浙江省金华市八年级上学期期末数学试卷
八年级上册金华数学期末试卷测试卷 (word版,含解析)

八年级上册金华数学期末试卷测试卷 (word 版,含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.【详解】解:(1)证明:设BE 与AD 交于点H..如图,∵AD,BE 分别为BC,AC 边上的高,∴∠BEA=∠ADB=90°.∵∠ABC=45°,∴△ABD 是等腰直角三角形.∴AD=BD.∵∠AHE=∠BHD,∴∠DAC=∠DBH.∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF.∴△DAE ≌△DBF.∴BF=AE,DF=DE.∴△FDE是等腰直角三角形.∴∠DFE=45°.∵G为BE中点,∴BF=EF.∴AE=EF.∴△AEF是等腰直角三角形.∴∠AFE=45°.∴∠AFD=90°,即AF⊥DF.(2)AF=2DG,且AF⊥DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,∵点G为BE的中点,BG=GE.∵∠BGM∠EGD,∴△BGM≌△EGD.∴∠MBE=∠FED=45°,BM=DE.∴∠MBE=∠EFD,BM=DF.∵∠DAC=∠DBE,∴∠MBD=∠MBE+∠DBE=45°+∠DBE.∵∠EFD=45°=∠DBE+∠BDF,∴∠BDF=45°-∠DBE.∵∠ADE=∠BDF,∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.∵BD=AD,∴△BDM≌△DAF.∴DM=AF=2DG,∠FAD=∠BDM.∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°.∴∠AHD=90°.∴AF⊥DG.∴AF=2DG,且AF⊥DG【点睛】本题考查三角形全等的判定和性质,关键在于灵活运用性质.2.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDBDCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.3.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE.又 BA=CA,AD=AE,∴△ABD≌△ACE (SAS)∴∠ACE=∠B=45°且 CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为垂直,相等;②都成立,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△DAB与△EAC中,AD AEBAD CAEAB AC⎧⎪∠∠⎨⎪⎩===∴△DAB≌△EAC,∴CE=BD,∠B=∠ACE,∴∠ACB+∠ACE=90°,即CE⊥BD;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.4.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.5.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD , ∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ ,∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上, 过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.6.(1)如图(a )所示点D 是等边ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明.(2)如图(b )所示当动点D 运动至等边ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c )所示,当动点D 在等边ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方、下方分别作等边DCF 和等边DCF ',连接AF 、BF ',探究AF 、BF '与AB 有何数量关系?并证明.②如图(d )所示,当动点D 在等边ABC 边BA 的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD =证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.7.在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA 的延长线于点D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等【解析】【分析】(1)根据OA=OE即可解决问题.(2)根据ASA证明三角形全等即可解决问题.(2)设运动的时间为t秒,分三种情况讨论:当点P、Q分别在y轴、x轴上时;当点P、Q都在y轴上时;当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时;列方程即可得到结论.【详解】(1)∵A(0,5),∴OE=OA=5,故答案为5.(2)如图1中,∵OE=OA,OB⊥AE,∴BA=BE,∴∠BAO=∠BEO,∵∠CEF=∠AEB,∴∠CEF=∠BAO,∴∠CEO=∠DAO,在△ADO与△ECO中,CE0DA0OA0ECOE AOD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO≌△ECO(ASA).(2)设运动的时间为t秒,当PO=QO时,易证△OPM≌△OQN.分三种情况讨论:①当点P、Q分别在y轴、x轴上时PO=QO得:5﹣t=12﹣3t,解得t=72(秒),②当点P、Q都在y轴上时PO=QO得:5﹣t=3t﹣12,解得t=174(秒),③当点P在x轴上,Q在y轴上时,若二者都没有提前停止,则PO=QO得:t﹣5=3t﹣12,解得t=72(秒)不合题意;当点Q运动到点E提前停止时,有t﹣5=5,解得t=10(秒),综上所述:当两动点运动时间为72、174、10秒时,△OPM与△OQN全等.【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.8.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,BF FAFB AFGAF AFG=⎧⎪∠=∠⎨⎪=⎩,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.9.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE 的度数; (2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB ) 【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH +DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK =60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.10.已知:在ABC∆中,,90AB AC BAC=∠=︒,PQ为过点A的一条直线,分别过B C、两点作,BM PQ CN PQ⊥⊥,垂足分别为M N、.(1)如图①所示,当PQ与BC边有交点时,求证:MN CN BM=-;(2)如图②所示,当PQ与BC边不相交时,请写出线段BM CN、和MN之间的数量关系,并说明理由.【答案】(1)见解析;(2)MN BM CN=+(或BM MN CN=-或CN MN BM=-),理由见解析【解析】【分析】(1)根据已知条件先证AMB CNA≌∆∆,得到,AM CN BM AN==,即可证得MN CN BM=-;(2)由(1)知AMB CNA≌∆∆,得到,AM CN BM AN==,即可确定MN BM CN=+.【详解】证明:∵,BM PQ CN PQ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM∠+∠=∠+∠)∴BAM ACN∠=∠,在AMB∆和CNA∆中,∵AMB CNABAM ACNAB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS≌∆∆,∴,AM CN BM AN==,∵MN AM AN=-,∴MN CN BM=-.(2)MN BM CN=+(或BM MN CN=-或CN MN BM=-).理由:∵,BM PQ CN PQ⊥⊥,∴∠AMB=∠CAN=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM∠+∠=∠+∠),∴BAM ACN∠=∠,在AMB∆和CNA∆中,∵AMB CNABAM ACNAB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS≌∆∆,∴,AM CN BM AN==,∴MN AN AM BM CN=+=+.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到BM CN、和MN之间的关系式.二、八年级数学轴对称解答题压轴题(难)11.如图,在△ABC中,AB=BC=AC=20 cm.动点P,Q分别从A,B两点同时出发,沿三角形的边匀速运动.已知点P,点Q的速度都是2 cm/s,当点P第一次到达B点时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)∠A=______度;(2)当0<t<10,且△APQ为直角三角形时,求t的值;(3)当△APQ为等边三角形时,直接写出t的值.【答案】(1)60;(2)103或203;(3)5或20【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP时,△APQ为等边三角形;②当P于B重合,Q与C重合时,△APQ为等边三角形.