最新人教版初三旋转测试题及答案
九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)

九年级数学上册第二十三章《旋转》测试卷-人教版(含答案)一、选择题(共10小题)1. 下列图形中,是轴对称图形但不是中心对称图形的是( )A. 正三角形B. 正方形C. 正六边形D. 圆2. 如图,在△ABC中,AB=2,BC=3.6,∠B=60∘,将△ABC绕点A顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,CD的长为( )A. 1.6B. 1.8C. 2D. 2.63. 平面直角坐标系内的点A(−(12)−1,1)与点B(∣−2∣,−1)关于( )A. y轴对称B. x轴对称C. 原点对称D. 以上都不对4. 如图,紫荆花图案绕中心至少旋转x∘后能与原来的图案互相重合,则x的值为( )A. 36B. 45C. 60D. 725. 下列图形中是中心对称图形的有( )个.A. 1B. 2C. 3D. 46. 如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度是( )A. 30∘B. 60∘C. 72∘D. 90∘7. 勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A. B.C. D.8. 如图,在△ABC中,∠BAC=120∘,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是( )A. ∠ABC=∠ADCB. CB=CDC. DE+DC=BCD. AB∥CD9. 已知一次函数y=kx+b(k≠0)经过(2,−1),(−3,4)两点,则它的图象不经过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )A. 42B. 32C. 42或32D. 37或33二、填空题(共8小题)11. 如图,△ABC中,∠BAC=30∘,将△ABC绕点A按顺时针方向旋转85∘,对应得到△ADE,则∠CAD=∘.12. (1)等边三角形绕中心至少旋转∘与自身重合;(2)正方形绕中心至少旋转∘与自身重合;(3)五角星绕中心至少旋转∘与自身重合;(4)正n边形绕中心至少旋转∘与自身重合.13. 已知A(2,4),B(6,2),以原点为位似中心,将线段AB缩小为原来的一半,则A的对应点坐标为.14. 七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图①所示)中各板块的边长之间的关系拼成一个凸六边形(如图②所示),则该凸六边形的周长是cm.15. 如图,将矩形ABCD绕点A旋转至矩形ABʹCʹDʹ的位置,此时ACʹ的中点恰好与D点重合,ABʹ交CD于点E.若AB=3,则△AEC的面积为.16. 已知直角坐标系内有A(−1,2),B(3,0),C(1,4),D(x,y)四个点.若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为.17. 如图,在Rt△ABC中,∠ACB=90∘,将△ABC绕顶点C逆时针旋转得到△AʹBʹC,M是BC的中点,N是AʹBʹ的中点,连接MN,若BC=4,∠ABC=60∘,则线段MN的最大值为.18. 如图在Rt△ABC中,AB=AC,∠ABC=∠ACB=45∘,D,E是斜边BC上两点,且∠DAE=45∘,若BD=3,CE=4,S△ADE=15,则△ABD与△AEC的面积之和是.三、解答题(共5小题)19. 请回答下列问题.(1)如图,点A与Aʹ关于原点对称,写出Aʹ坐标.(2)如图,点A与Aʹ关于原点对称,写出Aʹ坐标.20. 如图所示,△ABC是等边三角形,D是BC延长线上一点,△ACD经过旋转后到达△BCE的位置.(1)旋转中心是,逆时针旋转了度;(2)如果M是AD的中点,那么经过上述旋转后,点M转到的位置为.21. 已知:四边形ABCD(如图).(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.22. 如图,已知菱形ABCD的对角线AC与BD相交于点O,AE垂直且平分边CD,垂足为E.求∠BCD的度数.OA<OM=ON),∠AOB=∠MON= 23. 如图,已知△AOB和△MON都是等腰直角三角形(√2290∘.(1)如图①,连接AM,BN,求证:△AOM≌△BON;(2)若将△MON绕点O顺时针旋转,①如图②,当点N恰好在AB边上时,求证:BN2+AN2=2ON2;②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.参考答案1. A【解析】A.正三角形是轴对称图形但不是中心对称图形,故本选项符合题意;B.正方形既是轴对称图形,又是中心对称图形,故本选项不合题意;C.正六边形既是轴对称图形,又是中心对称图形,故本选项不合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不合题意.2. A【解析】由旋转的性质可得,AD =AB ,∵∠B =60∘,∴△ADB 为等边三角形,∴BD =AB =2,∴CD =CB −BD =1.6.3. C【解析】∵−(12)−1=−2,∴A 点坐标为 (−2,1),∵∣−2∣=2,∴B 点坐标为 (2,−1),∵−2 与 2 互为相反数,1 与 −1 互为相反数,∴ 点 A (−2,1) 与点 B (2,−1) 关于原点对称.4. D5. B6. C7. B【解析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形, 8. D【解析】由旋转的性质得出 CD =CA ,∠EDC =∠CAB =120∘,∵ 点 A ,D ,E 在同一条直线上,∴∠ADC =60∘,∴△ADC 为等边三角形,∴∠DAC =60∘,∴∠BAD =60∘=∠ADC ,∴AB ∥CD .9. C【解析】将(2,−1)与(−3,4)分别代入一次函数解析式y=kx+b中,得到一次函数解析式为y=−x+1,不经过第三象限.10. C【解析】分两种情况:①如图,当△ABC是锐角三角形时,∵AD是△ABC的高,∴AD⊥BC,∴∠ADB=∠ADC=90∘,∵AB=15,AD=12,∴在Rt△ABD中,BD2=AB2−AD2=152−122=81=92,∴BD=9,∵AC=13,AD=12,∴在Rt△ACD中,CD2=AC2−AD2,132−122=25=52,∴CD=5,∴△ABC的周长为15+13+9+5=42;②如图,当△ABC是钝角三角形时,由①可知,BD=9,CD=5,∴BC=BD−CD=9−5=4,∴△ABC的周长为15+13+4=32.