(完整word版)柯西不等式各种形式的证明及其应用
柯西不等式各种形式的证明及其应用(一)

柯西不等式各种形式的证明及其应用(一)柯西不等式各种形式的证明及其应用1. 柯西不等式的原始形式证明•柯西不等式的原始形式为:对任意的实数序列a1,a2,...,a n和b1,b2,...,b n,有下列不等式成立:(a1b1+a2b2+...+a n b n)2≤(a12+a22+...+a n2)(b12+b22+...+b n2)•证明思路:1.定义辅助函数f(t)=(a1t+a2t+...+a n t)2−(a12t2+a22t2+...+a n2t2)。
2.利用二次函数的性质证明f(t)≥0,即可得到柯西不等式的原始形式。
2. 柯西不等式的向量形式证明•柯西不等式的向量形式为:对任意的n维向量a=[a1,a2,...,a n]和b=[b1,b2,...,b n],有下列不等式成立:|a⋅b|2≤∥a∥2⋅∥b∥2•证明思路:1.将n维向量a和b表示为列向量形式。
2. 利用矩阵转置、乘法和内积的定义证明不等式成立。
3. 柯西不等式的积分形式证明• 柯西不等式的积分形式为:对任意的可积函数f (x )和g (x ),有下列不等式成立:|∫f b a (x )g (x )dx|2≤∫|f (x )|2b a dx ⋅∫|g (x )|2ba dx• 证明思路:1. 构造辅助函数ℎ(t )=∫(f (t )x +g (t ))2b a dt −∫|f (t )|2badt ⋅∫|g (t )|2b a dt 。
2. 利用积分和函数的性质证明ℎ(t )≥0,即可得到柯西不等式的积分形式。
应用一:线性代数中的向量内积• 柯西不等式可以用于证明向量内积的性质。
• 例如,在证明向量的模长定义中,可以利用柯西不等式证明模长的非负性。
• 另外,柯西不等式也广泛应用于线性代数中的向量正交、投影等问题。
应用二:凸函数的判定• 柯西不等式可以用于判定函数的凸性。
•若函数f(x)在区间[a,b]上满足柯西不等式中的积分形式,即″(x)dx≥0,则f(x)为该区间上的凸函数。
柯西不等式的证明与推广应用

西不等式的证明过程以及其在不同领域的应用。
一、柯西不等式的证明柯西不等式的一般形式为:对于任意非负实数序列 {a_i} 和 {b_i} (i=1,2,...,n),都有(a_1^2 + a_2^2 + ... + a_n^2) * (b_1^2 + b_2^2 + ... + b_n^2) ≥ (a_1 * b_1 + a_2 * b_2 + ... + a_n * b_n)^2当且仅当 a_i/b_i (i=1,2,...,n) 为常数时,等号成立。
证明过程如下:首先,我们构造两个向量 A = (a_1, a_2, ..., a_n) 和 B = (b_1, b_2, ..., b_n)。
计算向量 A 和 B 的点积,即 A·B = a_1 * b_1 + a_2 * b_2 + ... + a_n * b_n。
根据向量的施瓦茨不等式(Schwarz Inequality),有 |A·B| ≤ ||A|| * ||B||,其中 ||A|| 和 ||B|| 分别表示向量 A 和 B 的模长。
将向量 A 和 B 的模长展开,得到||A|| = sqrt(a_1^2 + a_2^2 + ... + a_n^2)||B|| = sqrt(b_1^2 + b_2^2 + ... + b_n^2)将 |A·B|、||A|| 和 ||B|| 的表达式代入施瓦茨不等式,整理后即得柯西不等式。
二、柯西不等式的应用柯西不等式在数学、物理、工程等领域都有广泛的应用,以下列举几个例子:线性代数:在求解向量空间中的角度、长度等问题时,柯西不等式可以提供有用的界限。
分析学:在证明一些数列或函数列的收敛性时,柯西不等式可以发挥作用。
例如,利用柯西不等式可以证明实数列的部分和有界性。
找到这些统计量的上下界。
最优化理论:在求解最优化问题时,柯西不等式可以作为目标函数的一个下界或上界,从而简化问题的求解过程。
(完整版)柯西不等式

柯西不等式1☆学习目标: 1. 认识二维柯西不等式的几种形式,理解它们的几何意义; 2. 会证明二维柯西不等式及向量形式 ☻知识情景:1. 定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.当0,0a b >>时,由222a b ab +≥⇒基本不等式:2. 如果,,,a b c d R ∈, 那么222a b ab +≥,222c d cd +≥⇒2222()()a b c d ++≥ 另一方面,有22222()2ac bd a c b d abcd +=++≥问题:2222()()a b c d ++2()ac bd + ???☻新知建构:1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d ac bd +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式.