【详解】解:(1)60°.当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形∴2t=20-2t ,解得t=5②当P 于B 重合,Q 与C 重合,则所用时间为:4÷2=20综上,当△APQ 为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.12.如图,将两个全等的直角三角形△ABD 、△ACE 拼在一起(图1).△ABD 不动,(1)若将△ACE 绕点A 逆时针旋转,连接DE ,M 是DE 的中点,连接MB 、MC (图2),证明:MB =MC .(2)若将图1中的CE 向上平移,∠CAE 不变,连接DE ,M 是DE 的中点,连接MB 、MC (图3),判断并直接写出MB 、MC 的数量关系.(3)在(2)中,若∠CAE 的大小改变(图4),其他条件不变,则(2)中的MB 、MC 的数量关系还成立吗?说明理由.【答案】(1)见解析;(2)MB =MC .理由见解析;(3)MB =MC 还成立,见解析.【解析】【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【详解】(1)如图(2),连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE.∵MD=ME,∴∠MAD=∠MAE,∴∠MAD-∠BAD=∠MAE-∠CAE,即∠BAM=∠CAM.在△ABM和△ACM中,AB=AC,∠BAM=∠CAM,AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC.(2)MB=MC.理由如下:如图(3),延长CM交DB于F,延长BM到G,使得MG=BM,连接CG.∵CE∥BD,∴∠MEC=∠MDF,∠MCE=∠MFD.∵M是ED的中点,∴MD=ME.在△MCE和△MFD中,∠MCE=∠MFD,∠MEC=∠MDF,MD=ME,∴△MCE≌△MFD(AAS).∴MF=MC.∴在△MFB和△MCG中,MF=MC,∠FMB=∠CMG,BM=MG,∴△MFB≌△MCG(SAS).∴FB=GC,∠MFB=∠MCG,∴CG∥BD,即G、C、E在同一条直线上.∴∠GCB=90°.在△FBC和△GCB中,FB=GC,∠FBC=∠GCB,BC=CB,∴△FBC≌△GCB(SAS).∴FC=GB.∴MB=12GB=12FC=MC.(3)MB=MC还成立.如图(4),延长BM交CE于F,延长CM到G,使得MG=CM,连接BG.∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE.又∵M是DE的中点,∴MD=ME.在△MDB和△MEF中,∠MDB=∠MEF,∠MBD=∠MFE,MD =ME ,∴△MDB ≌△MEF (AAS ),∴MB =MF .∵CE ∥BD ,∴∠FCM =∠BGM .在△FCM 和△BGM 中,CM =MG ,∠CMF =∠GMB ,MF =MB ,∴△FCM ≌△BGM (SAS ).∴CF =BG ,∠FCM =∠BGM .∴CF //BG ,即D 、B 、G 在同一条直线上.在△CFB 和△BGC 中,CF =BG ,∠FCB =∠GBC ,CB =BC ,∴△CFB ≌△BGC (SAS ).∴BF =CG .∴MC =12CG =12BF =MB . 【点睛】 本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.13.如图,在ABC △中,已知AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于点F ,求证:AF EF =.【答案】证明见解析【解析】【分析】延长AD 到点G ,使得AD DG =,连接BG ,结合D 是BC 的中点,易证△ADC 和△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD到点G,延长AD到点G,使得AD DG=,连接BG .∵AD是BC边上的中线,∴DC DB=.在ADC和GDB△中,AD DGADC GDBDC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC≌GDB△(SAS).∴CAD G∠=∠,BG AC=.又BE AC=,∴BE BG=.∴BED G∠=∠.∵BED AEF∠=∠∴AEF CAD∠=∠,即AEF FAE∠=∠∴AF EF=.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键. 14.如图1,在ABC中,90BAC∠=︒,点D为AC边上一点,连接BD,点E为BD 上一点,连接CE,CED ABD∠=∠,过点A作AG CE⊥,垂足为G,交ED于点F.(1)求证:2FAD ABD∠=∠;(2)如图2,若AC CE=,点D为AC的中点,求证:AB AC=;(3)在(2)的条件下,如图3,若3EF=,求线段DF的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.15.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠ BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==-在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.16.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32.【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠∴在Rt BNM ∆中,2BM BN =在Rt ABM ∆中,2AB BM =∴24AB AN BN BM BN =+==∴3AN BN =即3AN BN=. (2)如下图:过点M 作ME ∥BC 交AC 于E∴∠CME=∠MCB ,∠AEM=∠ACB∵ABC ∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB ∠=∠=︒,120MBN =︒∠∴120CEM MBN ∠==︒∠,60AEM A ∠=∠=︒∴AM=ME∵MNB MCB ∠=∠∴∠CME=∠MNB ,MN=MC∴在MEC ∆与NBM ∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MEC NBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP∆是等边三角形,120EMP FCP==︒∠∠∴AP MP AM==∵P点是AC的中点∴111222AP PC MP AM AC AB BC======∴12AM MB AB==在EMP∆与FCP∆中EMP FCPAEP PFCMP PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS∆∆≌∴ME FC=∴1322 BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+=∴3322BCBF BEBC BC-==.【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.17.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD 为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【详解】(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线,∴∠CAM12∠BAC,∴∠CAM=∠BAM=30°.(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD =∠BCE.在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ); (3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE . 在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.③当点D 在线段MA 的延长线上时.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD .由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.18.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).。
浙江省金华市八年级(上)期末数学试卷

A. 16
B. 18
C. 20
D. 16 或 20
8. 已知 0≤a-b≤1 且 1≤a+b≤4,则 a 的取值范围是( )
A. 1≤a≤2
B. 2≤a≤3
C. 12≤a≤52
D. 32≤a≤52
9. 根据图(1)可以得到如图(2)的 y 与 x 之间关系,那么 m,n 的值是( )
A. −3,3
八年级(上)期末数学试卷题Fra bibliotek 得分一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. 点 P(-2,1)在平面直角坐标系中所在的象限是( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2. 已知 a>b,若 c 是任意实数,则下列不等式中总成立的是( )
A. a+c<b+c
第 1 页,共 13 页
13. 已知点(3,5)在直线 y=ax+b(a,b 为常数,且 a≠0)上,则 ab−5 的值为 ______.
14. 如图,在△ABC 中,AB=AD=DC,∠BAD=20°,则∠C=______.
15. 已知点 A(1,5),B(3,1),点 M 在 x 轴上,当 AM-BM 最大时,点 M 的坐标 为______.
