工程力学讲义动量矩

合集下载

第17章 动量定理和动量矩定理总结

第17章 动量定理和动量矩定理总结

第17章 动量定理和 动量矩定理工程力学学习指导第17章 动量定理和动量矩定理17.1 教学要求与学习目标1. 正确理解动量的概念,能够熟练计算质点系、刚体以及刚体系的动量。

2. 认真理解有关动量定理、动量守恒定理以及质心运动定理,掌握这些定理的相互关系。

3. 正确而熟练地应用动量定理、动量守恒定理以及质心运动定理解决质点系动力学两类问题,特别是已知运动求未知约束力的问题。

4. 学习动量矩定理时,首先需要认识到,在动力学普遍定理中,动量定理和动量矩定理属于同一类型的方程,即均为矢量方程。

而质点系的动量和动量矩,可以理解为动量组成的系统(即动量系)的基本特征量——动量系的主矢和主矩。

两者对时间的变化率等于外力系的基本特征量——力系的主矢和主矩。

5. 认真理解质点系动量矩概念,正确计算系统对任一点的动量矩。

6. 熟悉动量矩定理的建立过程,正确应用动量矩定理求解质点系的两类动力学问题。

7. 于作平面运动的刚体,能够正确建立系统运动微分方程和补充的运动学方程,并应用以上方程求解刚体平面运动的两类动力学问题。

17.2 理 论 要 点17.2.1 质点系的动量质点系中所有质点动量的矢量和(即质点系动量的主矢)称为质点系的动量。

即i ii m v p ∑=质点系的动量是自由矢,是度量质点系整体运动的基本特征量之一。

具体计算时可采用其在直角坐标系的投影形式,即⎪⎪⎪⎭⎪⎪⎪⎬⎫===∑∑∑i iz i z i iy i y iix i x v m p v m p v m p质点系的动量还可用质心的速度直接表示:质点系的动量等于质点系的总质量与质心速度的乘积,即C m v p =这相当于将质点系的总质量集中于质心一点的动量,所以说质点系的动量描述了其质心的运动。

上述动量表达式对于刚体系也是正确的。

17.2.2 质点系动量定理质点系动量定理建立了质点系动量的变化率与外力主矢量之间的关系。

其微分形式为(e)(e)R d d i it ==∑pF F 质点系的动量对时间的变化率等于质点系所受外力系的矢量和。

工程力学-材料力学-第12章动量矩定理

工程力学-材料力学-第12章动量矩定理
•注意:内力不能改变质点系的动量矩。

例12-3 •已知:m1,r,k ,m2 ,R,
•求:弹簧被拉长s时,重物m2的加速度a2 。 •解 •选系统为研究对象,受力分析如图 •设:塔轮该瞬时的角速度为ω,则
•解得:

3.动量矩守恒定律
•若
,则 常矢量;
•若
,则 常量。

§12-3 刚体绕定轴转动的微分方程 •主动力: •约束力:

例12-8 •已知:l,m,θ=60°。求:1. αAB;2. FA • 解:绳子刚被剪断,杆AB作平面运
动,受力如图,根据平面运动微分 方程
• 补充运动学方 程
• 在y轴方向 投影

例12-9 •已知:如图r,m, m1。求:1. aA;2. FAB ;3. FS2 • 解:分别以A、B、C为研究对象
•其中: • (O为定点)

质点的动量矩定理
•因此 •称为质点的动量矩定理:质点对某定点的动量矩 对时间的一阶导数,等于作用力对同一点的矩。
•投影式:

2. 质点系的动量矩定理 •对第i个质点有 : •对n个质点有:
• 由于
•得

2. 质点系的动量矩定理
•称为质点系的动量矩定理:质点系对某定点O的动量 矩对时间的一阶导数,等于作用于质点系的外力对于 同一点之矩的矢量和。 •投影式:
•2. 选轮2为研究对象
•积分

§12-4 质点系相对于质心的动量矩定理 •1.对质心的动量矩 •如图,以质心C为原点,取平移坐标系Cx’y’z’。 •质点系相对质心C为的动量矩为:
•由于 •得 • 质点系相对质心的动量矩,无论是以相对速度计算还是
以绝对速度计算,其结果都相同。

