB ABC ,∴ACB E ∠=∠,∵ACB ADB ∠=∠,∴ADB E ∠=∠.(2)①连接AO 并延长交BC 于点F ,连接OC .∵AB AC =,OB OC =,∴AF BC ⊥,∵6BC =,∴3CF =,在Rt ACF ∆中,5AC =,由勾股定理得:4AF =,设半径为r ,则4OF r =-,由勾股定理,得:()22243r r -+=,解得:258r =. ②当D 运动到AD 过圆O 时,90ABD ∠=︒, ∴AD=2524r =, ∴2222222225172544DE BE BD BE AD AB ⎛⎫=+=+-=+-= ⎪⎝⎭. 当D 运动到BD 过圆O 时,90BAD ∠=︒,∴BD=2524r =, ∴22222222251009754DE AE AD AE BD AB ⎛⎫=+=+-=+-= ⎪⎝⎭. 【点睛】本题考查的是圆的有关概念、勾股定理、直角三角形的性质,掌握垂径定理、圆周角定理、灵活运用分情况讨论思想是解题的关键.9.(1)()2y x 41=--;(2)3n =;(3)30,2⎛⎫+ ⎪ ⎪⎝⎭或30,2⎛ ⎝⎭. 【解析】【分析】(1)根据题意,先求出a 的值,然后得到二次函数的解析式,然后得到平移后的解析式; (2)根据题意,先求出直线1C E 的解析式,然后根据面积公式,即可得到答案; (3)点A 、C 1、E 作圆Q ,则点Q 在AC 1的中垂线上,设点Q (m ,32),则求出m=1,然后根据勾股定理,即可求出t 的值.【详解】解:(1)由题意得,()1,0A -,()3,0D -,∴设过点,,A C D 的抛物线的解析式为:()()13y a x x =++,把()4,3C -代入()()13y a x x =++,得1a =.∴()()()21321y x x x =++=+-.∵平移之后过点1A 、1C 、1D 的抛物线的顶点坐标()41-,.∴抛物线M 的解析式为()2y x 41=--.(2)由题意得,平移n 个单位后,()14,3C n -,()2,1E n --.设直线1C E :y kx b =+,把点()14,3C n -,()2,1E n --代入, 得225k b n =-⎧⎨=-⎩, ∴225y x n =-+-.令0y =,得252n x -=, ∵236ABCD S =⨯=,∴1125143 22AEC nS ∆-⎛⎫=⨯+⨯=⎪⎝⎭,解得:3n=.(3)存在,理由:由(2)知点C(-1,3),点A(-1,0),则AC⊥x轴,故点A、C1、E作圆Q,则点Q在AC1的中垂线上,设点Q(m,32),则此时,∠C1PA=∠C1EA,由QC1=QE得:(m+1)2+(3-32)2=(m-1)2+(1+32)2,解得:m=1,则点Q(1,32),设点P(0,t),由QP=QE得:1+(32-t)2=(52)2,解得:321t±=,故点P的坐标为:3210,2⎛⎝⎭或3210,2⎛⎫-⎪⎪⎝⎭.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),通过构建圆M,确定∠C1PA=∠C1EA是本题的难点.10.(1)详见解析;(262.【解析】【分析】(1)延长AO交⊙O于K,连接BK.利用等角的余角相等证明即可.(2)延长CO交⊙O于M,连接AM,BM,连接BF.证明四边形AMBF是平行四边形,BM=2OH即可解决问题.(3)延长CO交⊙O于M,连接AM,BM,连接BF.证明∠BAO=∠DAC=∠DBF,推出tan∠DBF=tan∠BAP=13=DF CDBD AD,设DF=x,则BD=3x,CD=215﹣3x,AD=615﹣9x,AF=BM=615﹣10x,构建方程即可解决问题.【详解】(1)证明:延长AO交⊙O于K,连接BK.∵AK是直径,∴∠ABK=90°,∵AD⊥BC,∴∠ADC=90°,∵∠BAO+∠K=90°,∠DAC+∠C=90°,∠K=∠C,∴∠BAO=∠DAC.(2)证明:延长CO交⊙O于M,连接AM,BM,连接BF.∵CM是直径,∴∠CBM=∠MAC=90°,∵OH⊥BC,∴BH=CH,∠OHC=∠CBM=90°,∴AD∥BM,∵OC=OM,∴BM=2OH,∵AD⊥BC,CA⊥AB,∴BF⊥AC,∵A⊥AC,∴AM∥BF,∴四边形AMBF是平行四边形,∴AF=BM,∴AF=2OH.(3)解:延长CO交⊙O于M,连接AM,BM,连接BF.由(2)可知,四边形AMBF是平行四边形,∴AF=BM,∴OA=AF,∴BM=OA,∴CM=2BM,∵∠CBM=90°,∴∠BCM=30°,∵∠BAO=∠DAC=∠DBF,∴tan∠DBF=tan∠BAP=13=DF CDBD AD,设DF=x,则BD=3x,CD=153x,AD=159x,AF=BM=1510x,∵BC=∴BM=BC•tan30°=∴10x=∴x=5,∴AC5==.【点睛】本题属于圆综合题,考查了圆周角定理,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.11.(1)2;(2)E(185,165).【解析】【分析】(1)如图,连接PD,PC.设PD=DO=OC=PC=x,利用切线长定理以及勾股定理即可解决问题.(2)作EH⊥OA于H.利用平行线分线段成比例定理解决问题即可.【详解】(1)如图,连接PD,PC.∵OB,OA,AB是⊙P的切线,∴BD=BE=6,AC=CE=4,OD=OC,PD⊥OB,PC⊥OC,∴四边形PDOC是正方形,设PD=DO=OC=PC=x,∵OB2+OA2=AB2,∴(x+6)2+(x+4)2=102,解得x=2或﹣12(舍弃),∴⊙P的半径为2.(2)作EH⊥OA于H.∵EH∥OB,∴EH AE AH OB AB AO==,∴48106EH AH==,∴EH=165,AH=125,∴OH=6﹣125=185,∴E(185,165).【点睛】本题考查了圆的综合问题,掌握切线长定理以及勾股定理、平行线分线段成比例定理是解题的关键.12.(1)详见解析;(2)2.【解析】【分析】(1)由直线AC是⊙O的切线,OC⊥OB,易得∠ADC=∠DAC,根据等角对等边,可得AC=CD;(2)由tan∠OCA 5,可得52OAAC=,则可设AC=2x,则AO5,由勾股定理,求得OC=3x,继而可表示出AC=CD=2x,可得OC=2x+1,即可得方程3x=2x+1,继而求得答案.【详解】(1)证明:∵直线AC是⊙O的切线,∴OA⊥AC,∴∠OAC =90°,即∠OAB +∠DAC =90°,∵OC ⊥OB ,∴∠B +∠ODB =90°,∵OA =OB ,∴∠B =∠DAB ,∵∠ODB =∠ADC ,∴∠ADC =∠DAC ,∴AC =CD ;(2)解:在Rt △OAC 中,∠OAC =90°,∵tan ∠OCA ,∴OA AC∴设AC =2x ,则AO ,由勾股定理得:OC =3x ,∵AC =CD ,∴AC =CD =2x ,∵OD =1,∴OC =2x +1,∴2x +1=3x ,解得:x =1,∴AC =2.【点睛】本题考查了圆的综合问题,掌握切线的性质、等角对等边、解直角三角形、勾股定理是解题的关键.13.(1)①P 2、P 3,②≤x≤-2或2 ;(2)-2≤x≤1或 . 【解析】试题分析:(1)①由题意得,P 只需在以O 为圆心,半径为1和3两圆之间即可,由23,OP OP的值可知23,P P 为⊙O 的关联点;②满足条件的P 只需在以O 为圆心,半径为1和3两圆之间即可,所以P 横坐标范围是-322 ≤x≤-22 或22 ≤x≤322; (2).分四种情况讨论即可,当圆过点A , CA=3时;当圆与小圆相切时;当圆过点 A ,AC=1时;当圆过点 B 时,即可得出.试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32 ,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ∴⊙的关联点为2P 和3P .②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=22(0)(0)1x x -+--= ,解得22x =± ,当OP=3时,由距离公式可得,OP=22(0)(0)3x x -+--= ,229x x +=,解得322x =±, ∴ 点的横坐标的取值范围为-322 ≤x≤-22 或22 ≤x≤322(2)∵y=-x+1与轴、轴的交点分别为A 、B 两点,∴ 令y=0得,-x+1=0,解得x=1, 令得x=0得,y=0,∴A(1,0) ,B (0,1) ,分析得:如图1,当圆过点A时,此时CA=3,∴点C坐标为,C ( -2,0)如图2,当圆与小圆相切时,切点为D,∴CD=1 ,又∵直线AB所在的函数解析式为y=-x+1,∴直线AB与x轴形成的夹角是45°,∴ RT△ACD中,2,∴ C点坐标为2,0)x≤12,∴C点的横坐标的取值范围为;-2≤c如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点B 时,连接BC ,此时BC =3,在Rt△OCB中,由勾股定理得OC=23122-=,C点坐标为(22,0).