证法10.(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd =++当且仅当 时, 等号成立. 证法20.(构造法) 分析:22222()()()ac bd a b c d +++⇐22222[2()]4()()0ac bd a b c d +-++而22222[2()]4()()ac bd a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x ac bd x c d =+-+++,∵ 22()()()f x ax c bx d =-+- 0 恒成立.∴ . 得证.证法30.(向量法)设向量(,)m a b =,(,)n c d =, 则||m =,||n =.∵ m n ⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+ 或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30. 若1122,,,x y x y R ∈,几何意义:3. 二维柯西不等式的应用: 4422332 ,()()()1a b a b a b a b ++≥+已知为实数,证明例*11,,b 1,42a b R a a b∈+=+≥设求证例3y =求函数例例4 22231,49,x y x y +=+若求的最小值并求最小值点.{222222222:(49)(11)(23)1,149.22131,23.12341231611149,(,)246x y x y x y x y x y x x y x y y x y ++≥+=∴+≥⋅=⋅=⎧=⎪=⎨+==⎪⎩∴+解由柯西不等式当且仅当即时取等号由得的最小值为最小值点为选修4-5练习221.,,10,( )a b R a b a b ∈+=-若且则的取值范围是A.⎡⎣.B ⎡-⎣.C ⎡⎣.D ⎡⎣.222.1,23( )x y x y +=+已知那么的最小值是 562536A. . . .63625B C D3.______y =函数224,,326,2______x y x y P x y +≤=+设实数满足则的最大值是22115.1,()()______a b a b a b+=+++若则的最小值是1.A 2、B 3.3 4. 5.2526、 求函数y =7、已知321x y +=,求22x y +的最小值.8、若,x y R +∈,2x y +=,求证:112x y+≥. 9、已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值. 10、若>b >,求证:ca cb b a -≥-+-411.11、 已知点()000,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 用柯西不等式推导点到直线的距离公式12、已知,11122=-+-a b b a 求证:122=+b a 。
浅谈柯西不等式的证明及应用

浅谈柯西不等式的证明及应用刘治和柯西 (Cauchy )不等式21122 ()n n a b a b a b ++⋯+≤2222221212 ()()n n a a a b b b ++⋅⋅⋅+++⋅⋅⋅+(,,1,2,)i i a b R i n ∈=⋅⋅⋅, 当且仅当1212n na a ab b b ==⋅⋅⋅=时等号成立。
现将它的证明介绍如下: 证明1(构造法):构设二次函数2221122()()()()n n f x a x b a x b a x b =++++⋅⋅⋅++222222212112212()2()(),n n n n a a a x a b a b a b x b b b =++⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅+22212()0n a a a f x ++⋅⋅⋅+≥>0,恒成立,2222222112212124()()n n n n a b a b a b a a a b b b ∴∆=++⋅⋅⋅+⋅⋅⋅++⋅⋅⋅+≤-4(++)+0,即222222*********()()n n n n a b a b a b a a a b b b ++⋅⋅⋅+≤⋅⋅⋅++⋅⋅⋅+(++)+,当且仅当12120(1,2,,),n i i na a a a xb i n b b b +==⋅⋅⋅==⋅⋅⋅=即时等号成立. 证明2(数学归纳法):1)22211111=),=,=n a b a b =当时,左式(右式显然左式右式,2n =当时,右式=2222222222121211222112()()=()()a a b b a b a b a b a b +++++≥22212112212121122211212()()2=()===a a a b a b a a b b a b a b a b a b b b +++左式,仅当,即时取等号,故=12.n ,时不等式成立 2)假设(,2)n k k N k *=∈≥时,不等式成立,即222222*********()()(),k k k k a b a b a b a a a b b b ++⋅⋅⋅+≤++⋅⋅⋅+++⋅⋅⋅+当且仅当1212k ka a ab b b ==⋅⋅⋅=时取符号。