理论力学课件-动量矩定理

理论力学课件-动量矩定理
注意到
mi m ,
mi yi myC 0 则 J z ' J zC m d 2
2
例如,对于例6中均质细杆对 z' 轴的转动惯量为
1 2 1 2 1 2 l J z ' J z m ml ml ml 4 3 2 12
五.计算转动惯量的组合法
当物体由几个规则几何形状的物体组成时,可先计算每一 部分(物体)的转动惯量, 然后加起来就是整个物体的转动惯量。
若物体有空心部分, 要把此部分的转动惯量视为负值来处理。
[例8] 图示钟摆,均质直杆:m1、l ; 均质圆盘:m2 、R 。求 JO 。
解:JO JO杆 J O盘
1 2 1 2 2 m1l m2 R m2 (l R) 3 2
[例6]匀质细直杆长为l ,质量为m。求 ① 对z轴的转动惯量Jz ;
② 对z' 轴的转动惯量 Jz’ 。
m 1 2 解:J z l x d x ml l 12 2 l m 1 J z ' x 2 d x ml 2 0 l 3
2
l 2
[例7]设有均质圆薄板,如图所示。其质量为m,半径为R,求 它对中心轴的转动惯量。 解:在圆板上取任意半径 r 处宽为dr 之圆环为微元 。由于圆板匀质,故有
以上结论称为质点系的动量矩守恒定律。
[例3] 已知物重PA > PB ,定滑轮重 P ,半径为r,求 。
解: 取整个系统为研究对象,受力如图示。
运动分析: v = r
MO PAr PB r ( PA PB )r PA PB LO v r v r J O g g r 2 1P 2 由于

工程力学 动力学普遍定理动量矩定理.

工程力学 动力学普遍定理动量矩定理.

dLO dt

dLC dt
drC dt
mvC

rC

m
dvC dt

dLC dt
rC maC
M
(e) O

ri
Fi

(rC
ri) Fi

rC
Fi
ri Fi
dLC dt
rC
maC
rC
R(e)

M
(e) C
刚体
dLC dt

M
(e) C
质点系对点O的动量矩为质点系内各质点对同一 点O的动量矩的矢量和,一般用Lo表示。
质点系内各质点对某轴的动量矩的代数和称为 质点系对该轴的动量矩,一般用Lx、Ly ,Lz表示。
动量矩定理
例:已知小球C和D质量均为m,用直杆相连,杆重不 计,直杆中点固定在铅垂轴AB上,如图示。如杆绕 轴AB以匀角速度ω转动,求质点系对定点O的动量矩。
动量矩定理
4. 常见刚体对轴的转动惯量 J z —刚体转动惯性大小的度量 质量 J z mi ri2 { 质量分布
在工程中,常将转动惯量表示为
Jz mz2 z称为回转半径或惯性半 径
其物理意义:相当于将质量集中于一点, 该点距转轴的距离为ρz
动量矩定理
上例中:求质点系对AB(z)轴的动量矩 1.利用定义
动量矩定理
§3-1 质点系动量矩定理
1.质点动量矩的计算
◆质点对一点的动量矩:
MO (mv) r (mv)
◆质点对轴的动量矩
M x (mv) [M O (mv)]x y(mv z ) z(mv y ) M y (mv) [M O (mv)] y z(mv x ) x(mv z ) M z (mv) [M O (mv)]z x(mv y ) y(mv x ) 即:质点对点的动量矩是矢量,大小为DOMD

动量矩

动量矩

质点系对固定轴z的动量矩定理
dLz Mz dt

最常用!
绞车圆盘 ( J O , Q, r ) 受力偶M作用,通过
绳索拉动物块B(P),不计斜面摩擦,求物 块B的加速度。 O B θ
M
解:设绞车圆盘角速度ω,顺转为正
d P ( J O r r ) M P sin r dt g

半径r的圆柱体被水平绳拉着作纯滚
动,质量为M;绳子绕过无重定滑轮B后系在
质量为m的物体A上,求圆柱体质心C的加速 度和绳子的拉力。
B C A
圆柱体和物体A的加速度

B
r
C
2r
A
研究物体A,受力分析:
T
aA
mg
A
maA 2mr mg T
研究圆柱体: C Mg N F 按平面运动微分方程 1 2 Mr Tr Fr 2
Mr Mr ;F 2 2 解得: aC 2 2 m( r ) r
为均质轮纯滚动,应有
F fN , F fm g
M
α
这就是力偶矩限制条件。
m gf ( r ) M r
2 2
c
o
mg
N F
aC
x

与垂直线成 ( m , l ) 均质杆BA 30 角,
O
C
O
轮心的速度
O
O
D
d dt
C
初始 t 0
C
f mg
D
mg N
d dt
D O Or 0
初始条件
d (0) o m f mg dt d f gdt (t ) o f gt

工程力学-结构力学课件-12动量矩定理p

工程力学-结构力学课件-12动量矩定理p

12-1、图示三角形薄板,质量为m ,a 、h 已知,求薄板对z 轴的转动惯量z J 。

12-2、如图所示,质量为m 的偏心轮在水平面上作平面运动。

轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为A J ;C ,A ,B 三点在同一铅直线上。

1)当轮子只滚不滑时,若A v 已知,求轮子的动量和对地面上B 点的动量矩。

2)当轮子又滚又滑时,若A v ,ω已知,求轮子的动量和对地面上B 点的动量矩。

题12-2图12-3、如图所示,求下列两种情况的动量矩O L :(a) 质量为m ,半径为R 的均质薄圆盘绕水平轴O (垂直纸面)转动的角速度为ω; (b) 质量为m ,长为l 的均质细直杆绕O 轴转动的角速度为ω。

