模电实验02_基本放大电路实验
基本放大电路(模电)

基本放大电路1. 实验目的 (1)掌握单管放大电路的静态工作点、电压放大倍数、输入电阻输出电阻的测量方法。
(2)观察静态工作点的变化对电压放大倍数和输出波形的影响。
(3)进一步掌握示波器、低频信号发生器、晶体管毫伏表、万用表的使用。
2. 知识要点(1)实验参考电路见图2-6:图2-6 分压式共射放大电路电路参考参数:V cc=12V R w=680k Ω R B =51k Ω R B2=24k Ω R c=5.1k Ω R E =1k Ω R L =5.1k Ω C 1=C 2=C 3=10µF T 为3DG12β=60~80(2)为获得最大不失真输出电压,静态工作点应选在交流负载线中点。
为使静态工作点稳定必须满足以下条件:(3)静态工作点可由下列关系式计算(4)电压放大倍数计算(5)输入电阻输出电阻测量方法其中:0U 为带负载时的输出电压,'0U 为空载时的输出电压。
3. 预习要求BEQBQBQ UUI I >>>>,1,EBEQBQE C R U UI I -=≈,'0beLiu r R U U A β-==LC L R R R //'=,////21be be R R i r r R R R ≈=)()(26)1('mA I mV r r EQ bb be β++=,s is i i R U U U R -=LR U U R )1('00-=)300('Ω=bb r ,212CC B B B BQ V R R R U +=)(C E CQ CC CEQ R R I V U +-=(1)复习晶体管放大电路中有关静态和动态性能的基本内容并认真阅读实验指导书。
(2)掌握R B1与静态工作点之间的关系,以及电压放大倍数的增大或减小对应于R B1如何变化?(3)对各思考题做初步回答。
(4)对动态和静态有关参数进行理论计算。
模电实验2三极管共射极放大电路

T:9013(NPN);RP=10K;
R1=15K、R2=3K、Re=2K、
Rc=3K、RL=3K、Rs=5K1;
C1=10μF、C2=10μF、Ce=100μF。 CHENLI
13
三、实验电路图
VCC
Rw1 R5 C3
S R1 H C1
R3
ICQ
υs
K
R2
R4 Rw2
R6
C2υo
R
R7
L
Ri
共射极放大C电HE路NLI
三极管共射极放大电路
CHENLI
1
一、实验目的
1. 学习共射放大电路的设计方法、安装与调试技术; 2. 掌握放大器静态工作点的测量与调整方法,了解在不
同偏置条件下静态工作点对放大器性能的影响; 3. 学习放大电路的电压放大倍数、输入电阻、输出电阻
及频率特性等性能指标的测试方法; 4. 了解静态工作点与输出波形失真的关系,掌握最大不
调试电路如图所示。图中Rs 为已知外接电阻,用交流毫
伏表分别测出Us和Ui,然后根据下式可求得放大电路的
Ro14
CHENLI
15
四、实验内容
1. 静态工作点的调整和测量 2. RL=∞及RL=3K时,电压放大倍数的测量 3. 输入电阻和输出电阻的测量 4. 放大电路上限频率fH、下限频率fL的测量 5. 观察静态工作点对输出波形的影响
CHENLI
16
1. 静态工作点的调整和测量
1. 按所设计的放大器的元件参数焊接电路,根据电路原 理图仔细检查电路的完整性和焊接质量。
即UCE=1/2×UC或IC=1/2×ICS。 (ICS为集电极饱和电流,ICS≈UC/RC)。 这样便可获得较大输出动态范围。当放大器输出端
模拟电子技术实验实验 运放实验(简单)

电路板接法: MT6---MT3 MT8---MT10 10kHZ----MT4(ui)
6S运动
1、三根短路线直接插在电路板上,万用表旋 钮旋至“OFF”档,万用表和电路板放在桌面 右侧;
2、探头和表笔放于右边抽屉,夹子线放在中 间的抽屉;
3、关闭仪表电源,清理桌面和抽屉内的垃圾, 将凳子放回原处;
4、劳委安排5~6人打扫卫生。
3.信号源输出 频率1KHz, 输出衰减为20分贝
4.示波器监测 输出波形,
1.如图 所示, 插上短 路线,
2.如图 接上正 负12V 电源
-12V GND
+12V
考核: 交流小信号反相放大电路
给运放接入+EC=+9V,- EC =- 9V的电源,注意电源要完全对称 ,确保运放静态时输出电压为零 。从MT4端输入5kHZ的正弦波信 号,示波器接在Uo(CNT2)端, 读出输入输出值填入表三中。
5 8
双电源接法
电源置于组合串联状态,即左 面的按钮按下,右面的按钮弹 起,右边为主电源
-12V GND
+12V
双电源接法
电源置于组合串联状态,即 左面的按钮按下,右面的按 钮弹起,调节输出电压,使 两路输出都为12V
〖〗
-12V GND
+12V
表三 交流小信号反相放大电路
从MT4端输入1KHZ的正弦波信号,示波器 接在Uo(CNT2)端, 读出输入输出值填入表三 中。
电路板接法: MT6---MT3 MT8---MT10 1KHZ----MT4(UI) U0------CNT2
+12V
-12V 地
Ui
u
o
地
3.信号源 输出频率 1KHz, 输出衰减 为-20分 贝
模拟电路 实验二 单级放大器(硬件)