故选C.11. 5512. 120,90,72∘,360n13. (1,2)或(−1,−2)14. (32√2+16)15. √3【解析】由旋转的性质可知ACʹ=AC,∵D为ACʹ的中点,∴AD=12ACʹ=12AC,∵四边形ABCD是矩形,∴AD⊥CD,∴∠ACD=30∘,∵AB∥CD,∴∠CAB=30∘,∴∠CʹABʹ=∠CAB=30∘,∴∠EAC=30∘,∴AE=EC,∴DE=12AE=12EC,∴CE=23CD=23AB=2,DE=1,∴AD=√3,∴S△AEC=12EC⋅AD=√3.16. (1,−2)或(5,2)或(−3,6)【解析】由图象可知,满足条件的点D的坐标为(1,−2)或(5,2)或(−3,6).17. 6【解析】连接CN.在Rt△ABC中,∵∠ACB=90∘,∠B=60∘,∴∠A=30∘,∴AB=AʹBʹ=2BC=8,∵N是AʹBʹ的中点,AʹBʹ=4,∴CN=12∵CM=BM=2,∴MN≤CN+CM=6,∴MN的最大值为6.18. 21【解析】将△AEC顺时针方向旋转90∘至△AFB,过点A作AH⊥BC于H,根据旋转的性质可得△AEC≌△ABF,∴∠ABF=∠ACD=45∘,∠BAF=∠CAE,AE=AF,∴∠FBE=45∘+45∘=90∘,BF=CE,∴BD2+BF2=DF2,∵∠DAE=45∘,∴∠BAD+∠CAE=45∘,∴∠BAD+∠BAF=45∘,∴∠DAE=∠DAF,又∵AD=AD,∴△DAE≌△DAF(SAS),∴DE=DF,∴BD2+BF2=DE2,∵BD=3,CE=4,∴DE=5,∴BC=BD+DE+CE=12,∵AB=AC,∠BAC=90∘,AH⊥BC,∴AH=BH=CH=12BC=6,∴△ABD与△AEC的面积之和:=12×BD×AH+12×CE×AH=12×(3+4)×6=21.19. (1)Aʹ(−2,−1)(2)Aʹ(1,−2) 20. (1)点C;60(2)BE的中点21. (1)图略(2)图略(3)图略22. 由条件可推出AC=AD,即△ACD,△ACB都是等边三角形,于是可得∠BCD=120∘.23. (1)因为∠AOB=∠MON=90∘,所以∠AOM=∠BON,在△AOM和△BON中,{AO=BO,∠AOM=∠BON, OM=ON,所以△AOM≌△BON(SAS).(2)①如图1,连接AM.同(1)可证△AOM≌△BON,∴AM=BN,∠OAM=∠B=45∘.∵∠OAB=∠B=45∘,∴∠MAN=∠OAM+∠OAB=90∘,∴在Rt△AMN中,MN2=AN2+AM2.∵△MON是等腰直角三角形,∴MN2=2ON2,∴BN2+AN2=2ON2.②BN=√46−3√22.【解析】②如图2,设OA交BN于J,过点O作OH⊥MN于H.∵△AOM ≌△BON ,∴AM =BN ,∵OM =ON =3,∠MON =90∘,OH ⊥MN , ∴MN =3√2,MH =HN =OH =3√22, ∴AH =√OA 2−OH 2=√42−(3√22)2=√462, ∴BN =AM =MH +AH =√46+3√22. 如图 3,同法可证 BN =AM =√46−3√22.。
人教版九年级数学上册第二十三章《旋转》测试带答案解析

人教版九年级数学上册第二十三章《旋转》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列垃圾分类的标志中,既是轴对称图形又是中心对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其它垃圾物3.下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.7.2022年油价多次上涨,新能源车企迎来了更多的关注,如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,在平面直角坐标系中,△ABC的边AB⊥x轴,A(﹣2,0),C(﹣4,1),二次函数y=x2﹣2x﹣3的图象经过点B.将△ABC沿x轴向右平移m(m>0)个单位,使点A平移到点A′,然后绕点A'顺时针旋转90°,若此时点C的对应点C′恰好落在抛物线上,则m的值为()A B C D .9.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒10.如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .11.如图,矩形ABCD 中,AD =2,ABAC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .=60°,在x 轴正半轴上有一点C ,点C 坐标为()1,0,将线段AC 绕点A 逆时针旋转120°,得线段AD ,连接BD .则BD 的长度为( )A .B .4CD .152二、填空题(本大题4个小题,每小题4分,共16分)13.点(6,1)-关于原点的对称点是__________.14.如图,在ABC 中,80ACB ∠=︒,将ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,使CC '平分B C A ''∠,则旋转角的度数为__________.15.