∴ C点的横坐标的取值范围为2≤cx2;∴综上所述点C的横坐标的取值范围为-322≤c x≤-22或22≤c x≤322.【点睛】本题考查了新定义题,涉及到的知识点有切线,同心圆,一次函数等,能正确地理解新定义,正确地进行分类讨论是解题的关键.14.(1)2;(2)②的结论正确,证明详见解析;(3)y=8x,2≤x≤4,F为AO与圆的交点同时F是DE的中点.【解析】【分析】(1)连接OD、OE、OA;构造正方形和直角三角形,利用勾股定理和正方形的性质解答;(2)连接OF、OG、OH;根据切线长定理和圆的半径相等,构造全等三角形,即△DOG≌△FOG,△FOH≌△EOH;得到相等的角∠DOG=∠FOG,∠FOH=∠EOH;进而得到∠GOH=DOE2=45°;(3)当x=y时,有AG=AH,根据平行线分线段成比例定理的逆定理,判定GH∥BC,根据切线性质,判断F为AO与圆的交点同时F是DE的中点.【详解】(1)连接OD、OE、OA,∵O是BC边上的点且⊙O与AB、AC都相切,∴OD⊥AB,AC⊥OE,又∵∠BAC=90°,且OD=OE,∴四边形ADOE为正方形,∴OE=AE,`∴∠OAE=45°;又∵∠C=45°,∴OE=2,△OAC为等腰直角三角形,AE=EC=12AC=12×4=2,即⊙O的半径是2;(2)②的结论正确;理由如下:连接OF、OG、OH,由题意,GD、GF以及HF、HE与圆相切,所以GD=GF,HE=HF,∠DOG=∠FOG,∠FOH=∠HOE,而∠DOE=90°,所以可以得到∠GOH=DOE2=45°.(3)BG=x,CH=y,易得:GF=GD=x﹣2,FH=HE=y﹣2,AG=4﹣x,AE=4﹣y,所以GH=x+x﹣4,由∠A=90°,可得GH2=AG2+AH2,代入上述各数值,化简可得y=8x,由AG≥0,AE≥0,可得x≤4,y≤4,所以2≤x≤4,当x=y时,有AG=AH,由于AB=AC所以可得GH与BC平行,连接AO,设AO交GH于F',有∠OFH=90°,所以F'为切点F,即F为AO与圆的交点同时F是DE的中点.【点睛】本题是一道关于圆的综合题,考查了切线的性质、和圆相关的正方形的性质、切线长定理以及结合切线长定理的点的存在性问题,范围较广,有一定的开放性,有利于培养同学们的发散思维能力.15.(1)见解析;(2)DE=2【解析】【分析】(1)连接OC,利用切线的性质可得出OC∥AD,再根据平行线的性质得出∠DAC=∠OCA,又因为∠OCA=∠OAC,继而可得出结论;(2)方法一:连接BE交OC于点H,可证明四边形EHCD为矩形,再根据垂径定理可得出4CD HE BH ===,得出8BE =,从而得出6AD =,再通过三角形中位线定理可得出3OH =,继而得出结论2CH DE ==;方法二:连接BC 、EC ,可证明△ADC ∽△ACB ,利用相似三角形的性质可得出AD=8,再证△DEC ∽△DCA ,从而可得出结论;方法三:连接BC 、EC ,过点C 做CF ⊥AB ,垂足为F ,利用已知条件得出OF=3,再证明△DEC ≌△CFB ,利用全等三角形的性质即可得出答案.【详解】解:(1)证明:连接OC ,∵CD 切☉O 于点C∴OC ⊥CD∵AD ⊥CD∴∠D=∠OCD=90°∴∠D+∠OCD=180°∴OC ∥AD∴∠DAC=∠OCA∵OA=OC∴∠OCA=∠OAC∴∠DAC=∠OAC∴AC 平分DAB(2)方法1:连接BE 交OC 于点H∵AB 是☉O 直径∴∠AEB=90°∴∠DEC=90°∴四边形EHCD为矩形∴CD=EH=4DE=CH∴∠CHE=90°即OC⊥BH∴EH=BE=4∴BE=8∴在Rt△AEB中AE22108=-=6∵EH=BHAO=BO∴OH=12AE=3∴CH=2∴DE=2方法2:连接BC、EC∵AB是直径∴∠ACB=90°∴∠D=∠ACB∵∠DAC=∠CAB∴△ADC∽△ACB∴AC AD AB AC=∠B=∠DCA∴AC2=10·AD∵AC2=AD2+CD2∴10·AD=AD2+16∴AD=2舍AD=8∵四边形ABCE内接于☉O ∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴∠DEC=∠DCA∵∠D=∠D∴△DEC∽△DCA∴CD DE AD CD=∴CD2=AD·DE∴16=8·DE∴DE=2;方法3:连接BC、EC,过点C做CF⊥AB,垂足为F∵CD⊥AD,∠DAC=∠CAB∴CD=CF=4,∠D=∠CFB=90°∵AB=10∴OC=OB=5∴OF=3∴BF=OB-OF=5-3=2∵四边形ABCE内接于☉O∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴△DEC≌△CFB∴DE=FB=2.【点睛】本题是一道关于圆的综合题目,涉及的知识点有切线的性质、平行线的性质、矩形的性质、相似三角形的判定及性质、全等三角形的判定及性质等,综合利用以上知识点是解此题的关键.16.(1)见解析;(2)点E不存在,BE不能与⊙O相切,理由见解析【解析】【分析】(1)要证明FG是⊙O的切线只要证明OF⊥FG即可;(2)先假设BE能与⊙O相切,则AE⊥BE,即∠AEB=90°.设DE的长为x,然后用x表示出CE的长,根据勾股定理可得出一个关于x的一元二次方程,若BE能与⊙O相切,那么方程的解即为DE的长;若方程无解,则说明BE不可能与⊙O相切.【详解】(1)连接OF、EF;∵AE是⊙O的直径,AF⊥EF,∵四边形ABCD是矩形,∴∠DAB=∠D=90°,AB=CD,∴四边形ADEF是矩形,∴AF=DE,∴EC=BF,∵E是CD的中点,∴F是AB的中点,∴OF∥BE,∵FG⊥BE,∴OF⊥FG,∴FG为⊙O的切线.(2)若BE能与⊙O相切,因AE是⊙O的直径,则AE⊥BE,∠AEB=90°.设DE=x,则EC=5﹣x.由勾股定理得:AE2+EB2=AB2,即(9+x2)+[(5﹣x)2+9]=25,整理得x2﹣5x+9=0,∵b2﹣4ac=25﹣36=﹣11<0,∴该方程无实数根,∴点E不存在,BE不能与⊙O相切.【点睛】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.本题还要会熟练运用勾股定理作为相等关系列方程求解.17.(1)证明见解析;(2)BE=3;(3)(BE+PA)•PA有最大值,最大值为254.【解析】【分析】(1)由半径相等可设∠PAD=∠ADP=α,根据切线的性质得到∠EDP=90°,证明∠BDE=90°-α,由∠ACB=90°,得到∠B=90°﹣α,再根据“等角对等边”即可求解;(2)过点E作EG⊥BD,则点G为BD的中点,根据等量代换得到∠GED=∠BAC,从而求出tan∠BAC12=,则cos∠BAC5=,sin∠BAC5=,根据锐角三角函数的定义。