第 4 页,共 13 页
答案和解析
1.【答案】B
【解析】
解:点 P(-2,1)在第二象限. 故选:B. 根据各象限点的坐标的特点解答. 本题考查了点的坐标,熟记四个象限的符号特点分别是:第一象限(+,+);第二 象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键. 2.【答案】B
浙江省金华市婺城区2023-2024学年八年级上学期期末数学试题

浙江省金华市婺城区2023-2024学年八年级上学期期末数学试题一、单选题1.下列“祝你成功”的首拼字母中,属于轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点()3,2P -在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知一个等腰三角形的周长为10,腰长为4,则它的底边长为( )A .2B .3C .4D .64.不等式21x x <-的解集在数轴上表示正确的是( )A .B .C .D . 5.如图,已知AB AD =,那么添加下列一个条件后,不能判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒ 6.能说明“三角形的高线一定在三角形的内部(含边界)”是假命题的反例是( ) A . B . C . D .7.如图,用直尺和圆规作PCD AOB ∠=∠,作图痕迹中,弧MN 是( )A .以点C 为圆心,OE 为半径的弧B .以点C 为圆心,EF 为半径的弧 C .以点G 为圆心,OE 为半径的弧D .以点G 为圆心,EF 为半径的弧 8.在平面直角坐标系中,已知一次函数2a y x a =+经过点()1,2,则该函数图象为( ) A . B .C .D .9.已知关于x 的不等式组030x m x n -≥⎧⎨-<⎩的整数解为1,2(其中m ,n 为整数),则满足条件的(,)m n 共有( )A .1对B .2对C .3对D .4对10.如图,在边长为8的等边ABC V 中,D 是AC 的中点,E 是直线BC 上一动点,连接DE ,将线段DE 绕点D 逆时针旋转90︒,得到线段DF ,连接AF .在D 点运动过程中,线段AF 的最小值为( )A .4B .C .D .2二、填空题11.根据数量关系“a 是正数”,可列出不等式:.12.在两个全等的三角形中,已知一个三角形的三个内角为30︒,()αβαβ>,,另一个三角形有一个角为70︒,则αβ-=︒.13.小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为.14.剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,点E 的坐标为(2,)n --,其关于y 轴对称的点F 的坐标(2,1)-+m ,则2023()-=n m .15.如图,将长方形ABCD 放置于平面直角坐标系中,点C 在第一象限,点A 与坐标原点重合,过点A 的直线y kx =交BC 于点E ,连接DE ,已知14BE CE =::,AE 平分BED ∠,则k 的值为.16.图1是由5个全等的直角三角形与一个小正方形组成,延长DK 交AB 、AC 分别于点M 、N ,延长EH 交BD 于点P (如图2).(1)若Rt ABF V 的面积为5,小正方形FGHK 的面积为9,则AB =;(2)如图2,若AEHNBMHP S k S =四边形四边形,则FGHK BCNK S S 四边形四边形=(用含k 的代数式表示).三、解答题17.解不等式组:2152123x x x -≥⎧⎪+⎨>-⎪⎩. 18.如图1,在33⨯的网格中,ABC V 三个顶点均在格点上,这样的三角形叫做“格点三角形”.在图中画出一个“格点三角形”(阴影部分)与原ABC V 关于某条直线成轴对称.请在图2、图3、图4中,各画一个和原三角形成轴对称的“格点三角形”,并将所画的“格点三角形”用“斜线”涂成“阴影部分”(图1-图4不重复).19.【问题情境】某数学兴趣小组想测量学校旗杆的高度.【实践发现】数学兴趣小组实地勘察发现:系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知,【实践探究】设计测量方案:第一步:先测量比旗杆多出的部分绳子的长度,测得多出部分绳子的长度是1米;第二步,把绳子向外拉直,绳子的底端恰好接触地面的点C ,再测量绳子底端C 与旗杆根部B 点之间的距离,测得距离为5米;【问题解决】设旗杆的高度AB 为x 米,通过计算请你求旗杆的高度.20.如图,在ABC V 中,=45ABC ∠︒,F 是高AD 和高BE 的交点.(1)求证:12∠=∠.(2)写出图中的一对全等三角形,并给出证明.21.已知实数x ,y 满足3218x y +=.(1)用含x 的代数式表示y ,则y =.(2)若等腰三角形的腰长为x ,底边长为y ,该等腰三角形的周长为l .①求l 关于x 的函数表达式;②求l 的取值范围.22.【情境建模】我们知道“等腰三角形底边上的高线、中线和顶角平分线重合”,简称“三线合一”.小明尝试着逆向思考:如图1,点D 在ABC V 的边BC 上,给出下列三个条件:①AD 平分BAC ∠;②AD BC ⊥;③BD CD =.由哪两个条件可以判定AB AC =?(用序号写出所有成立的情形)【推理论证】请选择上述情形中的一种情况,给出证明.【应用内化】如图2,在ABC V 中,BC a =,AC b =,CD 是角平分线,过点A 作CD 的垂线交CD 、BC 分别于点E 、F .若2CAF B ∠=∠,则BF =;AE =.(结果用含a ,b 的代数式表示).23.根据以下素材,探索完成任务:24.如图,在平面直角坐标系中,过点()2,0A -的直线3y x b =+与y 轴交于点B ,直线BC 交x 轴正半轴于点C ,OC OB = ,点P 是直线BC 上的动点.(1)求直线BC 的解析式.(2)若13AEF ABC S S =V V ,求点P 的坐标. (3)已知点Q 在线段AB 上,连结OP OQ PQ 、、.①若PQB △与PQO V 全等,求线段PQ 的长;②在P 、Q 的运动过程中,OQ PQ +的最小值为(直接写出答案).。
浙江省金华市八年级上学期数学期末试卷

浙江省金华市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列代数式中,属于分式的是()A . 5xB .C .D .2. (2分) (2019七上·武威月考) 下列各式中运算错误的是()A .B .C .D .3. (2分) (2019八下·南华期中) 下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .4. (2分)下列各式中,正确的是()A .B . =a+bC .D .5. (2分) (2018八上·东城期末) 下列式子为最简二次根式的是()A .B .C .D .6. (2分) (2019八上·金平期末) 如图,在△ABC中,∠A=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分AB,那么∠C的度数为()A . 93°B . 87°C . 91°D . 90°7. (2分) (2019八上·连江期中) 若x2+mxy+4y2是完全平方式,则常数m的值为()A . 4B . ﹣4C . ±4D . 以上结果都不对8. (2分)解关于x的方程时产生增根,则m的值等于()A . -2B . -1C . 1D . 29. (2分) (2016七上·武清期中) 在代数式2xy,0,﹣,8y2 ,,x+2y中,整式共有()A . 5B . 4C . 6D . 310. (2分) (2019八上·忻州期中) 若,且,,,则的长为()A . 6B . 8C . 9D . 10二、填空题 (共10题;共10分)11. (1分) (2017八下·永春期中) 某种病毒的直径是0.0000014米,用科学记数法表示为__________米.12. (1分) (2020八上·通榆期末) 分式有意义,则ⅹ的取值范围是________。
浙江省金华市八年级上学期数学期末考试试卷

