紫外光谱答案(学习资料)
波谱解析习题

第一节:紫外光谱(UV)一、简答 (p36 1-3)1.丙酮(de)羰基有几种类型(de)价电子.并说明能产生何种电子跃迁各种跃迁可在何区域波长处产生吸收答:有n 电子和π电子.能够发生n →π跃迁.从n 轨道向π反键轨道跃迁.能产生R 带.跃迁波长在250—500nm 之内.2.指出下述各对化合物中,哪一个化合物能吸收波长较长(de)光线(只考虑π→π跃迁)(2)(1)及NHR3CHCHOCH 3CH 及CH 3CH CH2答:(1)(de)后者能发生n →π跃迁,吸收较长.(2)后者(de)氮原子能与苯环发生P →π共轭,所以或者吸收较长.3.与化合物(A )(de)电子光谱相比,解释化合物(B )与(C )(de)电子光谱发生变化(de)原因(在乙醇中).(C)(B)(A)入max =420 εmax =18600入max =438 εmax =22000入max =475 εmax =320003N NNNO HC32(CH )2N NNNO H C 32(CH )2232(CH )(CH )23NNNNO答:B 、C 发生了明显(de)蓝移,主要原因是空间位阻效应. 二、分析比较(书里5-6)1.指出下列两个化合物在近紫外区中(de)区别:CH CH32(A)(B)答:(A)和(B)中各有两个双键.(A)(de)两个双键中间隔了一个单键,这两个双键就能发生π→π共轭.而(B)这两个双键中隔了两个单键,则不能产生共轭.所以(A)(de)紫外波长比较长,(B)则比较短.2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n→π跃迁及π→π跃迁有何影响答:对n→π跃迁来讲,随着溶剂极性(de)增大,它(de)最大吸收波长会发生紫移.而π→π跃迁中,成键轨道下,π反键轨道跃迁,随着溶剂极性(de)增大,它会发生红移.三、试回答下列各问题=305nm,其λEtOH max=307nm,试问,该吸收是由n→π1.某酮类化合物λhexanemax跃迁还是π→π跃迁引起(de)(p37-7)答:乙醇比正己烷(de)极性要强(de)多,随着溶剂极性(de)增大,最大吸收波长从305nm变动到307nm,随着溶剂极性增大,它发生了红移.化合物当中应当是π→π反键轨道(de)跃迁.:四.计算下述化合物(de)λmax1. 计算下列化合物(de)λ:(p37 -11)max五、结构判定1. 一化合物初步推断其结构不是A就是B,经测定UV λEtOH max=352nm,试问其结构为何O O(A)(B)应为A第二节:红外光谱(IR)一、回答下列问题:1. C—H,C—Cl键(de)伸缩振动峰何者要相对强一些为什么答:由于CL原子比H 原子极性要大,C—CL键(de)偶极矩变化比较大,因此C—CL 键(de)吸收峰比较强2.C═O 与C═C都在μm区域附近.试问峰强有何区别意义何在答:C=C双键电负性是相同(de),C=O双键,O(de)双键电负性比C要强.在振动过程中,肯定是羰基(de)偶极矩(de)变化比较大,所以羰基(de)吸收峰要比C=C双键(de)强(de)多.二、分析比较1. 试将C═O 键(de)吸收峰按波数高低顺序排列,并加以解释.p102 5CH 3COCH 3 CH 3COOH CH 3COOCH 3 CH 3CONH 2 CH 3COCl CH 3CHO(A) (B) (C) (D) (E) (F) 答:(1)顺序是E 〉B 〉C 〉F 〉A 〉D.因为CL 原子电负性比较强,对羰基有诱导效应,它(de)峰位最高.COOH 电负性也比较强,对羰基本也有诱导效应,但是比CL 弱些.CH3相对吸电子效应要弱一点.CHO(de)诱导效应不是很明显.(A )(de)共轭效应比CHO 要低一点.NH3(de)吸收峰向低处排列.2.能否用稀释法将化合物(A)、(B)加以区分,试加以解释.P103 6(A) (B)答:(A )能形成峰子内氢键,(B )能形成峰子间氢键.峰子内稀释对其红外吸收峰无影响.峰子间稀释,浓度越高,形成(de)氢键越强,向低波处移动(de)越厉害.稀释会阻碍形成氢键,吸收峰会向高波处移动.所以可以用稀释(de)方法来辨别.三、结构分析(p103 7-8)1. 用红外光谱法区别下列化合物.(A) (B)COCH 3COCH 3CH 3CH 3CH 3OOOHOOOH答:(1)(B )有两个羰基,在两个羰基(de)影响下,两个亚甲基会发生互变异构.(A )有两个羰基(de)吸收峰.(2)(B )有非常大(de)空间位度,它(de)吸收峰(de)峰位会比较高,波数也会比较高,会阻碍羰基和双键(de)共轭,波数会升高.(A )波数比较低.2.某化合物在4000~1300cm –1区间(de)红外吸收光谱如下图所示,问此化合物(de)结构是(A)还是(B)(A) (B)答:应该是(A ).