2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图,AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=4,求CE的长.2.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作⊙O的切线DE交AB于E.(1)求证:DE⊥AB;(2)如果tan B=,⊙O的直径是5,求AE的长.4.阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为E,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为6cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.5.【发现】如图(1),AB为⊙O的一条弦,点C在弦AB所对的优弧上,根据圆周角性质,我们知道∠ACB的度数(填“变”或“不变”);若∠AOB=150°,则∠ACB =°.爱动脑筋的小明猜想,如果平面内线段AB的长度已知,∠ACB的大小确定,那么点C是不是在某一个确定的圆上运动呢?【研究】为了解决这个问题,小明先从一个特殊的例子开始研究.如图(2),若AB=2,直线AB上方一点C满足∠ACB=45°,为了画出点C所在的圆,小明以AB为底边构造了一个等腰Rt△AOB,再以O为圆心,OA为半径画圆,则点C在⊙O上.请根据小明的思路在图(2)中完成作图(要求尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗).后来,小明通过逆向思维及合情推理,得出一个一般性的结论,即:若线段AB的长度已知,∠ACB的大小确定,则点C一定在某一个确定的圆上,即定弦定角必定圆,我们把这样的几何模型称之为“定弦定角”模型.【应用】(1)如图(3),AB=2,平面内一点C满足∠ACB=60°,则△ABC面积的最大值为.(2)如图(4),已知正方形ABCD,以AB为腰向正方形内部作等腰△BAE,其中BE =BA,过点E作EF⊥AB于点F,点P是△BEF的内心.①∠BPE=°,∠BPA=°;②连接CP,若正方形ABCD的边长为2,则CP的最小值为.6.如图,BE为⊙O的直径,C为线段BE延长线上一点,CA为⊙O的切线,A为切点,连接AB,AE,AO.∠C=30°.(1)求∠ABC的度数;(2)求证:BO=CE;(3)已知⊙O的半径为6,求图中阴影部分的面积.(结果保留π)7.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长;(3)求证:CE2=CD•CA.8.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.9.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;(2)△ABC中,BC=14,tan B=,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.10.如图,DE是△DBC的外角∠FDC的平分线,交BC的延长线于点E,DE的延长线与△DBC的外接圆交于点A.(1)求证:AB=AC;(2)若∠DCB=90°,sin E=,AD=4,求BD的长.11.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D.(1)如图1,求证:BD=ED.(2)如图2,AD为⊙O的直径.若BC=12,sin∠BAC=,求OE的长.12.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.13.已知△ABC是⊙O的内接三角形,AB为⊙O的直径.点D是⊙O外一点,连接AD 和OD,OD与AC相交于点E,且OD⊥AC.(1)如图1,若AD是⊙O的切线,tan∠BAC=,证明:AD=AB;(2)如图2,延长DO交⊙O于点F,连接CD,CF,AF.当四边形ADCF为菱形,且∠BAC=30°,BC=1时,求DF的长.14.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过C作CD∥AB,CD交⊙O于D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:AF是⊙O的切线;(2)求证:AB2﹣BE2=BE•EC;(3)如图2,若点G是△ACD的内心,BC•BE=64,求BG的长.15.已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC =3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案1.解:(1)如图,连接OC,AE,过点A作AM⊥CE,垂足为M,∵PC是⊙O的切线,∴∠CAB=∠DCB,又∵CA=CD,∴∠CAB=∠CDB,∴∠DCB=∠CDB,∴BC=BD,又∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CBA=2∠CDB=2∠CAB,∴∠CBA=90°×=60°,∵OC=OB,∴△OBC是正三角形,∴BC=OB;(2)连接AE,过点A作AM⊥CE,垂足为M,∵E是中点,∴AE=BE=4,∠ACE=∠BCE=∠ACB=×90°=45°,在Rt△AEM中,AE=4,∠AEM=∠CBA=60°,∴EM=AE=2,AM=AE=2,在Rt△ACM中,AM=2,∠ACM=45°,∴CM=AM=2,∴CE=EM+CM=2+2,答:CE的长为2+2.2.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===12,在Rt△ACE中,S△ACE==,∵AE=AB=20,∴=CD,解得:CD=9.6.3.(1)证明:连接AD,OD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠BAD=∠ODA,∴AB∥OD,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AB;(2)解:∵tan B==,∴设AD=k,BD=2k,∴AB==k,∵AB=AC=5,∴k=,∴AD=,BD=2,∵S△ABD=AB•DE=AD•BD,∴DE==2,∴AE===1.4.解:(1)∵O、I、N三点共线∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d.(2)BD=ID.理由如下:∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI ∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID.(3)由(2)知BD=ID∴式子②可改写为IA•ID=DE•IF又∵IA•ID=IM•IN∴DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr.(4)∵d2=R2﹣2Rr=62﹣2×6×2=12∴d=2.故答案为:2.5.解:【发现】根据圆周角性质,∠ACB的度数不变,∵∠AOB=150°,∴∠ACB=∠AOB=75°,故答案为:不变,75°;【研究】补全图形如图1所示,【应用】(1)如图2,记△ABC的外接圆的圆心为O,连接OA,OB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,∴∠OAB=30°,过点O作OH⊥AB于H,∴AH=AB=,在Rt△AHO中,设⊙O的半径为2r,则OH=r,根据勾股定理得,(2r)2﹣r2=3,∴r=1(舍去负数),∴OA=2,OH=1,∵点C到AB的最大距离h为r+OH=2+1=3,∴S△ABC最大=AB•h=×2×3=3,故答案为:3;(2)①∵EF⊥AB,∴∠EFB=90°,∴∠BEF+∠EBF=90°,∵点P是△BEF的内心,∴PE,PB分别是∠BEF和∠EBF的角平分线,∴∠BEP=∠BEF,∠EBP=∠ABP=∠ABE,∴∠BPE=180°﹣(∠BEP+∠EBP)=180°﹣(∠BEF+∠EBF)=180°﹣×90°=135°;在△BPE和△BPA中,,∴△BPE≌△BPA(SAS).∴∠BPA=∠BPE=135°,故答案为:135°,135°;②如图3,作△ABP的外接圆,圆心记作点O,连接OA,OB,在优弧AB上取一点Q,连接AQ,BQ,则四边形APBQ是⊙O的圆内接四边形,∴∠AQB=180°∠BPA=45°,∴∠AOB=2∠AQB=90°,∴OA=OB=AB=,连接OC,与⊙O相交于点P'此时,CP'是CP的最小值,过点O作OM⊥AB于M,ON⊥CB,交CB的延长线于N,则四边形OMBN是正方形,∴ON=BN=BM=AB=1,∴CN=BC+BN=3,在Rt△ONC中,OC==,∴CP 的最小值=CP'=OC﹣OP'=﹣,故答案为:﹣.6.(1)解:∵CA为⊙O的切线,∴∠OAC=90°,∴∠AOC=90°﹣∠C=60°,由圆周角定理得,∠ABC=∠AOC=30°;(2)证明:在Rt△AOC中,∠C=30°,∴OA=OC,∵OA=OB=OE,∴OB=CE;(3)解:在Rt△AOC中,AC==6,∴图中阴影部分的面积=×6×6﹣=18﹣6π.7.