浙江省金华市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·莎车期末) 若A(-3,2)关于原点对称的点是B,B关于y轴对称的点是C,则点C 的坐标是()A . (3,2)B . (-3,-2)C . (3,-2)D . (-2,3)2. (2分) (2018八上·阿城期末) 下列图形中,是轴对称图形的是()A .B .C .D .3. (2分) (2017八下·朝阳期中) 已知,是一次函数图象上的两个点,则,的大小关系是()A .B .C .D . 不能确定4. (2分)若a、b是关于x的一元二次方程x2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为()A . 8B . 7C . 8或7D . 9或85. (2分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A . ①②③⑤B . ①②③④C . ①②③④⑤D . ①②③6. (2分) (2020七上·洛宁期末) 如图,∠AOC=∠BOD=90°,∠AOD=140°,则∠BOC的度数为()A . 30°B . 45°C . 50°D . 40°7. (2分)等腰三角形的一个外角是130°,则它的底角等于()A . 50°B . 50°或70°C . 65°D . 50°或65°8. (2分)有下列几种说法:①角平分线上的点到角两边的距离相等;②顺次连结矩形四边中点得到的四边形是菱形;③等腰梯形的底角相等;④平行四边形是中心对称图形。
初中数学 2022-2023学年浙江省金华市八年级(上)期末数学试卷

2022-2023学年浙江省金华市婺城区八年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在平面直角坐标系中,点P(-1,-2)位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列四个数字图形,是轴对称图形的是( )A.B.C.D.3.(3分)一个不等式的解集在数轴上表示如图,则这个不等式可以是( )A.x+3>0B.x-3<0C.2x≥6D.3-x<04.(3分)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是( )A.3B.4C.5D.65.(3分)等腰三角形的底角为50°,则它的顶角度数是( )A.50°B.80°C.65°或80°D.50°或80°6.(3分)如图,∠BAE=∠ABE,添加下列条件,不能使△ABC≌△BAD的是( )A.∠CAE=∠DBE B.CE=DE C.∠C=∠D D.AC=BD7.(3分)已知命题:“三角形三条高线的交点一定不在三角形的外部.”小冉想举一反例说明它是假命题,则下列选项中符合要求的反例是( )A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形8.(3分)如图为一张锐角三角形纸片ABC,小明想要通过折纸的方式折出如下线段:①BC边上的中线AD;②∠A的平分线AE;③BC边上的高AF.根据所学知识与相关活动经验可知:上述三条线中,能够通过折纸折出的有( )二、填空题(本题有6小题,每小题4分,共24分)A .①②③B .①②C .①③D .②③A .6B .8C .10D .129.(3分)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行( )米.A .5B .53C .83D .210.(3分)如图,正方形ABCD 的顶点A ,D 分别在x 轴,y 轴上,点B (3,2)在直线l :y =kx +11上.将正方形ABCD 沿x 轴正方向向右平移m (m >0)个单位长度后,点C 恰好落在直线l 上.则m 的值为( )11.(4分)在正比例函数y =-2x 中,当自变量x =1时,函数y 的值为 .12.(4分)小明同学将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件是 .13.(4分)若a 、b 、c 为三角形的三边,且a ,b 满足a −3+(b −2)2=0,则第三边c 的取值范围是 .√14.(4分)如图,已知△ABC ≌△DBE ,AB =4,BE =10,则CD 的长是 .三、解答题(本题有8小题,共66分)15.(4分)如图,在△ABC 中,∠C =90°,∠B =70°,D 、E 分别是边AB 、AC 上的点,将∠A 沿DE 折叠,使点F 落在AB 的下方,当△FDE 的边EF 与BC 平行时,∠ADE 的度数是 .16.(4分)图1表示一双开门关闭时的状态图,图2表示打开双门过程中,某一时刻的示意图,其中AB 为门槛宽度.(1)当∠CAB =∠DBA =60°时,双门间隙CD 与门槛宽度AB 的比值为. (2)若双门间隙CD 的距离为2寸,点C 和点D 距离AB 都为1尺(1尺=10寸),则门槛宽度AB 是 寸.17.(6分)解不等式组V Y W Y X 4x +6≥3x +73x +144>2x −9.18.(6分)如图,AB =AD ,BC =CD .求证:∠B =∠D .19.(6分)如图,在4×4的方格纸中,点A ,B 在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条平行于AB ,且与AB 相等的线段.(2)在图2中画一条与AB 垂直的线段.(3)在图3中画一条平分AB 的线段.20.(8分)笔直的河流一侧有一营地C ,河边有两个漂流点A ,B 、其中AB =AC ,由于周边施工,由C 到A 的路现在已经不通,为方便游客,在河边新建一个漂流点H (A ,H ,B 在同一直线上),并新修一条路CH ,测得BC =10千米,CH =8千米,BH =6千米.(1)判断△BCH 的形状,并说明理由;(2)求原路线AC 的长.21.(8分)为更好地推进生活垃圾分类工作,改善城市生态环境,某小区准备购买A 、B 两种型号的垃圾箱,通过对市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需390元,购买2个A 型垃圾箱比购买1个B 型垃圾箱少用20元.(1)求每个A 型垃圾箱和每个B 型垃圾箱分别多少元?(4)若本次实验开始记录的时间是上午7:30,当精密电子秤的读数为。
浙江省金华市八年级上学期数学期末考试试卷

浙江省金华市八年级上学期数学期末考试试卷姓名:________班级:________成绩:________一、 选择题(每题 3 分,共 30 分) (共 10 题;共 29 分)1. (3 分) (2019 八上·南安期中) 下列各数中,是无理数的是( )A . 3.1415B.C.D. 【考点】2. (3 分) 下列说法正确的是( ) A . 若|a|=|b|,则 a=b B . 如果 a2=3a,那么 a=3 C . 若|a|+b2=0 时,则 a+b=0 D . 若|a|=﹣a,则 a≤0 【考点】3. (3 分) (2020 九上·深圳期末) 甲、乙、丙三名射击运动员在某场测试中各射击 20 次,3 人的测试成绩如下表.则甲、乙、丙 3 名运动员测试成绩最稳定的是( )甲的成绩 环数 7 8 9 10 频数 4 6 6 4乙的成绩 环数 7 8 9 10 频数 6 4 4 6A.甲丙的成绩 环数 7 8 9 10 频数 5 5 5 5B.乙C.丙D . 3 人成绩稳定情况相同【考点】4. (3 分) (2020·甘孜) 在平面直角坐标系中,点关于 x 轴对称的点是( )A.第 1 页 共 23 页B. C. D. 【考点】5. (3 分) (2017·新疆模拟) 如图,在△ABC 中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是 ()A . ∠B=48° B . ∠AED=66° C . ∠A=84° D . ∠B+∠C=96° 【考点】6. (3 分) 一次函数 y=﹣ x+3 的图象如图所示,当 y>0 时 x 的取值范围是( )A . x>2 B . x<2 C . x<0 D . 2<x<4 【考点】第 2 页 共 23 页7. (3 分) (2018 九上·武昌期中) 如图,铁路 MN 和公路 PQ 在点 O 处交汇,∠QON=30°.公路距点米.如果火车行驶时,周围米以内会受到噪音的影响.那么火车在铁路上沿千米/时的速度行驶时, 处受噪音影响的时间为( )上处 方向以A. 秒 B. 秒 C. 秒 D. 秒 【考点】8. (3 分) (2019 八下·丹江口期末) 已知函数 A. B. C. D. 【考点】的图象经过原点,则 的值为( )9. (3 分) (2015 七下·双峰期中) 甲、乙两地相距 880 千米小轿车从甲地出发,2 小时后,大客车从乙地出 发相向而行,又经过 4 小时两车相遇.已知小轿车比大客车每小时多行 20 千米.设大客车每小时行 x 千米,小轿 车每小时行 y 千米,则可列方程组为( )A. B. C. D. 【考点】第 3 页 共 23 页10. (2 分) 如图,把矩形 ABCD 沿 EF 对折,若∠1=50°,则∠AEF 的度数为( )A . 100° B . 120° C . 115° D . 130° 【考点】二、 填空题(每题 3 分,共 12 分) (共 4 题;共 10 分)11. (2 分) (2020 八上·宁县月考) 的立方根是________【考点】的平方根是________;的算术平方根是________;12. (3 分) 绝对值不超过 3 的整数的极差是________. 