因为在2400-2100cm 处出现了吸收峰,如果有炭氮三键在,它会在2400-2100之间出现伸缩振动(de)吸收峰.OH(de)吸收峰在3300cm 左右,也比较明显.四、简答题:(p105 15)(1)1. 1–丙烯与1–辛烯(de)IR 光谱何处有明显区别答:如果化合物中存在亚甲基,而亚甲基(de)数目在4个以上,它会在722左右出现面内摇摆振动(de)吸收峰,1-辛烯里有722左右(de)面内摇摆振动(de)吸收峰,而1-丙烯没有.(2)下列两个化合物,哪个化合物(de)IR 光谱中有两个 C═ O 吸收峰试解释理由HOC NC ONH 2(A) (B)答:(A )是两个a 位(de)OH,可与羰基形成氢键.这两个羰基是等价(de),只会出现一个吸收峰.(B )a 位(de)OH 可以和羰基形成氢键,而下面(de)羰基不能,则可能会出现两个不同(de)吸收峰.所以是B 有两个吸收峰. 五、图谱解析(书里20)1.某有机化合物其分子式为C 8H 8O,常温下为液体,其红外吸收光谱如下图所示:试解析其化学结构答:计算得不饱和度为5.不饱和度高,可能有苯环.1686为最强吸收峰,在1700左右,因此这个吸收峰是羰基所产生(de).峰位小于1700,可能是发生了共轭.1599有吸收峰,1583有吸收峰,1492有吸收峰.此三个吸收峰应该是C=C 双键伸缩振动(de)吸收峰.3100-3000之间有吸收峰,是不饱和炭氢伸缩振动(de)吸收峰.761-691有两个很强(de)吸收峰.以上三组吸收峰可证明苯环(de)存在.1360-1450都有比较强(de)吸收峰,3000-2800内有较弱(de)炭氢伸缩振动吸收峰,所以甲基存在.此化合物应该是个环丙酮.O O OHOHO OOH OH590.26691.19731.02761.26848.01928.02955.681001.371023.511078.441101.631179.971265.281303.081359.581448.521582.701598.181685.091819.751905.431971.912922.933004.683062.393351.353522.96-15-10-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75%T r a n s m i t t a n c e5001000150020002500300035004000Wavenumbers (cm-1)2.某有机化合物其分子式为C 7H 9N,红外吸收光谱如下图所示:解析该有机化合物(de)化学结构.第三节:核磁共振(NMR)一、简答1.乙酸乙酯中(de)三种类型氢核电子屏蔽效应是否相同若发生核磁共振,共振峰应当怎么排列d值何者最大何者较小为什么(p174 3)CH3—COO—CH2—CH3(a)(b)(c)答:顺序是( b )〉( a )〉( c ).(b)最大,(c )最小.因为(b)受到氧诱导效应(de)影响,也受到羰基(de)影响,所以它(de)吸电子诱导效应最强. ( a)只受到羰基(de)影响,因此仅次与(b).(c)离羰基和氧都比较远,所以(c )最小.2.醋酸在用惰性溶剂稀释时,其酸性氢核(de)共振峰将移向何处(书里6)答:醋酸在用惰性溶剂稀释时,分子间氢键作用减弱,酸性氢核(de)化学位移值减小,共振峰移向高场.3.下列图谱为AB系统氢核给出(de)信号还是AX系统中(de)X氢核给出(de)信号,为什么(书里14)答:如果是AX系统,那么每个高度应该是相等(de),应该是1:1(de)关系.如果是AB系统,中间会高起来,两边会低下去,这个图形代表(de)是典型(de)AB系统(de)偶合.4. 标记(de)氢核可预期在1H-NMR(de)什么区域有吸收(a) (b) ( c ) (2) (a ) (b ) (c ) (3)(a ) (b ) (4)(a ) (b) (c) (d) (5)(a) (b) (c ) (6)(a) (b) (c) (d) (7)(a) (b) (c) (8)(a) (b)5.一化合物,分子式为C 6H 8,高度对称,在噪音去偶谱(COM )上只有两个信号,在偏共振去耦谱(OFR )上只有一个三重峰(t )及一个二重峰(d),试写出其结构.(书里19)答:三重峰应该是亚甲基,二重峰应该是四甲基.结构应该是环己烷,里面有两个双键.1,4环-2-己烯.1位和4位是双键,是个环二烯. 二、图谱解析:1.某化合物其分子式为C 4H 8O 2 ,NMR Solvent: CDCl 31H NMR Spectrum13C NMR Spectrum试推测其化学结构.答:计算出不饱和度为1.2应该是亚甲基,两个3应该是甲基.