路 路 码术 数 位 发
选 分 器运 器 寄 器
择配
算
存
器器
器
译
电电 压流 表表
灯 指七 泡 示段
灯数 码 管
译峰条
码鸣形
数器光
码
柱
管
码 条 形 光 柱
其它器件库
仪器库
熔 数子 有 无 断 据电 耗 耗 器 写路 传 传
入网 输 输 器表 线 线
晶 直真 开 开 开 体 流空 关 关 关
电三 式 式 式 机极 升 降 升
管压压降 变变压 压压变 器器压 器
数 函示 波字 逻逻
字 数波 特信 辑辑
多 信器 图号 分转
用号
仪发 析换
表发
生 仪仪
生
器
器
2.EWB仪器库栏
数字多用表
这是一种自动调整量程的数字多用表。其电压栏、电流档的内 阻、电阻档的电流值和分贝档标准电压值都可任意进行设置。下图 为它的图标和面板(双击图标可弹出)。
5. 动态参数测量电路
输入正弦波信号 : 频率 f = 1kHz 幅值 Vi = 30mV
单级放大电路的负载线
图2-3 静态工作点过低输出电压 (截止)失真的波形 图2-4 静态工作点过高输出电压 (饱和)失真的波形
条件
工作点位置合适
VCE=4V
工作点位置合适
VCE=4V
输入信号幅度太大 0.3V
接地 触发 B通道
时基控制
面板展开 外触发输入
X轴偏置
Y轴偏置 Y轴输入方式
自动触发
触发控制
为了能够更细致地观察波形,按下示波器面板上的Expand按钮将面板进一步展开成下 图所示。通过拖曳指针可以详细读取波形任一点的读数,以及两个指针间读数的差。
模电实验报告-实验二两级放大电路实验

模电实验报告-实验⼆两级放⼤电路实验模电实验报告实验名称:实验时间:第()周,星期(),时段()实验地点:教()楼()室指导教师:学号:班级:姓名:实验三两级放⼤电路⼀、实验⽬的进⼀步掌握交流放⼤器的调试和测量⽅法,了解两级放⼤电路调试中的某些特殊问题;⼆、实验电路实验电路如图5-1所⽰,不加C F ,R F 时是⼀个⽆级间反馈的两级放⼤电路。
在第⼀级电路中,静态⼯作点的计算为3Β11123R V V R R R ≈++, B1BE1E1C156V V I I R R -≈≈+, CE11C1456()V V I R R R =-++ 9B21789R V V R R R ≈++, B2BE2E2C21112V V I I R R -≈≈+, C2CE21101112()V V I R R R =-++图5-1 实验原理图第⼀级电压放⼤倍数14i2V1be115(//)(1)R R A r R ββ=-++其中i2789be2211()////[(1)]R R R R r R β=+++第⼆级电压放⼤倍数21013V2be2211(//)(1)R R A r R ββ=-++总的电压放⼤倍数O1O2O2V V1V2O1ii V V V A A A V V V ===gg gg gg 三、预习思考题1、学习mutisim2001或workbenchEDA5.0C 电⼦仿真软件2、按实际电路参数,估算E1I 、CE1V 、C1I 和E2I 、CE2V 、C2I 的理论值3、按预定静态⼯作点,以β1 =β2 = 416计算两级电压放⼤倍数V A4、拟定Om V g的调试⽅法四、实验内容和步骤1、按图5-1连接电路(三极管选⽤元件库中NPN 中型号National 2N3904)2、调整静态⼯作点调节R 1和R 7分别使E1V =1.7V ,E2V =1.7V 左右,利⽤软件菜单Analysis 中DC OpratingPoint 分析功能或者使⽤软件提供的数字万⽤表(Multimeter )测量各管C V 、E V 、B V 。
模电2基本放大电路