【考点】13. (2 分) 如图,在平面直角坐标系 xOy 中,菱形 OABC 的顶点 A 在 x 轴上,顶点 B 的坐标为(8,4),点 P 是对角线 OB 上一个动点,点 D 的坐标为(0,﹣2),当 DP 与 AP 之和最小时,点 P 的坐标为________【考点】14. (3 分) (2020 七下·曲靖月考) 如图所示,把一个长方形纸片沿 EF 折叠后,点 D,C 分别落在 D’,C’ 的位置,若∠EFB=63 ,则∠AED’等于________.第 4 页 共 23 页【考点】三、 解答题(共 58 分) (共 9 题;共 55 分)15. (8 分) (2019 八下·武昌月考) 已知:x= 【考点】,y=,求代数式 x2﹣xy+y2 值.16. (8 分) (2017 七下·萧山期中) 解方程:(1) (2) 【考点】17. (6 分) (2015 八上·卢龙期末) 如图,如下图均为 2×2 的正方形网格,每个小正方形的边长均为 1.请 分别在四个图中各画出一个与△ABC 成轴对称、顶点在格点上,且位置不同的三角形.【考点】18. (6 分) (2019 九下·江阴期中) 某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制 作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数第 5 页 共 23 页据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题: (1) 此次共调查了________名学生,扇型统计图中“艺术鉴赏”部分的圆心角是________度. (2) 请把这个条形统计图补充完整. (3) 现该校共有 800 名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目. 【考点】 19. (6 分) (2020·吉林模拟) 某天,甲车间工人加工零件,工作中有一次停产检修机器,然后以原来的工 作效率继续加工,由于任务紧急,乙车间加入与甲车间一起生产零件,两车间各自加工零件的数量 y(个)与甲车 间加工时间 t(时)之间的函数图象如图所示.(1) 求乙车间加工零件的数量 y 与甲车间加工时间 t 之间的函数关系式,并写出 t 的取值范围. (2) 求甲车间加工零件总量 a. (3) 当甲、乙两车间加工零件总数量为 320 个时,直接写出 t 的值. 【考点】 20. (2 分) (2017 八下·萧山期中) 如图,分别延长▱ABCD 的边 CD,AB 到 E,F,使 DE=BF,连接 EF,分别 交 AD,BC 于 G,H,连结 CG,AH.求证:CG∥AH.第 6 页 共 23 页【考点】 21. (6 分) 如图,已知△ABC 三个顶点坐标分别是 A(1,3),B(4,1),C(4,4).(1) 请按要求画图: ①画出△ABC 向左平移 5 个单位长度后得到的△A1B1C1; ②画出△ABC 绕着原点 O 顺时针旋转 90°后得到的△A2B2C2 . (2) 请写出直线 B1C1 与直线 B2C2 的交点坐标. 【考点】22. (6 分) (2017·青岛) 青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:未入住房间数 日总收入(元)淡季 10 24000旺季 040000(1) 该酒店豪华间有多少间?旺季每间价格为多少元?(2) 今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加 25 元,每天未入住房间数增加 1 间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【考点】第 7 页 共 23 页23. (7.0 分) (2018·武进模拟) 如图 1,在平面直角坐标系 xOy 中,直线 l:y=与 y 轴交于点 B,抛物线经过点 A,交 y 轴于点 C.经过点 A(4m,4),(1) 求直线 l 的解析式及抛物线的解析式; (2) 如图 2,点 D 是直线 l 在第一象限内的一点,过点 D 作直线 EF∥y 轴,交抛物线于点 E,交 x 轴于点 F, 连接 AF,若∠CEF=∠CBA,求 AF 的长; (3) 在(2)的结论下,若点 P 是直线 EF 上一点,点 Q 是直线 l 上一点.当△PFA 与△QPA 全等时,直接写 出点 P 和相应的点 Q 的坐标. 【考点】第 8 页 共 23 页参考答案一、 选择题(每题 3 分,共 30 分) (共 10 题;共 29 分)答案:1-1、 考点:解析: 答案:2-1、 考点:解析: 答案:3-1、 考点:第 9 页 共 23 页解析: 答案:4-1、 考点: 解析: 答案:5-1、 考点:第 10 页 共 23 页解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(每题3分,共12分) (共4题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题(共58分) (共9题;共55分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
浙江省金华市八年级(上)期末数学试卷

八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列各组数可做为一个三角形三边长的是()A. 4,6,8B. 4,5,9C. 1,2,4D. 5,5,112.如图,小手盖住的点的坐标可能是()A. (3,3)B. (−4,5)C. (−4,−6)D. (3,−6)3.若a>b,则下列不等式中正确的是()A. a−b<0B. −5a<−5bC. a+8<b−8D. a4<b44.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A. 3B. 4C. 5D. 65.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A. x≥−1B. x>1C. −3<x≤−1D. x>−36.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=−2,B. a=−2,b=3,C. a=2,b=−3,D. a=−3,b=2,7.下列条件中,不能判断一个三角形为直角三角形的是()A. 三个角的比是1:2:3B. 三条边满足关系a2=c2−b2C. 三条边的比是2:3:4D. 三个角满足关系∠B+∠C=∠A8.将直线y=3x向左平移2个单位所得的直线的解析式是()A. y=3x+2B. y=3x−2C. y=3(x−2)D. y=3(x+2)9.如图是一次函数y=kx+b与y2=x+a的图象,则下列结论①k<0;②a>0;③当x<3时,kx+b<x+a中,正确的个数是()A. 0B. 1C. 2D. 310.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列五个结论中,其中正确的结论是()①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+943.A. ①②③④B. ①②⑤C. ①②③⑤D. ②③④⑥二、填空题(本大题共6小题,共24.0分)11.函数y=1x−1中,自变量x的取值范围是______.12.如图是2002年在北京召开的世界数学家大会的会标,其中央图案正是经过艺术处理的“弦图”,它蕴含着一个著名的定理是______.13.如图,∠ABC=∠DCB,请补充一个条件:______,使△ABC≌△DCB.14.不等式2x-1≤3的正整数解是______.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,BC=10,则在△BDC中,BD边上的高为______.16.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为______.三、计算题(本大题共1小题,共8.0分)17.某批服装进价为每件200元,商店标价每件300元,现商店准备将这批服装打折出售,但要保证毛利润不低于5%,问售价最低可按标价的几折?(要求通过列不等式进行解答)四、解答题(本大题共7小题,共58.0分)18.解不等式组x+4≤3x1+2x3>x−119.如图,AB与CD相交于点E,AE=CE,CD=AB.求证:∠A=∠C.20.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高,且∠B=40°,∠C=60°,求∠CAD、∠EAD的度数.21.如图是由边长为1的小正方形组成的网格图.(1)请在网格图中建立平面直角坐标系xOy,使点A的坐标为(3,3),点B的坐标为(1,0);(2)若点C的坐标为(4,1),△ABC关于y轴对称三角形为△A1B1C1,则点C的对应点C1坐标为______;(3)已知点D为y轴上的动点,求△ABD周长的最小值.22.