甲基裂坡成了三重坡,亚甲基裂坡成了四重坡,说明这边刚好是个乙基.在210左右有个吸收峰,这是典型(de)羰基(de)一个吸收峰.40左右有个碳(de)信号,应该是受到了氧(de)诱导效应(de)影响.这个化合物(de)结构应该是乙酸乙酯.2.某化合物分子式为C9H10O3,分子量为:166,其氢谱、碳谱数据如下图所示,解析其结构.第四节:质谱(MS)一、简答1、甲基环己烷(de)EIMS如下.归属下列信息:(p264 2)a. 分子离子b. 基峰答:分子离子98,基峰是信息最高(de)83,M+-37碎片离子应该是61.2、 3-甲基-3-庚醇有三种可能(de) 裂解途径.在下面(de)EI质谱中找到他们并指出他们(de)相对多少.(p266 13)答:3-甲基-3-庚醇,羟基上面有一个甲基,一个亚甲基;还有一个甲基,乙基,丁基,正丁基.a裂解也是从优先基团裂解,所以3-甲基-3-庚醇失去一个丁基,一个正丁基,应该是信号最强(de).也可失去乙基.73是失去正丁基(de)碎片离子,101是失去乙基(de)碎片离子.115是失去甲基(de)碎片离子.第五节综合解析:1、试论述UV、IR、1H NMR、13C NMR、MS谱(de)各主要光谱参数,以及各光谱对有机化合物结构解析(de)作用.答:UV:λmax,ε;紫外光谱可用于共轭体系及化合物结构母核(de)推测. IR:吸收峰(de)峰位ν(波数)及ε;可用于化合物官能团(de)鉴定.1H NMR:化学位移δ,耦合常数J,积分曲线高度或面积;化学位移可用于推测氢核类型,J可用于推测H核与H核之间(de)耦合作用,J相等,互相有耦合作用,积分曲线高度可用于相应氢核数目(de)推测.13C NMR:化学位移δ;可用于碳结构类型(de)推测及结构骨架(de)推测.MS:m/z可用于确定分子量,HR-MS可用于推测分子式.碎片离子可用于裂解规律(de)推测及化合物结构分析.C9H 12MW = 120答:(1)1H NMRΩ=(2+2×9-12)/2=4 推测可能含有苯环共有4组氢原子,原子个数分别为5、2、2、3③δ:7~8为苯环上质子信号,有5个氢,提示苯环可能为单取代. ④δ:~之间信号为甲基氢,裂分为三重峰,其临近应有- CH2⑤δ:~;δ:~两组氢应为2个- CH2信号.δ:~(de) - CH2受相邻- CH2偶合作用(de)影响裂分为三重峰;δ:~(de)- CH2受相邻- CH2,- CH3偶合作用(de)影响裂分为多重峰.(2)13C NMR①13C NMR上有7组信号.2、6号碳为磁等同碳核;3、5号碳为磁等同碳核,故9个碳只有7个信号.②δ:、、、为苯环上碳信号.δ:、、为CH3、CH2信号.(3)IR中,3062, 3027, 1602, 1455, 741, 699cm-1一组峰,可推出有苯环存在.且为单取代.其中3062,3027 cm-1为C-H伸缩振动(de)吸收峰;1602,1455 cm-1为苯环骨架振动(de)吸收峰,741,699 cm-1为C-H面外弯曲振动(de)吸收峰.2885,8 cm-1证明有烷基存在,分别为C-H伸缩振动及C-H面内弯曲振动(de)吸收峰. (4)EI-MS:120为分子离子峰;105为失去-CH3以后(de)碎片;91为失去乙基后形成(de)鎓离子,也表明苯环上有烷基取代.故:化合物(de)结构应为:。
波谱解析 第一章 紫外光谱习题参考答案

习题参考答案第一章紫外光谱1.(1) 饱和化合物,吸收在远紫外区,故在近紫外区无吸收峰;(2) 结构可看成乙烯中引入了助色基团甲氧基,吸收波长红移,但吸收峰仍在远紫外区,近紫外区无吸收峰;(3) π→π*跃迁。
氨基为助色团,其孤对电子与苯环发生p→π共轭,所以E带和B带均发生红移,E1吸收位于远紫外区,E2带(230 nm)和B带(280 nm)处在近紫外区。
(4)取代基与苯环形成大的共轭体系,有π→π*跃迁;结构中含有羰基,有n→π*跃迁。
吸收带有K带、B带和R带;(5) 取代基与苯环形成大的共轭体系,π→π*跃迁,主要吸收带为K带和B带;(6) 羰基有n→π*跃迁,为R带吸收。
(该结构的烯醇异构体有K带和R带)(7) 该结构为α,β-不饱和羰基化合物,有π→π*跃迁和n→π*跃迁,吸收带为K带和R带。
2.(1) a为饱和烷烃,仅有σ→σ*跃迁,吸收位于远紫外;b有两个双键,但未共轭,吸收位于远紫外;c为共轭二烯,吸收在近紫外;所以最大吸收波长c>b>a;(2) a为同环共轭双烯,波长最大,c和b相比,结构中多了一个甲基,存在超共轭效应,吸收红移。
综上所述,a>c>b;(3) a, c为共轭体系,吸收波长均高于b。
a和c相比,结构中拥有更多的取代甲基,存在超共轭效应,吸收红移。