(1)证明:连接OB、OE,如图所示:在△ABO和△EBO中,,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO,∵⊙O与边BC切于点E,∴OE⊥BC,∴∠BEO=∠BAO=90°,即AB⊥AD,∴AB是⊙O的切线;(2)解:∵BE=3,BC=7,∴AB=BE=3,CE=4,∵AB⊥AD,∴AC===2,∵OE⊥BC,∴∠OEC=∠BAC=90°,∠ECO=∠ACB,∴△CEO∽△CAB,∴,即,解得:OE=,∴⊙O的半径长为.(3)证明:连接AE,DE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB+∠DEC=90°,∵BA是⊙O的切线,∴∠BAC=90°,∴∠BAE+∠EAD=90°,∵AB=BE,∴∠BAE=∠BEA,∴∠DEC=∠EAD,∴△EDC∽△AEC,∴,∴CE2=CD•CA.8.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.9.解:(1)如图:D即为△ABC边AB上的“好点”;(2)如答图1:过A作AH⊥BC于H,∵tan B=,tan C=1,∴,=1,设AH=3k,则BH=4k,CH=3k,∵BC=14,∴3k+4k=14,解得k=2,∴BH=8,AH=CH=6,设BD=x,则CD=14﹣x,DH=8﹣x,Rt△ADH中,AD2=AH2+DH2=62+(8﹣x)2,而点D是BC边上的“好点”,有AD2=BD•CD=x•(14﹣x),∴62+(8﹣x)2=x•(14﹣x),解得x=5或x=10,∴BD=5或BD=10;(3)①∵∠CAH=∠HDB,∠AHC=∠BHD,∴△ACH∽△DBH,∴,∴AH•BH=CH•DH,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴AH=BH,∴OH⊥AB;②如答图2:连接AD,∵OH⊥AB,OH∥BD,∴AB⊥BD,∴AD是直径,∵r=3OH,设OH=m,则OA=3m,BD=2m,Rt△AOH中,AH==2m,∴BH=2m,Rt△BHD中,HD==2m,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴CH==m,∴==.10.(1)证明:∵DE是△DBC的外角∠FDC的平分线,∴∠FDE=∠CDE,∵∠ADB=∠ACB=∠FDE,∠ABC=∠CDE,∴∠ABC=∠ACB,∴AB=AC;(2)解:∵∠DCB=90°,∴∠DCE=∠BAD=90°,∴∠E+∠CDE=∠ABD+∠ADB=90°,∵∠ADB=∠FDE=∠CDE,∴∠ABD=∠E,∵sin E=,∴sin∠ABD==,∵AD=4,∴BD=4.11.(1)证明:如图1,连接BE.∵E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CAD,∵∠DBC=∠CAD.∴∠DBC=∠BAD,∵∠BED=∠BAD+∠ABE,∴∠DBE=∠DEB,∴BD=ED;(2)如图2 所示;连接OB.∵AD是直径,AD平分∠BAC,∴AD⊥BC,且BF=FC=6,∵,∴OB=10.在Rt△BOF中,BF=6,OB=10,∴,∴DF=2,在Rt△BDF中,BF2+DF2=BD2,∴,∴,∴.12.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,∴O1D∥OC.又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.13.解:(1)证明:∵OD⊥AC,∴AE=EC=AC,∠DEA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∵tan∠BAC==,∴BC=AC,∴AE=BC,∵AD是⊙O的切线,∴DA⊥AB,∴∠DAO=∠ACB=90°,∴∠DAE+∠CAB=∠ABC+∠CAB=90°,∴∠DAE=∠ABC,在△DAE和△ABC中,,∴△DAE≌△ABC(ASA),∴AD=AB;(2)在Rt△ABC中,∠BAC=30°,BC=1,∴AB=2,AC=,∵∠ABC=∠AFC=60°,∵四边形ADCF为菱形,∴AC=FC=,∴△AFC是等边三角形,∴∠DFC=AFC=30°,∴CE=FC=,∴EF=CE=,∴DF=2EF=3.14.解:(1)如图1,连接OA,∵AB=AC,∴=,∠ACB=∠B,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∵CD∥AB,∴∠BCD=∠B,∴∠ACB=∠BCD,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(2)∵∠BAD=∠BCD=∠ACB,∠B=∠B,∴△ABE∽△CBA,∴,∴AB2=BC•BE=BE(BE+CE)=BE2+BE•CE,∴AB2﹣BE2=BE•EC;(3)由(2)知:AB2=BC•BE,∵BC•BE=64,∴AB=8,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∠BAD=∠ACB,∴∠BAG=∠BGA,∴BG=AB=8.15.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。
2021年九年级中考数学 几何专题训练:圆的有关性质(含答案)

2021中考数学 几何专题训练圆的有关性质一、选择题(本大题共10道小题)1. 如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A. 10B. 2 3C.13 D. 3 22. 如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立...的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵3. 如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是( )A.51°B.56°C.68°D.78°4. 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是( )A.7 B.27 C.6 D.85. 在⊙O中,圆心角∠AOB=3∠COD(∠COD<60°),则劣弧AB,劣弧CD的大小关系是( )A.AB︵=3CD︵B.AB︵>3CD︵C.AB︵<3CD︵D.3AB︵<CD︵6. 2019·梧州如图,在半径为13的⊙O中,弦AB与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )A.2 6 B.2 10 C.2 11D.4 37. 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )A.5 cm B.6 cm C.7 cm D.8 cm8. 如图,将半径为6的⊙O沿AB折叠,AB︵与垂直于AB的半径OC交于点D,且CD=2OD,则折痕AB的长为( )A.4 2 B.8 2 C.6D.6 39. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a 为160 mm ,直角顶点A 到轮胎与地面接触点B 的距离AB 为320 mm ,请帮小名同学计算轮胎的直径为( )A .350 mmB .700 mmC .800 mmD .400 mm10. (2019•仙桃)如图,AB 为的直径,BC为的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是的切线;②;③;④.其中正确结论的个数有A .4个B .3个C .2个D .1个O O O CO DB ⊥EDA EBD △∽△ED BC BO BE ⋅=⋅二、填空题(本大题共8道小题)11. 如图所示,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD= 度.12. 如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=________°.13. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD 之间的距离是________cm.14. 已知:如图,A,B是⊙O上的两点,∠AOB=120°,C 是AB︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)15. 如图,点A,B,C都在⊙O上,OC⊥OB,点A在BC︵上,且OA=AB,则∠ABC=________°.16. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.17. 如图2,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结18. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题(本大题共4道小题)19. 如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与⊙O 交于点F ,连接DF ,DC.已知OA =OB ,CA =CB.(1)求证:直线AB 是⊙O 的切线; (2)求证:∠CDF =∠EDC ;(3)若DE =10,DF =8,求CD 的长.20. 如图,AB为⊙O的直径,C为圆外一点,AC交⊙O于点D,BC2=CD·CA,ED︵=BD︵,BE交AC于点F.(1)求证:BC为⊙O的切线;(2)判断△BCF的形状并说明理由;(3)已知BC=15,CD=9,∠BAC=36°,求BD︵的长度(结果保留π).21. 如图,点E是△ABC的内心,线段AE的延长线交BC 于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B ,C ,E 三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.22. (2019•辽阳)如图,是⊙的直径,点和点是⊙上的两点,连接,,,过点作射线交的延长线于点,使. (1)求证:是⊙的切线; (2)若,求阴影部分的面积.BE O A D O AE AD DE A BE C EAC EDA ∠=∠AC O CE AE ==2021中考数学 几何专题训练:圆的有关性质-答案 一、选择题(本大题共10道小题)1. 【答案】C 【解析】延长AO 交BC 于点D ,连接OB.由AB =AC 得点A 在线段BC 的垂直平分线上,因而可得AD ⊥BC ,所以BD =3,不难得出AD =BD =3,于是OD =AD -OA =2,在R t △ODB 中,OB =OD 2+DB 2=22+32=13.2. 【答案】C3. 【答案】A [解析] ∵BC ︵=CD ︵=DE ︵,∠COD =34°, ∴∠BOC =∠COD =∠EOD =34°,∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°. 又∵OA =OE ,∴∠AEO =∠OAE , ∴∠AEO =12×(180°-78°)=51°.4. 【答案】B [解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.5. 【答案】A [解析] 把∠AOB三等分,得到的每一份角所对的弧都等于CD︵,因此有AB︵=3CD︵.6. 【答案】C7. 【答案】A [解析] 作出该球轴截面的示意图如图所示.依题意,得BE=2 cm,AE=CE=4 cm.设OE=x cm,则OA =(2+x)cm.∵OA2=AE2+OE2,∴(2+x)2=42+x2,解得x=3,故该球的半径为5 cm.8. 【答案】B [解析] 如图,延长CO交AB于点E,连接OB.∵CE⊥AB,∴AB=2BE.∵OC=6,CD=2OD,∴CD=4,OD=2,OB=6.由折叠的性质可得DE=12×(6×2-4)=4,∴OE=DE-OD=4-2=2.在Rt△OEB中,BE=OB2-OE2=62-22=4 2,∴AB=8 2.故选B.9. 【答案】C10. 【答案】A【解析】如图,连接.∵为的直径,为的切线,∴,∵,∴,.又∵,∴,∴.在和中,,∴,∴.又∵点在上,∴是的切线,故①正确,∵,∴,∵,∴垂直平分,即,故②正确;DOAB O BC O90CBO∠=︒AD OC∥DAO COB∠=∠ADO COD∠=∠OA OD=DAO ADO∠=∠COD COB∠=∠COD△COB△CO COCOD COBOD OB=⎧⎪∠=∠⎨⎪=⎩COD COB△≌△90CDO CBO∠=∠=︒D O CD OCOD COB△≌△CD CB=OD OB=CO DB CO DB⊥∵为的直径,为的切线,∴, ∴,∴,∵,∴,∴,∵,∴,故③正确;∵,,∴,∴,∵,∴,故④正确,故选A .二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB ,∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB ,∴∠BAD=20°.12. 【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =AB O DC O 90EDO ADB ∠=∠=︒90EDA ADO BDO ADO ∠+∠=∠+∠=︒ADE BDO ∠=∠OD OB =ODB OBD ∠=∠EDA DBE ∠=∠E E ∠=∠EDA EBD △∽△90EDO EBC ∠=∠=︒E E ∠=∠EOD ECB △∽△ED OD BE BC =OD OB =ED BC BO BE ⋅=⋅62°.13. 【答案】2或14 [解析] ①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥CD于点F,交AB于点E,如图①,∵AB=16 cm,CD=12 cm,∴AE=8 cm,CF=6 cm.∵OA=OC=10 cm,∴EO=6 cm,OF=8 cm,∴EF=OF-OE=2 cm;②当弦AB和CD在圆心异侧时,连接OA,OC,过点O作OE⊥CD于点E并反向延长交AB于点F,如图②,∵AB=16 cm,CD=12 cm,∴AF=8 cm,CE=6 cm.∵OA=OC=10 cm,∴OF=6 cm,OE=8 cm,∴EF=OF+OE=14 cm.∴AB与CD之间的距离为2 cm或14 cm.14. 【答案】菱形[解析] 连接OC.∵C是AB︵的中点,∴∠AOC=∠COB=60°.又∵OA=OC=OB,∴△OAC和△OCB都是等边三角形,∴OA=AC=BC=OB,∴四边形OACB是菱形.15. 【答案】15 [解析] ∵OC⊥OB,∴∠COB=90°. 又∵OC=OB,∴△COB是等腰直角三角形,∴∠OBC=45°.∵OA=AB,OA=OB,∴OA=AB=OB,∴△AOB是等边三角形,∴∠OBA=60°,∴∠ABC=∠OBA-∠OBC=15°.16. 【答案】522 [解析] ∵BD为⊙O的直径,∴∠DAB=∠DCB=90°.∵AD=3,AB=4,∴BD=5.又∵AC平分∠DAB,∴∠DAC=∠BAC=45°,∴∠DBC=∠DAC=45°,∠CDB=∠BAC=45°,从而CD =CB ,∴CD =522.17. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.18. 【答案】⎝ ⎛⎭⎪⎪⎫360n m °[解析] 设∠XOY 的度数为x ,则mx=n ×360°,所以x =⎝ ⎛⎭⎪⎪⎫360n m °.三、解答题(本大题共4道小题)19. 【答案】解:(1)证明:如图,连接OC.∵OA =OB ,AC =CB ,∴OC ⊥AB.又∵点C 在⊙O 上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M.∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN =9,∴CD=DM2+CM2=92+32=310.20. 【答案】(1)证明:∵BC2=CD·CA,∴BCCA=CD BC,∵∠C=∠C,∴△CBD∽△CAB,∴∠CBD=∠BAC,又∵AB为⊙O的直径,∴∠ADB=90°,即∠BAC+∠ABD=90°,∴∠ABD+∠CBD=90°,即AB⊥BC,又∵AB为⊙O的直径,∴BC为⊙O的切线;(2)解:△BCF为等腰三角形.证明如下:∵ED︵=BD︵,∴∠DAE=∠BAC,又∵△CBD∽△CAB,∴∠BAC=∠CBD,∴∠CBD=∠DAE,∵∠DAE=∠DBF,∴∠DBF=∠CBD,∵∠BDF=90°,∴∠BDC=∠BDF=90°,∵BD=BD,∴△BDF≌△BDC,∴BF=BC,∴△BCF为等腰三角形;(3)解:由(1)知,BC为⊙O的切线,∴∠ABC=90°∵BC2=CD·CA,∴AC=BC2CD=1529=25,由勾股定理得AB=AC2-BC2=252-152=20,∴⊙O的半径为r=AB2=10,∵∠BAC=36°,∴BD︵所对圆心角为72°.