甲、乙两车都从A地驶向B地,并以各自的速度匀速行驶.甲车比乙车早行驶,甲车途中休息了0.5h.设甲车行驶时间为x(h),下图是甲乙两车行驶的距离y(Mm)与x(h)的函数图象,根据题中信息回答问题:(1)填空:m=______,a=______;(2)当乙车出发后,求乙车行驶路程y(km)与x(h)的函数解析式,并写出相应的x的取值范围;(3)当甲车行驶多长时间时,两车恰好相距50km?请直接写出答案.23.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命题(填“真”或“假”)①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.命题①是______命题,命题②是______命题;(2)如图2,Rt△ABC,∠C=90°,∠B=30°,AC=2,试探索Rt△ABC是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度;若不存在,请说明理由.(3)如图3,△ABC中,∠A=42°,若线段CD是△ABC的“和谐分割线”,且△BCD 是等腰三角形,求出所有符合条件的∠B的度数.24.如图,直线y=kx+b与x轴、y轴分别交于点A(4,0)、B(0,4),点P在x轴上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)求k、b的值;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:A、4+6>8,能组成三角形;B、4+5=9,不能组成三角形;C、1+2<4,不能组成三角形;D、5+5<11,不能组成三角形.故选:A.在三角形中任意两边之和大于第三边,任意两边之差小于第三边,据此可得答案.本题考查了三角形三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.【答案】B【解析】解:A、(3,3)在第一象限;B、(-4,5)在第二象限;C、(-4,-6)在第三象限;D、(3,-6)在第四象限.故选:B.根据盖住的点在第二象限,对各选项分析判断即可得解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】B【解析】解:A、当a>b时,不等式两边都减b,不等号的方向不变得a-b>0,故A错误;B、当a>b时,不等式两边都乘以-5,不等号的方向改变得-5a<-5b,故B正确;C、不等式两边的变化必须一致,故C错误;D、当a>b时,不等式两边都除以4,不等号的方向不变得,故D错误.故选:B.正确运用不等式的性质进行判断.本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.【答案】C【解析】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.5.【答案】A【解析】解:两个不等式的解集的公共部分是:-1及其右边的部分.即大于等于-1的数组成的集合.故选:A.根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即-1及其右边的部分.本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答案】D【解析】解:在A中,a2=9,b2=4,且3>-2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=4,b2=9,且-2<3,此时不但不满足a2>b2,也不满足a>b不成立,故B选项中a、b的值不能说明命题为假命题;在C中,a2=4,b2=9,且2>-3,此时不但不满足a2>b2,也不满足a>b不成立,故C选项中a、b的值不能说明命题为假命题;在D中,a2=9,b2=4,且-3<2,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故D选项中a、b的值能说明命题为假命题;故选:D.说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.7.【答案】C【解析】解:A、三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,故正确;B、三条边满足关系a2=c2-b2,故正确;C、三条边的比为2:3:4,22+32≠42,故错误;D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故正确.故选:C.根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.8.【答案】D【解析】解:将直线y=3x向左平移2个单位所得的直线的解析式为:y=3(x+2).故选:D.根据函数左右平移的规律:“左加右减”可得出平移后的函数解析式,即可得出答案.此题考查了一次函数图象与几何变换,解答本题关键是掌握平移的法则:“左加右减”,“上加下减”,属于基础题,难度一般.9.【答案】B【解析】解:由图象可得,一次函数y=kx+b中k<0,b>0,故①正确,一次函数y2=x+a中a<0,故②错误,当x<3时,kx+b>x+a,故③错误,故选:B.根据函数图象可以判断题目中的各个小题是否正确,本题得以解决.本题考查一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.【答案】C【解析】解:∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′=4,∠OBO′=60°,∵∠OBO′=CBA=60°,BO=BO′,BC=BA,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,所以①正确;∵BO=BO′,∠OBO′=60°,∴△BOO′为等边三角形,∴OO′=OB=4,∠BOO′=60°,所以②正确;∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,∴AO′=OC=5,在△OAO′中,∵OO′=4,AO=3,AO′=5,∴OA2+OO′2=AO′2,∴△AOO′为直角三角形,∴∠AOO′=90°,∴∠AOB=90°+60°=150°,所以③正确;S四边形AOBO′=S△AOO′+S△BOO′=×4×3+×42=6+4,所以④错误;作AH⊥BO于H,如图,在RtAOH中,∠AOH=30°,∴AH=OA=,OH=AH=,∴AB2=AH2+BH2=()2+(4+)2=25+12,S△AOB=×4×=3,∴S△BAO′=S四边形AOBO′-S△AOB=6+4-3=3+4,即S△BOC=3+4,∴S△AOC+S△AOB=S△ABC-S△BOC=(25+12)-(3+4)=6+,所以⑤正确.故选:C.利用等边三角形的性质得BA=BC,∠ABC=60°,利用性质得性质得BO=BO′=4,∠OBO′=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到,则可对①进行判断;再判断△BOO′为等边三角形得到OO′=OB=4,∠BOO′=60°,则可对②进行判断;接着根据勾股定理的逆定理证明△AOO′为直角三角形得到∠AOO′=90°,所以∠AOB=150°,则可对③进行判断;利用S四边形AOBO′=S△AOO′+S△BOO′可对④进行判断;作AH⊥BO于H,如图,计算出AH=,OH=,则AB2=25+12,S△AOB=3,然后计算出S△BAO′=S四边形AOBO′-S△AOB=3+4,从而得到S△BOC=3+4,最后利用S△AOC+S△AOB=S△ABC-S△BOC可对⑤进行判断.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和勾股定理、勾股定理的逆定理.11.【答案】x≠1【解析】解:根据题意得:x-1≠0,解得:x≠1.故答案为:x≠1.分式的意义可知分母:就可以求出x的范围.主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【答案】勾股定理【解析】解:根据勾股定理的定义并结合题给图形可得,该弦图蕴含的定理是勾股定理.故答案为:勾股定理.根据勾股定理的定义,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2,即可得出答案.本题考查勾股定理的概念,属于基础题,注意掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.13.【答案】AB=DC或者∠A=∠D【解析】解:∵∠ABC=∠DCB,BC=BC,∴当AB=DC(SAS)或∠A=∠D(ASA)或∠BCA=∠DBC(AAS)时,∴△ABC≌△DCB.故填AB=DC或∠A=∠D.