综上所述,a>c>b;3. (1)同环共轭双烯基本值2534个烷基取代+ 4×52个环外双键+ 2×5计算值283(nm)(3)(4)(5)(6)骈环异环共轭双烯基本值214 4个烷基取代+ 4×52个环外双键+ 2×5 计算值244(nm)同环共轭双烯基本值253 4个烷基取代+ 4×5 计算值273(nm)直链α,β-不饱和酮基本值215 1个烷基α取代+ 10 计算值225(nm)五元环α,β-不饱和酮基本值202 1个烷基α取代+ 102个烷基β取代+12×22个环外双键+5×2 计算值246(nm)六元环α,β-不饱和酮基本值215 1个烷基α取代+ 102个烷基β取代+12×2 计算值249(nm)(7)直链α,β-不饱和酮基本值2151个烷基γ取代+ 182个烷基δ取代+18×2延长一个共轭双键+30计算值299(nm)(8)无共轭结构,无K带吸收(9)烷基单取代羧酸(β)基本值208β位N(CH3)2取代+ 60计算值268(nm)(10)苯甲酰酮基本值2461个邻位-OH取代+ 71个间位-CH3取代+3计算值256(nm)(11)苯甲酸基本值2301个对位-OH取代+ 25计算值255(nm)4.(1)a.非骈环共轭双烯基本值2173个烷基取代+ 3×5计算值232(nm)b.非骈环共轭双烯基本值2174个烷基取代+ 4×51个环外双键+ 5计算值242(nm) 综上所述,两种化合物可以用紫外光谱区分。
紫外光谱法练习题带答案

紫外光谱法练习题带答案一、单选题1、物质的紫外-可见吸收光谱的产生是由于( )A、分子的振动B、分子的转动C、原子核外层电子的跃迁D、原子核内层电子的跃迁正确答案: C2、分子运动包括有电子相对原子核的运动(E电子)、核间相对位移的振动(E振动)和转动(E转动)这三种运动的能量大小顺序为()A、E振动>E转动>E电子B、E转动>E电子>E振动C、E电子>E振动>E转动D、E电子>E转动>E振动正确答案: C3、下列化合物中,同时有n→π*、π→π*、σ→σ*跃迁的化合物是( )A、一氯甲烷B、丙酮C、1,3-丁烯D、甲醇正确答案: B4、有机化合物吸收光能后,可能产生四种类型的电子跃迁。
①σ→σ* ②n→σ* ③π→π*④n→π*,这些电子跃迁所需能量的大小顺序为( )。
A、①>②≥④>③B、④>①≥③>②C、②>①≥③>④D、①>②≥③>④正确答案: D5、下列基团中属于生色基团的是( )。
A、-NR2B、-N=OC、-OHD、-OR正确答案: B6、助色团对谱带的影响是使谱带( )。
A、波长变长B、波长变短C、波长不变D、谱带蓝移正确答案: A7、在化合物的紫外吸收光谱中,K带是指()。
A、n→σ* 跃迁B、共轭非封闭体系的n→π* 跃迁C、σ→σ* 跃迁D、共轭非封闭体系的π→π* 跃迁正确答案: D8、在化合物的紫外吸收光谱中,R带是指()。
A、 n→σ* 跃迁B、共轭非封闭体系的π→π* 跃迁C、σ→σ* 跃迁D、n→π* 跃迁正确答案: D9、指出下列化合物中,哪个化合物的紫外吸收波长最小()。
A、CH3CH2CH3B、CH3CH2OHC、CH2=CHCH2CH=CH2D、CH3CH=CHCH=CHCH3正确答案: A10、在紫外光谱中, max最大的化合物是( )。
A、B、C、D、正确答案: D11、比较下列化合物的紫外可见吸收波长的位置(λmax )( )。
紫外光谱试题及答

紫外吸收光谱法1一、选择1. 频率(MHz)为4.47×108的辐射,其波长数值为( 1 )(1)670.7nm (2)670.7μ (3)670.7cm (4)670.7m2. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了(3 )(1)吸收峰的强度(2)吸收峰的数目(3)吸收峰的位置(4)吸收峰的形状3. 紫外光谱是带状光谱的原因是由于(4 )(1)紫外光能量大(2)波长短(3)电子能级差大(4)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因4. 化合物中,下面哪一种跃迁所需的能量最高(1)(1)σ→σ* (2)π→π* (3)n→σ* (4)n→π*5. π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大(1 )(1)水(2)甲醇(3)乙醇(4)正己烷6. 下列化合物中,在近紫外区(200~400nm)无吸收的是(2)(1)(2)(3)(4)7. 下列化合物,紫外吸收λmax值最大的是(2)(1)(2)(3)(4)二、解答及解析题1. 吸收光谱是怎样产生的?吸收带波长与吸收强度主要由什么因素决定?答:(1)吸收光谱的产生是由于处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱,这种光谱即称为吸收光谱。
(2)吸收带出现的范围和吸收强度主要由化合物的结构决定。