反馈控制
在自动控制系统中,基本放大电路还 可以用于反馈控制回路中,将系统的 输出信号反馈到输入端,实现系统的 闭环控制。
基本放大电路可以用于驱动执行器, 如电机、电磁阀等,实现自动控制系 统的动作和调节。
06
基本放大电路的调试与优化
调试方法
输入信号源的调整
通过调整输入信号源的幅度和频率,观察输出信号的变化,以确定电 路的放大性能和频率响应。
缺点 对初学者而言,理解和应用有一 定难度。
应用 通过建立微变等效电路,分析放 大电路的电压放大倍数、输入电 阻、输出电阻等性能指标。
优点 适用于分析复杂电路,计算精度 较高。
瞬态分析法
应用
通过求解电路的微分方程或积分方程,分 析放大电路的瞬态响应,如上升时间、下
降时间、延迟时间等。
定义
瞬态分析法是通过分析放大电路在 不同时间点的状态,来研究其动态
按工作频带分类
窄频带放大器、宽频带放 大器和超宽带放大器。
按电路结构分类
分立元件放大器、集成运 算放大器和专用集成放大 器。
放大电路的基本原理
电压放大
通过电子元件的组合,将 输入信号的电压幅度放大。
电流放大
将输入信号的电流幅度放 大,以满足负载的需求。
功率放大
将输入信号的功率进行放 大,以提供足够的功率来 驱动负载。
通过绘制交流等效电路图和直流通路图, 分析电压、电流的相位和幅度关系,以及 放大倍数、输入电阻、输出电阻等参数。
优点
缺点
直观明了,易于理解放大电路的工作原理 。
计算精度相对较低,对复杂电路的分析可 能较为繁琐。
微变等效电路法
定义 微变等效电路法是将放大电路中 的动态元件用其微变参数表示, 从而将实际电路转化为易于分析 的等效电路的方法。
基本放大电路实验报告

基本放大电路实验报告实验目的:通过本次实验,我们旨在了解基本放大电路的原理和特性,掌握放大电路的基本设计方法,以及对放大电路进行性能测试和分析。
实验原理:基本放大电路是由一个晶体管、若干电阻和电容器组成的,它是一种基本的电子放大器。
在放大电路中,晶体管的基本作用是放大输入信号。
当输入信号加到基极时,通过基极电流的变化,控制集电极电流的变化,从而实现对输入信号的放大。
实验器材:1. 电源。
2. 示波器。
3. 信号发生器。
4. 电阻、电容器。
5. NPN型晶体管。
实验步骤:1. 将电源接通,调节电源电压为5V。
2. 将晶体管、电阻和电容器按照电路图连接好。
3. 使用示波器连接输出端,调节信号发生器输出频率和幅度。
4. 观察示波器波形,并记录数据。
5. 根据实验数据进行分析和总结。
实验结果分析:通过本次实验,我们成功搭建了基本放大电路,并利用示波器观察到了输入信号和输出信号的波形。
在不同频率和幅度下,我们观察到了放大电路的放大效果,并记录了相应的数据。
通过对数据的分析,我们可以得出放大电路的增益、频率响应等性能参数,从而对放大电路的特性有了更深入的了解。
实验总结:本次实验使我们对基本放大电路有了更深入的了解,掌握了放大电路的基本设计方法,以及对放大电路进行性能测试和分析的技能。
通过实验,我们对放大电路的原理和特性有了更清晰的认识,为今后的学习和研究奠定了基础。
结语:通过本次实验,我们对基本放大电路有了更深入的了解,掌握了放大电路的基本设计方法,以及对放大电路进行性能测试和分析的技能。
希望通过今后的学习和实践,我们能够更加熟练地运用放大电路,为电子技术的发展贡献自己的一份力量。
以上就是本次基本放大电路实验的实验报告,谢谢阅读!。
最新模电实验二实验报告