要使△ABC≌△DCB,已知了∠ABC=∠DCB以及公共边BC,因此可以根据SAS、AAS分别添加一组相等的对应边或一组相等的对应角.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.14.【答案】1、2【解析】解:2x-1≤3,移项得:2x≤3+1,合并同类项得:2x≤4,把x的系数化为1得:x≤2,∵x是正整数,∴x=1、2.故答案为:1、2.首先移项,合并同类项,把x的系数化为1,解出不等式的解集,再从不等式的解集中找出适合条件的正整数即可.此题主要考查了求不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质,同学们要注意在不等式两边同时除以同一个负数时,不等号一定要改变.15.【答案】6【解析】解:如图,作DE⊥B于E,CH⊥BD交BD的延长线于H.在Rt△ABD中,∵∠A=90°,AB=4,AD=3,∴BD==5,∵BD平分∠ABC,DA⊥BA,DE⊥BC,∴DA=DE=3,∵•BC•DE=•BD•CH,∴CH==6,故答案为6.首先过D作DE⊥BC,CH⊥BD交BD的延长线于H.根据角平分线上的点到角两边的距离相等可得AD=DE=3,再利用面积法构建方程即可解决问题.此题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.16.【答案】(103,10)或(1,3)【解析】【分析】本题考查了全等三角形的判定,平行四边形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.①如图1所示,当△POQ≌△COQ时,即OP=OC=1,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,根据勾股定理得到OB==2,根据相似三角形的性质得到=,OE=,于是得到点P的坐标为(,);②如图2,当△POQ≌△CQO时,即QP=OC=4,OP=CQ,点的四边PQCO是平行四边形,求得PQ∥OA,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,根据平行线分线段成比例定理即可得到结论.【解答】解:以P,O,Q为顶点的三角形与△COQ全等,①如图1所示,当△POQ≌△COQ时,即OP=OC=1,过P作PE⊥OA于E,过B 作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴OB==2,∵PE∥BF,∴△POE∽△BOF,∴,∴==,∴PE=,OE=,∴点P的坐标为(,);②如图2,当△POQ≌△CQO时,即QP=OC=4,OP=CQ,∴四边形PQCO是平行四边形,∴PQ∥OA,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴OB==2,∵PQ∥OA,∴=,∴PB=,∴PE=,∴点P是OB的中点,∵PE∥BF,∴PE=BF=3,OE=EF=1,∴点P的坐标为(1,3),综上所述,点P的坐标为(,)或(1,3).故答案为(,)或(1,3).17.【答案】解:设售价可以按标价打x折,根据题意,得:200+200×5%≤300×x10,解得:x≥7,答:售价最低可按标价的7折.【解析】设售价可以按标价打x折,根据“保证毛利润不低于5%”列出不等式,解之可得.本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式.18.【答案】解:x+4≤3x①1+2x3>x−1②,解不等式①,得x≥2,解不等式②,得x<4,所以,不等式组的解集为2≤x<4.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【答案】证明:连接AC,∵AE=CE,∴∠BAC=∠DCA,在△DAC和△BCA中AC=AC∠DCA=∠BACCD=AB∴△DAC≌△BCA(SAS),∴∠D=∠B,∵∠D+∠DAE+∠DEA=180°,∠B+∠BCE+∠BEC=180°,∠DEA=∠BEC,∴∠DAE=∠BCE.【解析】根据等腰三角形的性质得出∠BAC=∠DCA,根据全等三角形的判定得出△DAC≌△BCA,根据三角形的性质得出∠D=∠B,根据三角形的内角和定理求出即可.本题考查了全等三角形的性质和判定和三角形内角和定理,能求出△DAC≌△BCA是解此题的关键.20.【答案】解:∵AD是BC边上的高,∠C=60°,∴∠CAD=90°-∠C=90°-60°=30°;在△ABC中,∠BAC=180°-∠B-∠C=180°-40°-60°=80°,∵AE是∠BAC的角平分线,∴∠CAE=12∠BAC=12×80°=40°,∴∠EAD=∠CAE-∠CAD=40°-30°=10°.【解析】根据直角三角形两锐角互余可得∠CAD=90°-∠C,再利用三角形的内角和定理求出∠BAC,根据角平分线的定义求出∠CAE,然后根据∠EAD=∠CAE-∠CAD计算即可得解.本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.21.【答案】(-4,1)【解析】解:(1)建立如图所示的平面直角坐标系;(2)如图所示,△A1B1C1即为所求;点C1坐标为(-4,1),故答案为:(-4,1);(3)连接AB1交y轴于D,则此时,△ABD周长的值最小,即△ABD周长的最小值=AB+AB1,∵AB==,AB1==5,∴△ABD周长的最小值=5+.(1)根据题意建立如图所示的平面直角坐标系即可;(2)根据关于y轴对称的点的坐标特征即可得到结论;(3)连接AB1交y轴于D,根据勾股定理函数三角形的周长公式即可得到结论.本题考查了轴对称-最短路线问题,勾股定理,关于坐标轴对称的点的坐标特征,正确的作出图形是解题的关键.22.【答案】1 40【解析】解:(1)m=1.5-0.5=1.∵甲车匀速行驶,∴a==40.(2)设乙行驶路程y=kx+b,依题意得,解得,.∴乙行驶路程y=80x-160.当y=260km时,80x-160=260,解得,x=5.25.∴自变量取值范围为2≤x≤5.25.(3)设甲在后一段路程y=mx+n,依题意得,,解得.∴甲路程y=40x-20(1.5≤x≤7).①当1≤x≤2时,由两车相距50km得,40x-20=50解得,x=.②当2<x≤5.25时,若两车相距50km,则|40x-20-(80x-160)|=50解得,x=.③当5.25<x≤7时,乙车已到达目的地,两车相距50km,则260-(40x-20)=50 解得,x=.故答案为,,,.(1)用休息后出发时间减去0.5即为m的值;根据甲匀速行驶即可求出a的值;(2)设乙行驶路程y=kx+b,找出图象上(2,0)和(3.5,120)代入即可求出k,b 值,从而求出解析式;(3)用待定系数法求出甲路程y与时间x的关系,由“两车相距50km”得到|列出方程求出x即为答案.本题考查了一次函数的应用,解题关键是明确题意找出所求问题需要的条件,第三问需要分三种情况进行讨论是本题的难点.23.【答案】假真【解析】解:(1)①等边三角形不存在“和谐分割线”,不正确,是假命题;②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”,正确,是真命题,故答案为:假,真;(2)Rt△ABC存在“和谐分割线”,理由是:如图作∠CAB的平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠B=30°,∴DA=DB,∴△ADB是等腰三角形,且△ACD∽△BCA,∴线段AD是△ABC的“和谐分割线”,AD===.(3)如图3中,分2种情形:①当DC=DB,△ACD∽△ABC时,∠B=∠ACD=∠DCB设∠B=x,则∠ADC=2x∴x+2x+42=180x=46°可得∠B=46°.②当BC=BD,△ACD∽△ABC时,设∠B=x,则∠BDC=∠BCD=42+x∴42+x+42+x+x=180x=32°可得∠B=32°.综上所述,满足条件的∠B的值为46°或32°.(1)根据“和谐分割线”的定义即可判断;(2)如图作∠CAB的平分线,只要证明线段AD是“和谐分割线”即可,并根据三角函数或相似求AD的长;(3)分2种情形讨论即可;本题考查三角形综合题、等腰三角形的判定和性质、相似三角形的判定和性质、“和谐分割线”的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24.