2.紫外吸收光谱有哪些基本特征?答:吸收光谱一般都有一些特征,主要表现在吸收峰的位置和强度上。
含有共轭结构的和不饱和结构的都会有吸收,不饱和度越大吸收波长越大。
3. 为什么紫外吸收光谱是带状光谱?答:其原因是分子在发生电子能级跃迁的同时伴随有振动及转动能级跃迁,在紫外光谱上区分不出其光谱的精细结构,只能呈现一些很宽的吸收带。
4. 紫外吸收光谱能提供哪些分子结构信息?紫外光谱在结构分析中有什么用途又有何局限性?答:(1)如果在200~400nm区间无吸收峰,没该化合物应该无共轭双键系统,或为饱和有机化合物。
紫外光谱习题及答案

紫外光谱习题1. 下列化合物对近紫外光能产生那些电子跃迁在紫外光谱中有哪何种吸收带(1)CH 3CH 2CHCH 2Cl (2)CH 2CHOCH 3 (3)(4) (5)O(6)CH 3CCH 2COCH 2CH 3(7)ClCH 2CH2=CH CC 2H 5解:紫外吸收在200-400nm 区域,且有共轭结构(1)无共轭结构,无吸收锋(2)共轭结构,无吸收峰 (3)有*跃迁,产生K 带和B 带吸收(4)有*跃迁和n*跃迁,产生K 带、R 带和B 带吸收 (5)有*跃迁,产生K 带和B 带吸收(6)有n*跃迁,产生R 带,产生烯醇式互变异构体时,还有K 带吸收 (7)有*跃迁和n*跃迁,产生K 带和R 带吸收2、比较下列各组化合物的紫外吸收波长的大小(k 带)(1) a. CH 3(CH 2)5CH 3 b.(CH 3)2C=CH-CH 2 =C (CH 3)2 CH-CH=CH 2(2) c.(3)b. Oc.OOHNH 2OCH=CH 2O OOCH解:(1)有共轭结构时,紫外吸收波长增大;双键是助色基团,使紫外吸收波长增大,则:c> b> a (2)有共轭时结构时,环内共轭>环外共轭, 甲基可以增大紫外吸收波长,则:a> c>b(3)有共轭时结构时,环内共轭>环外共轭, 甲基可以增大紫外吸收波长,则:a> c>b3、用有关经验公式计算下列化合物的最大吸收波长 (1))+25(5个烷基取代)+5(1个环外双键)=283 nm(2) max=(基本值)+20(4个烷基取代)+10(2个环外双键)=244 nm (3)答:max=253(基本值)+20(4个烷基取代)=273 nm (4)答:max= 215(基本值)+10(1个烷基α取代)=225 nm(5)答:max=202(基本值)+10(1个烷基α取代)+24(2个烷基β取代)+10(2个环外双键=246nm(6)CH 2 =C C OC H 3 CH 3O CH 3答:max=215(基本值)+10(1个烷基α取代)+24(2个烷基β取代)=249 nm (7)答:max=215(基本值)+18(1个烷基γ取代)+36(2个烷基δ取代)+30(延长1个共轭双键)=299 nm答:无共轭结构,故无吸收(9)答:max=208(基本值)+60(1个N(CH 3)2取代)=268 nm(10)答:max=246(基本值)+7(1个邻位-OH 取代)+3(1个间位-CH 3取代)=256 nm (11)答:max=230(基本值)+25(1个对位-OH 取代)=255 nm4、能否用紫外光谱区分下列化合物如何区分 (1) a 、)+15(3个烷基取代)=232 nm b 、OO OHCH 3NCH 3 CH 33 OOHCH 3答:max=217(基本值)+20(4个烷基取代)+5(1个环外双键)=242 nm (2) a答:max=214(基本值)+25(5个烷基取代)+10(2个环外双键)+30(延长1个共轭双键)=287 nm b 、答:max=)+15(3个环外双键)+60(延长2个共轭双键)=353 nm (3) a 、答:max=215(基本值)+10(1个烷基α取代)+12(1个烷基β取代)=237 nm b 、max=基本值)+10(1个烷基α取代)+24(2个烷基β取代)+30(延长1个共轭双键)=249 nm(4) a 、答:max=217(基本值)+30(1个环外双键)+30(延长1个共轭双键)=247 nmC O CH3 O C O O CH 2 CH 3b 、答:基本值)+30(1个β双-OR 取代)=247 nm5、异丙叉丙酮在3种溶剂中的n*跃迁的吸收波长如下: 计算异丙叉丙酮在水中和乙醇中氢键强度。
紫外光谱习题答案