最新模电实验二实验报告实验目的:1. 理解并掌握模拟电子技术中的基本概念和原理。
2. 学习使用常见的模拟电子实验仪器和设备。
3. 通过实验验证基本的模拟电路设计和分析方法。
4. 培养学生的动手能力和解决实际问题的能力。
实验内容:1. 设计并搭建基本的放大电路,包括共射放大器、共集放大器和共基放大器。
2. 测量并记录不同配置下放大器的输入阻抗、输出阻抗、增益和频率响应。
3. 实验中使用示波器观察放大器对不同输入信号的响应特性。
4. 搭建滤波电路,包括低通、高通、带通和带阻滤波器,并测量其频率特性。
5. 分析实验数据,与理论值进行比较,探讨误差来源。
实验设备和材料:1. 模拟电子技术实验箱。
2. 示波器。
3. 万用表。
4. 信号发生器。
5. 电阻、电容、二极管、晶体管等基本电子元件。
实验步骤:1. 根据实验指导书的要求,正确连接电路元件,搭建放大电路。
2. 调整信号发生器,产生所需频率和幅度的输入信号。
3. 使用示波器观察并记录放大器的输出波形,调整电路直至达到预期效果。
4. 改变电路配置,重复步骤2和3,测量不同放大器类型的特性。
5. 搭建滤波电路,并使用示波器和信号发生器测试其性能。
6. 使用万用表测量电路的输入阻抗、输出阻抗和增益。
7. 记录所有实验数据,并进行整理分析。
实验结果与分析:1. 列出实验中测量到的输入阻抗、输出阻抗、增益等参数,并与理论值进行对比。
2. 分析滤波电路的频率响应特性,验证其设计的有效性。
3. 讨论实验中遇到的问题及其解决方案,分析可能的误差来源。
4. 根据实验结果,提出改进电路设计的建议。
结论:通过本次实验,我们成功地搭建并测试了不同类型的放大器和滤波电路。
实验结果与理论预测相符,验证了模拟电路设计的基本原理。
同时,实验过程中遇到的问题和挑战也加深了我们对模拟电子技术的理解。
通过动手实践,我们的实验技能和问题解决能力得到了提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 基本放大电路实验
验证性实验——晶体管共射放大电路
1.实验目的
①掌握放大电路的静态工作点和电压放大倍数的测量方法。
②了解电路元件参数改变对静态工作点及电压放大倍数的影响。
③掌握放大电路输入、输出电阻的测量方法。
2.实验电路及仪器设备
⑴ 实验电路 单管共射放大电路如图1-6所示。
图1-6 单级共射放大电路
R b1 20k Ω R b2 10k Ω R c 、R s 、R L 3k Ω R e 2k Ω C 1、C 2 10μF C e 47μF V 3DG6 β 50~60 V CC 12V
⑵ 实验仪器设备
①双踪示波器 1台 ②直流稳压电源 1台 ③信号发生器 1台 ④交流毫伏表 1台 ⑤数字(或指针)式万用表 1块 3.实验内容及步骤 ⑴ 测量静态工作点
①先将直流电源调整到12V ,关闭电源。
②按图1-6连接电路,注意电容器C 1、C 2、C e 的极性不要接反,最后连接电源线。
③仔细检查连接好的电路,确认无误后,接通直流稳压电源。
④按表1-5用数字万用表测量各静态电压值,并将结果记入表1-5中。
表1-5 静态工作点实验数据
⑵ 测量电压放大倍数
①按图1-7将信号发生器和交流毫伏表接入放大器的输入端,示波器接入放大器的输出端。
调节信号
发生器为放大电路提供输入信号为1kHz 的正弦波i U ,示波器用来观察输出电压o U 的波形。
适当调整信号发生器的值,确保输出电压o U 不失真时,分别测出o U 和i U 的值,求出放大电路的电压放大倍数u
A 。
图1-7 实验线路与所用仪器连接图
②观察交流毫伏表读数,保持U i 不变,改变R L ,观察负载电阻改变对电压放大倍数的影响,将测量结果记入表1-6中。
表1-6 电压放大倍数实测数据(保持U i 不变)
⑶ 观察工作点变化对输出波形的影响 调整信号发生器的输出电压幅值(增大放大器的输入电压U i ),观察放大电路的输出电压的波形,使放大电路处于最大不失真电压时,逐个改变基极电阻R b1的值,分别观察R b1变化对静态工作点及输出波形的影响,将所测结果记入表1-7中。
表1-7 R b1对静态、动态影响的实验结果
⑷ 测量输入电阻R i 及输出电阻R o
①测量输入电阻R i 方法一:测量原理图如图1-8所示,在放大电路与信号源之间串入一固定电阻
R =3k Ω,在输入电压波形不失真的条件下,用交流毫伏表测量U s 以及相应U i 的值,并按式(1-1)计算R i
i
i s i
U R R U U =
- (1-1)
方法二:测量原理图如图1-9所示,当R =0时,在输出电压波形不失真的条件下,用交流毫伏表测出输出电压U o1;当R =3k Ω时,测出输出电压U o2,并按式(1-2)计算R i
o2
i o1o2
U R R U U =
- (1-2)
将两种方法的测量结果计算出的R i 与理论值比较,分析测量误差。
R 的取值接近于R i 。
图1-8 输入电阻测量原理框图之一 图1-9 输入电阻测量原理框图之二
②测量输出电阻R o 输出电阻的测量原理框图如图1-10所示。
在输出电压波形保持不失真的情况下,用交流毫伏表测出带负载时的输出电压U o ,空载时的输出电压o U ',按式(1-3)计算R o 的值。
o o o
U R R U '=L (-1) (1-3)
4. 思考题
①如何正确选择放大电路的静态工作点,在调试中应注意什么?
②负载电阻变化对放大电路静态工作点有无影响?对电压放大倍数有无影响? ③放大电路的静态与动态测试有何区别? ④放大电路中哪些元件是决定电路静态工作点的?
⑤无限增大电路负载电阻是否可无限增大A u ,为什么?请说出理由。
图1-10 测量输出电阻的原理框图
(实验指导书P5~P7)。