12-4、如图:(a )所示刚体由均质圆环与直秆焊接而成,两者质量均为m ,求绕O 轴的转动惯量;(b )所示均质圆盘质量为1m ,绳子无重且不可伸长.与圆盘之间无相对滑动,物块A 、B 质量均为2m ,求系统对O 轴的动量矩。

(a )(b12-5、某质点对于某定点O 的动量矩矢量表达式为:226(86)(4)t t t =++--O L i j k ,式中为t 时间,i, j, k 分别为x 、y 、z 轴向的单位矢量,求此质点上作用力对O 点的力矩的大小。

12-6、均质杆AB ,长L ;质量m ,在已知力A F ,B F (A B F F ≠)作用下,在铅垂面内作平面运动,若对端点B ,中点C 的转动惯量分别为B J ,C J ,求图示瞬时杆AB 的角加速度。

12-7、两根质量均为8kg的均质细杆固连成T字形,可绕通过O点的水平轴转动,当OAω=。

求该瞬时轴承O处的约束反力。

处于水平位置时,T形杆具有角速度4rad/s12-8、均质圆轮A质量为1m,半径为1r,以角速度ω绕杆OA的A端转动,此时将轮放置在m的另一均质圆轮B上,其半径为2r,如图所示。

轮B原为静止,但可绕其中心轴质量为2自由转动。

第十二章:动量矩定理

第十二章:动量矩定理

周期 T = 2π J O
mga
§12-4 刚体对轴的转动惯量
n
Jz
=

i −1
m
i
ri
2
单位:kg·m2
1. 简单形状物体的转动惯量计算
(1)均质细直杆对一端的转动惯量
∫ J z =
l 0
ρl x2dx
=
ρll3
3
由 m = ρll ,得
Jz
=
1 ml 2 3
(2)均质薄圆环对中心轴的转动惯量
与 zC 轴之间的距离。
即:刚体对于任一轴的转动惯量,等于刚体对 于通过质心并与该轴平行的轴的转动惯量,加 上刚体的质量与两轴间距离平方的乘积.
证明: J zC = ∑ mi (x12 + y12 )
Jz =∑mi r2 =∑mi (x2 +y2)
= ∑ mi[x12 + ( y1 + d )2 ]
=
1 ml 2 3

J zC
=
Jz

m( l )2 2
=
ml 2 12
要求记住三个转动惯量
(1) 均质圆盘对盘心轴的
转动惯量 mR2
2
(2) 均质细直杆对一端的
转动惯量 ml 2
3
(3) 均质细直杆对中心轴
的转动惯量 ml 2
12
§12-5 质点系相对于质心的动量矩定理
1.对质心的动量矩
∑ ∑ r
=
r LC
r LO
=
rrC
× mvrC
+
r LC
=
r M
O
(
mvrC
)
+

理论力学课件—动量矩和转动惯量

理论力学课件—动量矩和转动惯量

HO hO , mO (Fi i ) 0,则
dH O dt
mO (Fie )
一质点系的动量矩定理
质点系对任一固定点的动量矩对时间的导数,等于作用在 质点系上所有外力对同一点之矩的矢量和(外力系的主矩)。
将上式在通过固定点O的三个直角坐标轴上投影,得
dH x dt
e
mx (Fi ),
dH y dt
动的速度多大?(轮重不计)
解: mO (F e ) 0 , 系统的动量矩守恒。
0mAvArmB (vvA)r
vA
v 2
猴A与猴B向上的绝对速度是一样的,
均为 v 。 2
25
三.刚体定轴转动微分方程
对于定轴转动刚体 H z J z
代入质点系动量矩定理:dH z dt
mz (Fi e )
J z
(1)在质点受有心力的作用时。 (2)质点绕某点(轴)转动的问题。
19
二.质点系的动量矩定理
对质点Mi

d dt
对质点系,有
hOi mO (
d
dt
hOi
Fi
i ) mO (Fie ) mO (Fii ) mO
(
(i Fe
i
)
1,2,3,, n) (i 1,2,3,
,
n)
左边交换求和与导数运算的顺序,
'
Jz
m( l )2 2
1 ml2 12
1 ml2 4
1 ml2 3
12
[例9]图示复摆,已知 均质细杆:m,L;有 孔圆盘:M,R,r,求 摆对过O点且垂直于图 面的轴的转动惯量。
解: JO J杆 J盘 J孔
J杆
1 mL2 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档