【答案】解:(1)∵点A(4,0)、B(0,4)在直线y=kx+b上,∴4k+b=0b=4,解得:k=-1,b=4;(2)存在两种情况:①如图1,当P在x轴的正半轴上时,点O′恰好落在直线AB上,则OP=O'P,∠BO'P=∠BOP=90°,∵OB=OA=4,∴△AOB是等腰直角三角形,∴AB=42,∠OAB=45°,由折叠得:∠OBP=∠O'BP,BP=BP,∴△OBP≌△O'BP(AAS),∴O'B=OB=4,∴AO'=42-4,Rt△PO'A中,O'P=AO'=42-4=OP,∴S△BOP=12OB•OP=12×4×(42−4)=82-8;②如图所示:当P在x轴的负半轴时,由折叠得:∠PO'B=∠POB=90°,O'B=OB=4,∵∠BAO=45°,∴PO'=PO=AO'=42+4,∴S△BOP=12OB•OP=12×4×(42+4)=82+8;(3)分4种情况:①当BQ=QP时,如图2,P与O重合,此时点P的坐标为(0,0);②当BP=PQ时,如图3,∵∠BPC=45°,∴∠PQB=∠PBQ=22.5°,∵∠OAB=45°=∠PBQ+∠APB,∴∠APB=22.5°,∴∠ABP=∠APB,∴AP=AB=42,∴OP=4+42,∴P(4+42,0);③当PB=PQ时,如图4,此时Q与C重合,∵∠BPC=45°,∴∠PBA=∠PCB=67.5°,△PCA中,∠APC=22.5°,∴∠APB=45+22.5°=67.5°,∴∠ABP=∠APB,∴AB=AP=42,∴OP=42-4,∴P(4-42,0);④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,∴此时P(-4,0);综上,点P的坐标是(0,0)或(4+42,0)或(4-42,0)或(-4,0).【解析】(1)用待定系数法直接求出;(2)分P在x轴的正半轴和负半轴:①当P在x轴的正半轴时,求OP=O'P=AO'=4-4,根据三角形面积公式可得结论;②当P在x轴的负半轴时,同理可得结论;(3)分4种情况:分别以P、B、Q三点所成的角为顶角讨论:①当BQ=QP时,如图2,P与O重合,②当BP=PQ时,如图3,③当PB=PQ 时,如图4,此时Q与C重合④当PB=BQ时,如图5,此时Q与A重合,则P 与A关于y轴对称,根据图形和等腰三角形的性质可计算对应点P的坐标.此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式及等腰三角形的判定,并注意运用数形结合的思想和分类讨论的思想解决问题.第21页,共21页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省金华市八年级上学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共7题;共14分)
1. (2分) (2017八上·南海期末) 下列说法不正确的是()
A . 1的平方根是±1
B . ﹣1的立方根是﹣1
C . 的算术平方根是2
D . 是最简二次根式
2. (2分)(2020·昌吉模拟) 下列运算正确的是()
A .
B .
C .
D .
3. (2分)以下列各组线段为边长,能构成直角三角形的是()
A . 1,1,
B . 3,4,5
C . 5,10,13
D . 2,3,4
4. (2分) (2019八下·江津月考) 如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:① ;②∠A=∠BHE;③AB=BH;
④△BCF≌△DCE,其中正确的结论是().
A . ①②③
B . ①②④
C . ②③④
D . ①②③④
5. (2分) (2019七下·大名期末) 下列分解因式正确的是()
A . 2x2-xy=2x(x-y)
B . -xy2+2xy-y=-y(xy-2x)
C . 2x2-8x+8=2(x-2)2
D . x2-x-3=x(x-1)-3
6. (2分) (2016八下·蓝田期中) 如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,若BC=18,DE=8,则△BCE的面积等于()
A . 36
B . 54
C . 63
D . 72
7. (2分) (2017八下·明光期中) 如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()
A . 3
B . 4
C . 5
D . 7
二、填空题 (共10题;共24分)
8. (1分)(2019·武汉) 计算的结果是________
9. (1分)(2019·汽开区模拟) 计算: ________.
10. (1分) (2020八上·南海期末) 为了比较 +1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得 +1________ .(填“>”或“<”或“=”)
11. (1分) (2017八下·江东期中) 在证明命题“一个三角形中至少有一个内角不大于60°”成立时,我们
利用反证法,先假设________,则可推出三个内角之和大于180°,这与三角形内角和定理相矛盾.
12. (1分)等腰三角形的周长为20cm,一边长为6cm,则底边长为________
13. (1分) (2019八上·慈溪期末) 为说明命题:“对于任意实数x,都有x2>0”是假命题,请举一个反例:________.
14. (1分) (2018八上·陕西月考) 直角三角形的两边长为3和4,则斜边上的高是________.
15. (1分) (2017九上·辽阳期中) 如图,菱形ABCD的周长为12cm,BC的垂直平分线EF经过点A,则对角线BD的长为________cm
16. (1分)若单项式与﹣2xby2的和仍为单项式,则其和为________.
17. (15分)综合题。
(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A′的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.
(2)如图②,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A′的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.
(3)如图③,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A′、D′的位置时,你能求出∠A′、∠D′、∠1 与∠2之间的数量关系吗?并说明理由.
三、解答题 (共9题;共83分)
18. (10分)计算:
(1);
(2) 2(ab2)2•a2﹣(﹣2ab)4+(5a2b)2•b2 .
19. (20分) (2019八上·海淀期中) 计算:
(1)a•a3﹣5a4+(2a2)2
(2) 6x(x﹣3y)
(3)(x﹣2)(x+3)
(4)(28a3﹣14a2+7a)÷7a
20. (5分)若z=3x(3y﹣x)﹣(4x﹣3y)(x+3y)
(1)若x,y均为整数,求证:当x是3的倍数时,z能被9整除;
(2)若y=x+1,求z的最小值.
21. (5分) (2020八上·义安期末) 当a、b为何值时,多项式a2+b2-4a+6b+18有最小值?并求出这个最小值.
22. (5分) (2017八上·乌审旗期中) 如图,AC与BD相交于点O,AO=DO,∠A=∠D.求证:△ABO≌△DCO.
23. (8分)(2020·岳阳模拟) “校园读诗词诵经典比赛”结束后,评委刘老师将此次所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下图:
(1)参加本次比赛的选手共有________人,参赛选手比赛成绩的中位数在________分数段;补全频数直方图________ .
(2)若此次比赛的前五名成绩中有名男生和名女生,如果从他们中任选人作为获奖代表发言,请利用表格或画树状图求恰好选中男女的概率.
24. (10分)(2020·盐城) 如图,是的外接圆,是的直径, .
(1)求证:是的切线;
(2)若,垂足为交与点;求证:是等腰三角形.
25. (10分) (2019九上·秀洲期末) 如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.
(1)求证:△COM∽△CBA;
(2)求线段OM的长度.
26. (10分)(2016·集美模拟) 已知:正方形ABCD的边长为4cm,点E从点A出发沿AD方向以1cm/秒的速度运动,与此同时,点F也从点D出发沿DC方向相同的速度运动,记运动的时间为t(0≤t≤4),AF与BE交于P 点.
(1)如图,在运动过程中,AF与BE相等吗?请说明理由.
(2)在运动过程中,要使得△BPC是等腰三角形,t应为何值?请画出图形,并求出所有满足条件的t值.
参考答案一、选择题 (共7题;共14分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
二、填空题 (共10题;共24分)
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
17-2、
17-3、
三、解答题 (共9题;共83分) 18-1、
18-2、
19-1、19-2、19-3、
19-4、20-1、
21-1、22-1、23-1、23-2、
24-1、
24-2、25-1、
25-2、26-1、。