柯西不等式各种形式的证明及其应用演示版.doc

柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
(完整版)高中物理-公式-柯西不等式

(完整版)高中物理-公式-柯西不等式一、柯西不等式的定义柯西不等式是线性代数中的一种重要不等式,其用于描述向量内积的性质。
柯西不等式的一般形式如下:对于任意两个n维实向量x和y,有不等式:x·y ≤ ||x|| ||y||其中,x·y表示x和y的内积,||x||和||y||分别表示x和y的模长。
二、柯西不等式的证明要证明柯西不等式,可以采用以下方法之一:方法一:使用向量投影通过向量投影的定义,可以得出:x·y = ||x|| ||y|| cosθ其中,θ为x和y之间的夹角。
由于cosθ的取值范围为[-1,1],所以有:x·y ≤ ||x|| ||y||方法二:使用Cauchy-Schwarz不等式柯西不等式也可以通过Cauchy-Schwarz不等式(柯西-施瓦茨不等式)来证明。
Cauchy-Schwarz不等式的一般形式如下:(x1y1 + x2y2 + ... + xnyn)^2 ≤ (x1^2 + x2^2 + ... + xn^2)(y1^2 + y2^2 + ... + yn^2)将Cauchy-Schwarz不等式应用于内积的情况下,可以得到柯西不等式。
三、柯西不等式的应用柯西不等式在物理学中有广泛的应用,特别是在向量分析和线性代数中。
在向量分析中,柯西不等式可用于证明向量的正交性,以及判断向量是否共线等问题。
在线性代数中,柯西不等式可用于证明向量的线性无关性,以及求解线性方程组等问题。
总结:柯西不等式作为一种重要的不等式,在高中物理研究中具有重要的意义。
掌握柯西不等式的定义、证明和应用,对于深入理解向量内积的性质以及推导相关定理都具有重要的帮助。
柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用柯西不等式各种形式的证明及其应用柯西不等式是数学中一个重要的不等式,具有广泛的应用。
本文将列举一些柯西不等式的应用,并对这些应用进行详细讲解。
应用一:向量内积的最大值柯西不等式给出了两个向量内积的最大值。
具体表述为:对于任意两个n维向量a和b,它们的内积满足:|a·b| ≤||a|| ||b|| ,其中||a||和||b||分别表示向量a和b的范数(长度)。
利用柯西不等式,我们可以得到向量内积的最大值。
当两个向量a和b线性相关时,内积达到最大值;当两个向量a和b正交时,内积达到最小值。
应用二:函数内积的最大值在函数空间中,柯西不等式同样适用。
给定两个定义域为[a,b]的函数f(x)和g(x),它们的内积满足:|∫f(x)g(x) dx| ≤ (∫f^2(x) dx)^(1/2) (∫g^2(x) dx)^(1/2)。
利用柯西不等式,我们可以得到函数内积的最大值。
当两个函数f(x)和g(x)线性相关时,内积达到最大值;当两个函数f(x)和g(x)正交时,内积达到最小值。
应用三:平均值与均方差的关系柯西不等式可以用来证明平均值与均方差的关系。
具体表述为:对于任意n个实数x1,x2,…,xn,它们的平均值avg和均方差sd满足:avg^2 ≤ sd^2,其中avg = (x1+x2+…+xn)/n,sd = [(x1-avg)^2 + (x2-avg)^2 + … + (xn-avg)^2]/n。
利用柯西不等式,我们可以得到均方差的最小值。
当n个实数x1,x2,…,xn相等时,均方差达到最小值;当n个实数x1,x2,…,xn分别与极值相等时,均方差达到最大值。
应用四:不等式约束条件下的最优化在最优化问题中,柯西不等式可以用来求解不等式约束条件下的最优解。
具体表述为:对于一组实数x1,x2,…,xn和正实数a1,a2,…,an,满足不等式约束条件:(x12/a12) + (x22/a22) + … + (xn2/an2) ≤ 1,以及目标函数f(x1,x2,…,xn)。
柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用
1.柯西不等式的证明:
柯西不等式的最常见的证明是基于构造内积的思路。
假设有两个n维
向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),我们可以定义它们的内积为a·b=a1b1+a2b2+…+anbn。
柯西不等式就是说,对于任意两个向量a和b,有,a·b,≤,a,b。
这个不等式可以通过构造内积的平方来进行证明。
具体的证明过程可以参考高等数学相关教材或参考资料。
2.柯西不等式的应用:
-线性代数:柯西不等式可以用来证明向量范数的性质,如欧几里得
范数和曼哈顿范数的非负性、三角不等式等。
-概率论:柯西不等式可以用来证明概率论中的一些重要定理,比如
马尔可夫不等式、切比雪夫不等式等。
-信号处理:柯西不等式可以用来证明信号处理中的一些重要性质,
比如能量守恒定理、奇异值分解等。
-函数分析:柯西不等式可以用来证明函数分析中的一些重要定理,
比如巴拿赫空间的完备性定理等。
-矩阵论:柯西不等式可以用来证明矩阵论中的一些重要性质,比如
矩阵的条件数、病态度等。
总之,柯西不等式是一条十分重要的不等式,具有广泛的应用价值。
它不仅是高等数学中的重要工具,还可以应用于其他学科的研究中。
通过
了解柯西不等式的证明和应用,我们可以更好地理解和运用它,进一步深
化数学和相关学科的学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
一般形式的证明:211212⎪⎭⎫⎝⎛≥∑∑∑===nk k k nk kn k k b a ba 证明:()()()()()222222=/2=/2i j j i i i j j j j i i a b a b n a b a b a b a b n +++⋅+⋅++≥不等式左边共项不等式右边共项用均值不等式容易证明,不等式左边不等式右边,得证。
推广形式(卡尔松不等式):卡尔松不等式表述为:在m*n 矩阵中,各行元素之和的几何平均数不小于各列元素 之积的几何平均之和。
)()()1212121111111231111,n n m m mn mmmmmmmmi i i in i i i i x x x x x x x x x x x m n N ====++++++⎛⎫⎛⎫⎛⎫⎛⎫≥++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∈∏∏∏∏其中,或者:111111,mmmnnmij ij j i j i ij x x m n N x R ====++⎡⎤⎛⎫⎛⎫≥⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦∈∈∑∑∏∏其中,,或者()()()()()11221111n n nn n n x y x y x y x y x x y ++++++⎡⎤≥++⎢⎥⎣⎦∏∏∏注:表示,,,x 的乘积,其余同理推广形式的证明: 推广形式证法一:111222112112121212112112121212112,,+n n n n nn n n n n n nn n n n n nn A x y A x y A x y x x x x A A A x x x n A A A A A A y y y yA A A y y y n A A A A A A n x A A A =++=++=+++++⎛⎫⎛⎫≥= ⎪ ⎪ ⎪⎝⎭⎝⎭+++⎛⎫⎛⎫≥= ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫≥ ⎪ ⎪⎝⎭∏∏∏记由平均不等式得同理可得上述个不等式叠加,得1()()()()()()()()()()1121111112112211+nn nn nn n nn n n nn n y A A Ax y A A A x y x y x y x y x y ⎛⎫ ⎪ ⎪⎝⎭≥++⎡⎤++⎢⎥⎣⎦++++++⎡⎤≥++⎢⎥⎣⎦∏∏∏∏∏∏∏即即,证毕或者推广形式证法二:事实上涉及平均值不等式都可以用均值不等式来证,这个不等式并不难,可以简单证明如下:1112111111111111111mjnjimjnjimjnnjjiimmnjknk jjiimjkjm njiijxmxjixmxjixmxxxxx============≤≤≤⎛⎫⎪⎪≤⎪⎪⎝⎭⎛⎛⎫⎪⎝⎭⎝∑∑∑∑∑∑∑∏∑∏∑∏以上各式相加得上式也即11111111,1mnkm mn n mjk jik ij jx xm=====⎫⎪⎪≤⎪⎪⎭⎛⎫⎡⎤⎛⎫≤⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦∑∑∑∏∏该式整理,得:得卡尔松不等式,证毕付:柯西(Cauchy)不等式相关证明方法:()22211nnbababa+++ ()()222221222221nnbbbaaa++++++≤()niRbaii2,1,=∈等号当且仅当021====naaa 或iikab=时成立(k为常数,ni2,1=)现将它的证明介绍如下:证明1:构造二次函数()()()2222211)(nnbxabxabxaxf++++++==()()() 22222121122122n nn n n na a a x ab a b a b x b b b+++++++++++2212nna a a+++≥()0f x ∴≥恒成立 ()()()2222211221212440nnn n n n a b a b a b a a a b b b ∆=+++-++++++≤即()()()2222211221212nnn n n n a b a b a b a a a b b b +++≤++++++当且仅当()01,2i i a x b x i n +== 即1212nna a ab b b ===时等号成立 证明(2)数学归纳法(1)当1n =时 左式=()211a b 右式=()211a b 显然 左式=右式 当2n =时, 右式 ()()()()2222222222121211222112a a b b a b a b a b a b =++=+++()()()2221122121212222a b a b a a b b a b a b ≥++=+=右式仅当即 2112a b a b = 即1212a ab b =时等号成立 故1,2n =时 不等式成立(2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()()2222211221212kk k k k k a b a b a b a a a b b b +++≤++++++当 i i ka b =,k 为常数,1,2i n = 或120k a a a ====时等号成立设22212k a a a A ==== 22212k b b b B ====1122k k C a b a b a b =+++则()()2222211111k k k k k a b ba b +++++A +B +=AB +A +()22221111112k k k k k k C Ca b a b C a b ++++++≥++=+()()22222222121121k k k k a a a a b b b b ++∴++++++++()2112211k k k k a b a b a b a b ++≥++++当 i i ka b =,k 为常数,1,2i n = 或120k a a a ====时等号成立即 1n k =+时不等式成立综合(1)(2)可知不等式成立二、柯西不等式的应用 1、巧拆常数证不等式例1:设a 、b 、c 为正数且互不相等。
求证:2222a b b c a c a b c++++++.a b c 、、均为正数()()()()()111292=a b c a b b c a c a b c a b b c a c ∴⎛⎫++++⎪+++⎝⎭+++++++为证结论正确,只需证:而为证结论正确,只需证:又29(111)=++∴只需证:()()()()()211121111119a b c a b b c a c a b b c a c a b b c a c ⎛⎫++++=⎪+++⎝⎭⎛⎫+++++++⎡⎤ ⎪⎣⎦+++⎝⎭≥++=又a b c 、、互不相等,所以不能取等∴原不等式成立,证毕。
2、求某些特殊函数最值例2:y =求函数函数的定义域为[5,9],0y5*2106.44y x =≤===函数仅在时取到3、用柯西不等式推导点到直线的距离公式。
已知点()00,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 设点p 是直线l 上的任意一点, 则0x x C A +B +=(1)12p p =(2)点12p p 两点间的距离12p p就是点p 到直线l 的距离,求(2)式有最小值,有()()0101x x y y ≥A -+B -()0011x y C x y C A +B +-A +B +由(1)(2)得:1200p p x y C ≥A +B + 即12p p ≥(3)当且仅当 ()()0101:y y x x B--=A12p p l ⊥ (3)式取等号 即点到直线的距离公式即12p p =4、 证明不等式例 3已知正数,,a b c 满足1a b c ++= 证明 2223333a b c a b c ++++≥证明:利用柯西不等式()23131312222222222ab ca ab bc c ⎛⎫++=++ ⎪⎝⎭[]222333222a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥≤++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()2333a b c a b c =++++()1a b c ++=又因为 222a b c ab bc ca ++≥++ 在此不等式两边同乘以2,再加上222a b c ++得:()()2223a b c a b c ++≤++()()()22223332223a b c a b c a b c ++≤++•++故2223333a b c a b c ++++≥5、 解三角形的相关问题例 4设p 是ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆的≤证明:由柯西不等式得,=111a b c≤++记S为ABC的面积,则2242abc abcax bycz SR R++===≤=≤故不等式成立。