则BD︵=72×π×10180=4π.21. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD 2+CD 2=BC 2,∴BD =CD =3 2.(4)B,C ,E 三点可以确定一个圆.如图②,连接CD .∵点E 是△ABC 的内心,∴∠BAD =∠CAD ,∴BD =CD .又由(2)可知ED =BD ,∴BD =CD =ED ,∴B ,C ,E 三点确定的圆的圆心为点D ,半径为BD (或ED ,CD )的长度.22. 【答案】(1)如图,连接,过作于,∴,∴,OA O OF AE ⊥F 90AFO ∠=︒90EAO AOF ∠+∠=︒∵,∴, ∵, ∴, ∵, ∴, ∴, ∵, ∴, ∴,∴是⊙的切线.(2)∵, ∴, ∵, ∴, ∵,, ∴, ∵, OA OE =12EOF AOF AOE ∠=∠=∠12EDA AOE ∠=∠EDA AOF ∠=∠EAC EDA ∠=∠EAC AOF ∠=∠90EAO EAC ∠+∠=︒EAC EAO CAO ∠+∠=∠90CAO ∠=︒OA AC ⊥ACO CE AE ==C EAC ∠=∠EAC C AEO ∠+∠=∠2AEO EAC ∠=∠OA OE =AEO EAO ∠=∠2EAO EAC ∠=∠90EAO EAC ∠+∠=︒∴,, ∴是等边三角形, ∴,, ∴,∴, 在中,, ∴, ∴阴影部分的面积.30EAC ∠=︒60EAO ∠=︒OAE △OA AE =60EOA ∠=︒OA=2πAOE S =扇形Rt OAE△sin 3OF OA EAO =⋅∠==11322AOE S AE OF =⋅=⨯=△=2π-。
2021中考数学复习圆的综合题专项训练3(填空题 附答案详解)

1.如图,在平面直角坐标系中,等边 的边 在 轴正半轴上,点 , ,点 、 分别从 、 出发以相同的速度向 、 运动,连接 、 交于点 , 是 轴上一点,则 的最小值为______.
2.如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=___________.
14.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.
15.如图,⊙ 上三点 , , ,半径 , ,⊙ 的切线 交 延长线于点 ,从现图中选取一条以P为端点的线段,此线段的长为_____.(注明选取的线段)
∴点F是经过点A,B,F的圆上的点,记圆心为O’,在圆O’上取一点N,使
点N和点F在弦AB的两侧,连接AN,BN,
∴∠ANB=180°-∠AFB=60°,
连接O’A,O’B,
∴∠AO’B=2∠ANB=120°,
∵O’A=O’B,
∴∠ABO’=∠BAO’,
∴∠ABO’= (180°-∠AO’B)= (180°-120°)=30°,
30.在 中, , , ,圆 在 内自由移动.若 的半径为1,则圆心 在 内所能到达的区域的面积为______.
参考答案
1.
【解析】
【分析】
先证明 ,即可得出∠AFB=120°,即可判断出点F的轨迹是以O’为圆心的圆上的一段弧(劣弧AB),然后确定出圆心O’的位置及其坐标,即可确定点M和点F的位置,使FM的长度最小.
25.如图,⊙P的半径为10,A、B是圆上任意两点,且AB=12,以AB为边作正方形ABCD(点D、P在直线AB两侧),若AB边绕点P旋转一周,则CD边扫过的面积为_____
中考数学专题训练:与圆有关的计算(附参考答案)

中考数学专题训练:与圆有关的计算(附参考答案)1.如图,一条公路的转弯处是一段圆弧(AC⏜),点O是这段弧所在圆的圆心,B 为AC⏜上一点,OB⊥AC于D.若AC=300√3 m,BD=150 m,则AC⏜的长为( )A.300π m B.200π mC.150π m D.100√3π m2.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是( )A.30°B.60°C.105°D.210°3.如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A,B是圆上的两点,O为圆心,∠AOB=120°,小强从点A走到点B,走便民路比走观赏路少走( )A.(6π-6√3)米B.(6π-9√3)米C.(12π-9√3)米D.(12π-18√3)米4.如图,在Rt△ABC中,∠ACB=90°,AB=√5,BC=2,以点A为圆心,AC的长为半径画弧,交AB于点D,以点B为圆心,AC的长为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积为( )A.8-πB.4-πC.2-π4D.1-π45.如图,两个半径长均为√2的直角扇形的圆心分别在对方的圆弧上,扇形FCD的圆心C 是AB⏜的中点,且扇形FCD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分的面积等于( )A .π2-1 B .π2-2 C .π-1D .π-26.如图,正六边形ABCDEF 内接于⊙O ,点M 在AB⏜上,则∠CME 的度数为( )A .30°B .36°C .45°D .60°7.如图,在以AB 为直径的⊙O 中,C 为圆上的一点,BC⏜=3AC ⏜,弦CD ⊥AB 于点E ,弦AF 交CE 于点H ,交BC 于点G .若H 是AG 的中点,则∠CBF 的度数为( )A .18°B .21°C .22.5°D .30°8.设圆锥的底面圆半径为r ,圆锥的母线长为l ,满足2r +l =6,这样的圆锥的侧面积( ) A .有最大值94π B .有最小值94π C .有最大值92πD .有最小值92π9.如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥,这个圆锥的底面圆的半径是( )A .π4 B .√24 C .12D .110.圆心角为90°,半径为3的扇形弧长为( ) A .2π B .3π C .32πD .12π11.如图,⊙O 是△ABC 的外接圆,半径为4,连接OB ,OC ,OA .若∠CAO =40°,∠ACB =70°,则阴影部分的面积是( )A .43π B .83π C .163πD .323π12.如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3∶1,则圆的面积约为正方形面积的( )A .27倍B .14倍C .9倍D .3倍13.如图所示,点A ,B ,C 对应的刻度分别为1,3,5,将线段CA 绕点C 按顺时针方向旋转,当点A 首次落在矩形BCDE 的边BE 上时,记为点A ′,则此时线段CA 扫过的图形的面积为( )A .4√3B .6C .43πD .83π14.如图,要用一张扇形纸片围成一个无底的圆锥(接缝处忽略不计).若该圆锥的底面圆周长为20π cm ,侧面积为240π cm 2,则这个扇形的圆心角的度数是_______度.15.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =2√3,半径为1的⊙O 在Rt △ABC 内平移(⊙O 可以与该三角形的边相切),则点A 到⊙O 上的点的距离的最大值为__________.16.如图,在矩形ABCD 中,AB =2,BC =4,E 为BC 的中点,连接AE ,DE ,以E 为圆心,EB 长为半径画弧,分别与AE ,DE 交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)17.已知AB 为⊙O 的直径,AB =6,C 为⊙O 上一点,连接CA ,CB .(1)如图1,若C 为AB⏜的中点,求∠CAB 的大小和AC 的长; (2)如图2,若AC =2,OD 为⊙O 的半径,且OD ⊥CB ,垂足为点E ,过点D 作⊙O 的切线,与AC 的延长线相交于点F ,求FD 的长.18.如图,⊙O是正方形ABCD的内切圆,切点分别为E,F,G,H,ED与⊙O相交于点M,则sin ∠MFG的值为______.19.一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为______厘米.20.如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线⏜的中点,弦CE,BD相交于点F.交于点P,∠ABC=2∠BCP,E是BD(1)求∠OCB的度数;(2)若EF=3,求⊙O的直径长.21.