紫外光谱习题一.选择题1.光量子的能量正比于辐射的( A C )A :频率B :波长C :波数D :传播速度E :周期2.电子能级间隔越小,跃迁时吸收光子的( B )A :能量越大B :波长越长C :波数越大D :频率越高E :以上A 、B 、C 、D 、都对3.同一电子能级,振动态变化时所产生的光谱波长范围是(C ) A :可见光区 B :紫外光区 C :红外光区D :X 射线光区E :微波区4.所谓真空紫外区,其波长范围是(C )A :200~400nmB :400~800nmC :100~200nmD :nm 310E :nm 310-5.下面五个电磁辐射区域A :X 射线区B :红外区C :无线电波D :可见光区E :紫外光区请指出(1)能量最大者(A ) (2)波长最短者(C )(3)波数最小者(A ) (4)频率最小者(C )6.以下五种类型的电子能级跃迁,需要能量最大的是(A )A :σ→*σB :*→σnC :*→πnD :*→ππE :*→σπ7.在紫外光的照射下,Cl CH 3分子中电子能级跃迁的类型有(A B )A :*→σnB :σ→*σC :*→σπD :*→ππE :*→πn8.在下面五种类型的电子跃迁,环戊烯分子中的电子能级跃迁有(A C D )A :σ→*σB :*→σnC :*→σπD :*→ππE :*→πn9. 有两种化合物如下, 以下说法正确的是(A B D )(1)32CHOCH CH = (2)3222OCH CH CHCH CH =A :两者都有*→ππB :两者都有*→πnC :两者都有*→ππ 跃迁且吸收带波长相同D :化合物(1)的*→ππ 跃迁的吸收波长比(2)长E :化合物(1)的*→ππ跃迁吸收波长比(2)短10.在下面五种溶剂中测定化合物233)(CH C COCH CH =的*→πn 跃迁,吸收带波长最短者是(D )A :环已烷B :氯仿C :甲醇D :水E :二氧六环 11.对于异丙叉丙酮233)(CH C COCH CH = 的溶剂效应,以下说法正确的是(A D )A :在极性溶剂中测定*→πn 跃迁吸收带,m ax λ发生蓝位移B :在极性溶剂中测定*→πn 跃迁吸收带,m ax λ发生红位移 C :在极性溶剂中测定*→ππ跃迁吸收带,m ax λ 发生蓝位移D :在极性溶剂中测定*→ππ跃迁吸收带,m ax λ 发生红位移E :*→πn 及*→ππ跃迁的吸收带波长与溶剂极性无关12.下列化合物中,*→ππ 跃迁需能量最大的是(E )A :1,4-戊二烯B :1,3-丁二烯C :1,3-环已二烯D :2,3-二甲基-1,3-丁二烯E :1,3,5-已三烯13.某种物质的己烷溶液的紫外光谱,有个吸收带在305nm ,但在乙醇溶液中这个吸收带移到307nm ,该吸收带是由下面哪一种类型跃引起(D )A :σ→*σ B :*→σn C :*→πnD :*→ππE :*→σπ14.紫外光谱一般都用样品的溶液测定,溶剂在所测定的紫外区必须透明,以下溶剂哪些能适用于210nm 以上(ABDE )A :95%乙醇 B :水 C :四氯化碳D :正己烷E :乙醚 15.丙酮在己烷中的紫外吸收m ax λ为279nm, ε= 14.8,该吸收带是由哪种跃迁引起的(C )A :*→πnB :*→ππC :*→σnD :σ→*σE :*→σπ16.以下基团或分子中,能产生R 吸收带的是(AB )A :O C =B : O N =C :C C =D :C C C C =-=17.以下基团或分子中,能产生K 吸收的是(ABC )A :C C C C =-=B :OC C C =-= C :D :33COCH CHE :CHCl CH =218.以下四种化合物,能同时产生B 吸收带、K 吸收带和R 吸收带的是( C )A. CH 2CHCH OB. CH C CH OC. C OCH 3 D. CH CH 219. 符合朗伯特-比耳定律的有色溶液稀释时,其最大吸收峰的波长位置( C )A. 向短波方向移动B. 向长波方向移动C. 不移动,且吸光度值降低D. 不移动,且吸光度值升高20. 在符合朗伯特-比尔定律的范围内,溶液的浓度、最大吸收波长、吸光度三者的关系是(B )A. 增加、增加、增加B. 减小、不变、减小C. 减小、增加、减小D. 增加、不变、减小 二.填充题1.某种溶液在254nm 处透过百分率﹪T =10,则其吸光度为_1__。
紫外光谱习题及答案

紫外光谱习题一.选择题1.光量子的能量正比于辐射的( A )A:频率 B:波长 C:波幅 D:传播速度2.电子能级间隔越小,跃迁时吸收光子的( B )A:能量越大 B:波长越长 C:波数越大D:频率越高 E:以上A 、B 、C 、D 、都对3.所谓真空紫外区,其波长范围就是(C )A:200~400nm B:400~800nm C:100~200nmD:nm 310 E:nm 310-4.以下五种类型的电子能级跃迁,需要能量最大的就是(A )A:σ→*σ B:*→σn C:*→πnD:*→ππ E:*→σπ5、在紫外光的照射下,Cl CH 3分子中电子能级跃迁的类型有(A B )A:*→σn B:σ→*σ C:*→σπD:*→ππ E:*→πn6.