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线.(2)如果AB=10,CD=6.①求AE的长;②求△AEF的面积.参考答案1.B 2.D 3.D 4.D 5.D6.D 7.C8.C 9.B10.C 11.C 12.B 13.D14.150 15.2√7+1 16.4-π17.(1)∠CAB=45°AC=3√2(2)FD=2√2 18.√5519.2620.(1)∠OCB=60°(2)⊙O的直径长为6√321.(1)证明略(2)①AE=454②△AEF的面积为2258。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021中考数学专题训练与圆相关的计算一、选择题(本大题共10道小题)1. 如图所示的扇形纸片半径为5 cm,用它围成一个圆锥的侧面,该圆锥的高是4 cm,则该圆锥的底面周长是()A. 3πcmB. 4πcmC. 5πcmD. 6πcm2. 如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=2,则图中阴影部分的面积是()A. π4B.12+π4C.π2D.12+π23. 若正方形的外接圆的半径为2,则其内切圆的半径为()A. 2 B.2 2 C.22D.14. 如图,△ABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为()A.4π-8 B.2πC.4π D.8π-85. 运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8.则图中阴影部分的面积是( )A.252π B .10π C .24+4π D .24+5π6. 下列用尺规等分圆周的作法正确的有( )①在圆上依次截取等于半径的弦,就可以六等分圆;②作相互垂直的两条直径,就可以四等分圆;③按①的方法将圆六等分,六个等分点中三个不相邻的点三等分圆;④按②的方法将圆四等分,再平分四条弧,就可以八等分圆.A .4个B .3个C .2个D .1个7. 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A .4π-4B .4π-8C .8π-4D .8π-88. 如图是由7个全等的正六边形组成的网格,正六边形的顶点称为格点,△ABC的顶点都在格点上,设定AB边如图所示,则使△ABC是直角三角形的格点有()A.10个B.8个C.6个D.4个9. 如图0,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:对于甲、乙两人的作法,可判断()A.甲对,乙不对B.甲不对,乙对C.两人都对D.两人都不对10. (2020·南充)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为A. 4πB. 4πC. 8πD. 4π二、填空题(本大题共8道小题)11. 用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面圆的面积为.12. 如图是一个圆锥形冰激凌外壳(不计厚度),已知其母线长为12 cm,底面圆的半径为3 cm,则这个冰激凌外壳的侧面积等于________ cm2(结果精确到个位).13. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆半径r=2 cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.14. (2020·菏泽)如图,在菱形OABC中,OB是对角线,OA=OB=2,⊙O与边AB相切于点D,则图中阴影部分的面积为_______.15. 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10 m.拴住小狗的10 m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4 m,则S=________m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE 区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.①②16. (2020·凉山州)如图,点C、D分别是半圆AOB上的三等分点.若阴影部分的面积是32,则半圆的半径OA的长为.DCB17. (2020·宿迁)如图,在矩形ABCD中,AB=1,AD3,P为边AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ.当点P从点A运动到点D时,线段PQ在平面内扫过的面积为.18. (2020·广西北部湾经济区)如图,在边长为2的菱形ABCD 中,∠C =60°,点E ,F 分别是AB ,AD 上的动点,且AE =DF ,DE 与BF 交于点P .当点E 从点A 运动到点B 时,则点P 的运动路径长为.三、解答题(本大题共6道小题)19. 如图,AB 是☉O 的直径,点C 为☉O 上一点,CN 为☉O 的切线,OM ⊥AB 于点O ,分别交AC ,CN 于D ,M 两点.(1)求证:MD=MC ;(2)若☉O 的半径为5,AC=4,求MC 的长.20. (2020•丽水)如图,的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°.Q PDCB A(1)求弦AB的长.(2)求的长.21. 如图是两个半圆,点O为大半圆的圆心,AB是大半圆的弦且与小半圆相切,AB=24,求图中阴影部分的面积.22. 如图,☉O与△ABC的AC边相切于点C,与AB,BC边分别交于点D,E,DE∥OA,CE是☉O的直径.(1)求证:AB是☉O的切线;(2)若BD=4,CE=6,求AC的长.23. 如图,在△ABC中,AB=AC,以AB为直径的☉O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与☉O的位置关系,并说明理由;(2)求证:点H为CE的中点.24. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似..数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.2021中考数学专题训练与圆相关的计算-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】如解图,由题意可知,OA=4 cm,AB=5 cm,在Rt△AOB 中,利用勾股定理可求得OB=3 cm,∴该圆锥的底面周长是6πcm.2. 【答案】A【解析】∵AB为直径,∴∠ACB=90°,∵AC=BC=2,∴AB=2,则半径OA=OB=1,∵△AOC≌△BOC,∴△AOC的面积与△BOC的面积相等,∴阴影部分的面积刚好是四分之一圆的面积,即为14π×12=π4.3. 【答案】A[解析] 如图所示,连接OA,OE.∵AB是小圆的切线,∴OE⊥AB.∵四边形ABCD是正方形,∴AE=OE.在Rt △AOE 中,由勾股定理,得OA2=AE2+OE2,∴22=AE2+OE2, ∴OE = 2.故选A.4. 【答案】A [解析] 由题意可知∠BOC =2∠A =45°×2=90°.∵S 阴影=S 扇形OBC -S △OBC ,S 扇形OBC =14S 圆=14π×42=4π,S △OBC =12×42=8,所以阴影部分的面积为4π-8.故选A.5. 【答案】A [解析] 如图,连接OC ,OD ,OE ,OF.∵AB ∥CD ,∴S △ACD =S △OCD ,∴AB 上方的阴影面积=S 扇形OCD. 同理,AB 下方的阴影面积=S 扇形OEF.延长EO 交⊙O 于点G ,连接FG ,则∠EFG =90°. ∴FG =EG2-EF2=102-82=6. ∵CD =6,∴FG =CD ,∴∠FOG =∠COD ,∴S 扇形OCD =S 扇形OFG ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OFG +S 扇形OEF =S 半圆=12π×52=252π.故选A.6. 【答案】A7. 【答案】A [解析] 由正方形与圆的轴对称性可知S 弓形AB =S 弓形BC ,S 弓形AD =S弓形CD ,∴S 阴影=S 扇形AEF -S △ABD =90π×42360-12×4×2=4π-4.故选A.8. 【答案】A[解析] 如图,当AB 是直角边时,点C 共有6个位置,即有6个直角三角形;当AB 是斜边时,点C 共有4个位置,即有4个直角三角形. 综上所述,使△ABC 是直角三角形的格点有6+4=10(个).故选A.9. 【答案】C[解析] 由甲的作法可知连接OB ,BD ,OC ,CD 后,OB =BD =OD=OC =CD ,所以△BOD 和△COD 都是等边三角形,四边形OBDC 是菱形,所以∠BOC =120°,则∠BAC =60°.因为四边形OBDC 是菱形,所以AD ⊥BC ,AD 平分BC ,所以AB =AC ,所以△ABC 是等边三角形,所以他的作法是正确的.由乙的作法可知∠BOC =120°,所以∠BAC =60°.又因为AD ⊥BC ,所以AD 平分BC ,所以AB =AC ,所以△ABC 是等边三角形,所以他的作法是正确的.故选C.10. 【答案】A【解析】如图,设正六边形的中心为0,连接OA ,OB. 由题意得△AOB 是等边三角形,边长为4,∴142AOB S ∆=⨯⨯=6个弓形的面积和是2464316243ππ⋅-⨯=-,∴阴影部分的面积是2162(16243)121624324342πππππ⨯⋅--=-+=-.二、填空题(本大题共8道小题)11. 【答案】4π[解析]设此圆锥的底面半径为r ,由题意可得2πr=,解得r=2,故这个圆锥的底面圆的面积为4π.12. 【答案】113 [解析] 这个冰激凌外壳的侧面积=12×2π×3×12=36π≈113(cm2).故答案为113.13. 【答案】6[解析]2π×2=,∴l=6.14. 【答案】23-π【解析】利用规则图形的面积和差求不规则图形的面积.在菱形OABC 中,OA =AB ,又∵OA =OB ,∴△AOB 是等边三角形,∴∠AOB =∠A =60°.如图,连接OD ,则OD ⊥AB ,OD =2·sin60°=3,∴S △AOB =21×2×3=3,扇形的面积为:2360)3(602ππ=︒⨯⨯︒,∴阴影部分的面积为:2×(3-2π)=23-π.15. 【答案】88π;52 【解析】(1)因为AB +BC =10 m ,BC =4 m ,则AB =6 m ,小狗活动的范围包括三个部分,第一部分是以点B 为圆心,10为半径,圆心角为270°的扇面;第二部分是以C 为圆心,6为半径,圆心角为90°的扇形,第三部分是以A 为圆心,4为半径,圆心角为90°的扇形,则S =270π·102360+90π·62360+90π·42360=88πm 2;(2)当在右侧有一个等边三角形时,设BC =x 米,根据题意得S =270π·102360+30π·(10-x )2360+90π·x 2360=π3x 2-53πx +2503π,所以当x =-(-53π)÷(2×π3)=52时,S 最小,即此时BC 的长为52米.16. 【答案】3【解析】如答图,连接OC 、OD 、CD ,则∠AOC =∠COD =∠BOD =60°.∵OB =OD =OC ,∴△OCD 和△OBD 均为正三角形.∴∠ODC =∠BOD =60°.∴AB ∥CD .∴S △BCD =S △OCD .∴S 阴影部分=S 扇形OCD .∴26033602r ππ⋅=.解得r =3,于是半圆的半径OA 的长为3.故答案为3.DCBA17. 【答案】33π-.【解析】如答图,图中阴影部分的面积即为点P 从点A 运动到点D 时,线段PQ 在平面内扫过的面积.∵在矩形ABCD 中,AB =1,AD=3,∴∠ABC =∠BAC =∠C =∠Q =90°,∠ADB =∠DBC =∠ODB =∠OBQ =30°.∴∠ABQ =120°.易知△BOQ ≌△DOC .S 阴影部分=S 四边形ABQD -S 扇形ABQ =S 四边形ABOD +S △BOQ -S 扇形ABQ =S 四边形ABOD +S △COD -S 扇形ABQ=S 矩形ABCD -S 扇形ABQ =1×3-21201360π⋅=33π-.故答案为33π-.18. 【答案】π【解析】如图,作△CBD 的外接圆⊙O ,连接OB ,OD .∵四边形ABCD 是菱形,∵∠A =∠C =60°,AB =BC =CD =AD ,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长π.,因此本题答案是π.三、解答题(本大题共6道小题)19. 【答案】解:(1)证明:连接OC,∵CN为☉O的切线,∴OC⊥CM,∴∠OCA+∠MCD=90°.∵OM⊥AB,∴∠OAC+∠ODA=90°.∵OA=OC,∴∠OAC=∠OCA,∴∠MCD=∠ODA.又∵∠ODA=∠MDC,∴∠MCD=∠MDC,∴MD=MC.(2)依题意可知AB=5×2=10,AC=4,∵AB为☉O的直径,∴∠ACB=90°,∴BC==2.∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴=,即=,得OD=.设MC=MD=x,在Rt△OCM中,由勾股定理得x +2=x 2+52,解得x=,即MC=.20. 【答案】解:(1)∵的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°,∴AC =OA•sin60°=2,∴AB =2AC =2;(2)∵OC ⊥AB ,∠AOC =60°,∴∠AOB =120°,∵OA =2,∴的长是:.21. 【答案】[解析] 小圆向右平移,使它的圆心与大圆的圆心重合,于是阴影部分的面积可转化为大半圆的面积减去小半圆的面积.解:将小半圆向右平移,使两半圆的圆心重合,如图,连接OB ,过点O 作OC ⊥AB 于点C ,则AC =BC =12.∵AB 是大半圆的弦且与小半圆相切, ∴OC 为小半圆的半径,∴S 阴影=S 大半圆-S 小半圆=12π·OB2-12π·OC2=12π(OB2-OC2)=12π·BC2=72π.22. 【答案】解:(1)证明:连接OD ,∵DE ∥OA , ∴∠AOC=∠OED ,∠AOD=∠ODE ,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=OC,∴△AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是☉O的直径,AC为☉O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO=∠OCA=90°,∴OD⊥AB.∵OD为☉O的半径,∴AB是☉O的切线.(2)∵CE=6,∴OD=OC=3,∵∠BDO=180°-∠ADO=90°,∴BO2=BD2+OD2,∴OB==5,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B,∴△BDO∽△BCA,∴=,∴=,∴AC=6.23. 【答案】[解析](1)连接OD,AD,先利用圆周角定理得到∠ADB=90°,再根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,根据DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为☉O的切线.(2)连接DE,由圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH.解:(1)DH与☉O相切.理由如下:连接OD,AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为☉O的切线.(2)证明:连接DE,如图,∵四边形ABDE为☉O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点.24. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD≌△EGD,∠EBC=∠ECB,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG=45°,β=∠ACB=135°,∴∠ECB=45°,∠CEB=90°,△ECD、△BEC、△ABG 都是等腰直角三角形,由CD的长,可得出BE和CE的长,再由题干条件△ABE 的面积是△ABC的面积的4倍可得出AC的长,利用勾股定理在△ABE中求出AB的长,再利用勾股定理在△ABG求出AG的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)。