在下面五种类型的电子跃迁,环戊烯分子中的电子能级跃迁有(A C D )A:σ→*σ B:*→σn C:*→σπD:*→ππ E:*→πn7、 有两种化合物如下, 以下说法正确的就是(A B D )(1)32CHOCH CH = (2)3222OCH CH CHCH CH =A:两者都有*→ππB:两者都有*→πnC:两者都有*→ππ 跃迁且吸收带波长相同D:化合物(1)的*→ππ 跃迁的吸收波长比(2)长E:化合物(1)的*→ππ跃迁吸收波长比(2)短8.在下面五种溶剂中测定化合物233)(CH C COCH CH =的*→πn 跃迁,吸收带波长最短者就是(D )A:环已烷 B:氯仿 C:甲醇D:水 E:二氧六环 11.对于异丙叉丙酮233)(CH C COCH CH = 的溶剂效应,以下说法正确的就是(A D )A:在极性溶剂中测定*→πn 跃迁吸收带,m ax λ发生蓝位移 B:在极性溶剂中测定*→πn 跃迁吸收带,m ax λ发生红位移C:在极性溶剂中测定*→ππ跃迁吸收带,m ax λ 发生蓝位移D:在极性溶剂中测定*→ππ跃迁吸收带,m ax λ 发生红位移E:*→πn 及*→ππ跃迁的吸收带波长与溶剂极性无关13.以下基团或分子中,能产生R 吸收带的就是(AB )A:O C = B: O N = C:C C = D:C C C C =-=14.以下基团或分子中,能产生K 吸收的就是(ABC )A:C C C C =-= B:O C C C =-= C: D:33COCH CH E:CHCl CH =215.以下四种化合物,能同时产生B 吸收带、K 吸收带与R 吸收带的就是( C )A 、 CH 2CHCH OB 、 CHC CH O C 、 C OCH 3 D 、 CH CH 216、 符合朗伯特-比耳定律的有色溶液稀释时,其最大吸收峰的波长位置( C ) A 、 向短波方向移动B 、 向长波方向移动C 、 不移动,且吸光度值降低D 、 不移动,且吸光度值升高17、 在符合朗伯特-比尔定律的范围内,溶液的浓度、最大吸收波长、吸光度三者的关系就是(B)A 、 增加、增加、增加B 、 减小、不变、减小C 、 减小、增加、减小D 、 增加、不变、减小二.填充题1、化合物,除有,*→σσ*→πσ与*→σπ跃迁以外, 还有n →σ* , π→π* 类型的跃迁。
紫外光谱习题及答案

紫外光谱习题1.下列化合物对近紫外光能产生那些电子跃迁?在紫外光谱中有哪 何种吸收带?O OO 'I(6) CH 3CCH 2COCH 2cH 3(7) ClCH 2cH 2=CH- CC 2H 5解:紫外吸收在200-400nm 区域,且有共轭结构(1)无共轭结构,无吸收锋 (2)共轭结构,无吸收峰(3)有兀-兀*跃迁,产生K 带和B 带吸收(4)有兀-兀*跃迁和n f -跃迁,产生K 带、R 带和B 带吸收(5)有兀-兀*跃迁,产生K 带和B 带吸收(6)有n f 一跃迁,产生R 带,产生烯醇式互变异构体时,还有K 带吸收(7)有兀-兀*跃迁和n f 一跃迁,产生K 带和R 带吸收2、比较下列各组化合物的紫外吸收波长的大小(k 带)(1)CH 3cH 2CHCH 2cl (2) OH CH 2 = CHOCH 3 (3) —NH 2 (4) CH 二CHCH O (5) ,-CH =C H of (1) b.(CH 3)2C=CH-CH 2—CH =C (CH 3) 2 (2)(3)a. CH 3 (CH 2) 5CH 3解:(1)有共轭结构时,紫外吸收波长增大;双键是助色基团,使紫外吸收波长增大,则:c> b> a(2)有共轭时结构时,九环内共轭〉九环外共辄甲基可以增大紫外吸收波长,则:a>c> b(3)有共轭时结构时,入环内共轭%环外共辄甲基可以增大紫外吸收波长,则:a>c> b3、用有关经验公式计算下列化合物的最大吸收波长(1)答:、max=253 (基本值)+25(5个烷基取代)+5(1个环外双键)=283 nm答:、max=214 (基本值)+20 (4个烷基取代)+10 (2个环外双键)=244 nm(3)答:九max=253(基本值)+20 (4个烷基取代)=273 nm(4)CH3OHL C -CH3答:、max=215 (基本值)+10(1个烷基a取代)=225 nm(5)答:>max=202(基本值)+10 (1个烷基a取代)+24(2个烷基B取代)+10(2个环外双键=246 nm—NHCH 3答:、max=230 (基本值)+25(1个对位-OH 取代)=255 nm4、能否用紫外光谱区分下列化合物?如何区分?(1) a 、(6) OC-CH 3答: 入max=215 (基本值)+1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章紫外光谱
一、简答
1.丙酮的羰基有几种类型的价电子。
试绘出其能级图,并说明能产生何种电子跃迁?各种跃迁可在何区域波长处产生吸收?
答:有n电子和π电子。
能够发生n→π*跃迁。
从n轨道向π反键轨道跃迁。
能产生R带。
跃迁波长在250—500nm之内。
2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π*跃迁)。
答:(1)的后者能发生n→π*跃迁,吸收较长。
(2)后者的氮原子能与苯环发生P→π共轭,所以或者吸收较长。
3.与化合物(A)的电子光谱相比,解释化合物(B)与(C)的电子光谱发生变化的原因(在乙醇中)。
答:B、C发生了明显的蓝移,主要原因是空间位阻效应。
二、分析比较
1.指出下列两个化合物在近紫外区中的区别:
答:(A)和(B)中各有两个双键。
(A)的两个双键中间隔了一个单键,这两个双键就能发生π→π共轭。
而(B)这两个双键中隔了两个单键,则不能产生共轭。
所以(A)的紫外波长比较长,(B)则比较短。
2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n→π*跃迁及π→π*
跃迁有何影响?用能级图表示。
答:对n→π*跃迁来讲,随着溶剂极性的增大,它的最大吸收波长会发生紫移。
而π→π*跃迁中,成键轨道下,π反键轨道跃迁,随着溶剂极性的增大,它会发生红移。
三、试回答下列各问题
1.某酮类化合物λhexane max=305nm,其λEtOH max=307nm,试问,该吸收是由n→π*跃迁还
是π→π*跃迁引起的?
答:乙醇比正己烷的极性要强的多,随着溶剂极性的增大,最大吸收波长从305nm变动到
307nm,随着溶剂极性增大,它发生了红移。
化合物当中应当是π→π反键轨道的跃迁。
2.化合物A在紫外区有两个吸收带,用A的乙醇溶液测得吸收带波长λ1=256nm,
λ2=305nm,而用A的己烷溶液测得吸收带波长为λ1=248nm、λ2=323nm,这两吸收带分
别是何种电子跃迁所产生?A属哪一类化合物?答:λ1属于π→π*跃迁;λ2属于n→
π*跃迁。
属于不饱和苯环化合物。
3.某化合物的紫外光谱有B 吸收带,还有λ1max=240nm,ε1max=130000 及λ2max
=319nm,ε2max=50 两个吸收带,次化合物中有何电子跃迁?含有什么基团?
答:λ=240nm,ε=1.34×104吸收带为K带,说明分子中含有生色团,是π→π*跃迁引起
的。
B,K,R,苯环及含杂原子的不饱和基团,π→π*,n→π
λ=319nm,ε=50吸收带为R吸收带,说明分子中含有助色团,是n→π*跃迁引起的。
4. 已知化合物的分子式为C7H10O,可能具有β,α不饱和羰基结构,其K 吸收带波长
λmax =257nm(乙醇中),请推测结构。
四.计算下述化合物的λmax
略
3.试估计下列化合物中哪一种化合物的λmax最大,哪一种化合物的λmax最小,为什么?.
解:(b) > (a) >≈ (c)
(b) 中有两个共轭双键,存在K吸收带,(a)中有两个双键,而(c )中只有一个双键.
O
OH
O
CH3
O
CH3
(a)(b)(c)
五.1. 2-(环己-1-烯基)-2-丙醇在硫酸存在下加热处理,得到主要产物分子式为C9H14,产物经纯化,测UV 光谱的λmax(EtOH)= 242nm (εmax=10100),试推断这个主要产物
的结构,并讨论其反应过程。