如图,在ABC 中,70CAB ∠=︒,在同一平面内,将ABC 绕点A 逆时针旋转到AB C ''△的位置,使CC AB '∥,作B D AC '∥交BC 于点D ,则AB D '∠=______.16.如图,在ABC 中,90B ,4AB BC ==,将ABC 绕点A 逆时针旋转60︒,得到ADE ,则点D 到BC 的距离是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图所示的正方形网格中,画出将△ABC 绕点C 逆时针旋转90°得到的△MNC ,A 、B 的对应点分别为M 、N .18.如图,ABC 的顶点坐标分别为(4,5)A -,(5,2)B -,(3,4)C -.(1)画出与ABC 关于原点O 对称的111A B C △,并写出点1A 的坐标为___________.(2)D 是x 轴上一点,使DB DC 的值最小,画出点D (保图痕迹),D 点坐标为___________.(3)(,0)P t 是x 轴上的动点,将点C 绕点P 顺时针旋转90︒至点E ,直线25y x =-+经过点E ,则t 的值为___________.19.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.20.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.21.如图,在平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()4,1,点C 的坐标为()3,3.(1)画出将ABC 向下平移5个单位长度得到的111A B C △;(2)画出将ABC 绕点原点O 逆时针旋转90°后得到的222A B C △,写出2C 的坐标.22.如图,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BC 上(不与点B ,C 重合),连接AD ,以点A 为中心,将线段AD 逆时针旋转180°﹣α得到线段AE ,连接BE .(1)∠BAC +∠DAE = °;(2)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.23.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为___________;②若点B 的坐标为()3,1,则点A 的坐标为___________;(2)(3,3)E -,(2,3)F -,(,0)G a ,线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '.①求点E '的坐标(用含a 的式子表示);②若O 的半径为2E F '',上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.24.已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.25.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.参考答案:1.C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B.不是中心对称图形,是轴对称图形,故本选项不合题意;C.既是中心对称图形又是轴对称图形,故本选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A是轴对称图形不是中心对称图形,不符合题意;B是轴对称图形不是中心对称图形,不符合题意;C既不是轴对称图形也不是中心对称图形,不符合题意;D既是轴对称图形又是中心对称图形,符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.B【分析】根据轴对称图形及中心对称图形的概念可直接进行排除选项.【详解】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查轴对称图形及中心对称图形的识别,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不符合题意;C.既是轴对称图形又是中心对称图形.故本选项符合题意;D.是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.C【分析】作CD⊥AB于D,C'D'⊥A'B'于D',先根据已知条件求出点B坐标,由A、B、C三点坐标可得CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).进而表示出点C'的坐标为(m﹣1,2),最后将C'坐标代入二次函数解析式中计算即可得到点C坐标.【详解】解:作CD⊥AB于D,C'D'⊥A'B'于D',∵AB⊥x轴,二次函数y=x2﹣2x﹣3的图象经过点B,∴点B(﹣2,5)∵A(﹣2,0),C(﹣4,1),∴CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).∵A'D'=AD=1,C'D'=CD=2,∴点C'坐标为(m﹣1,2),又点C'在抛物线上,∴把C'(m﹣1,2)代入y=x2﹣2x﹣3中,得:(m ﹣1)2﹣2(m ﹣1)﹣3=2,整理得:m 2﹣4m ﹣2=0.解得:m 1=m 2=2(舍去).故选:C .【点睛】此题考查了二次函数图象上点的坐标特点,平移的性质,解一元二次方程,正确理解平移的性质是解题的关键.9.B【分析】由旋转的性质得出80E C ∠=∠=︒,40BAD ∠=︒,由等腰三角形的性质得出80C AFC ∠=∠=︒,求出20CAF ∠=︒,根据BAC BAD CAF ∠=∠+∠即可得出答案. 【详解】解:将ABC 绕点A 逆时针旋转40︒得到ADE ,且80E ∠=︒,80E C ∴∠=∠=︒,40BAD ∠=︒,又AFC 是以线段FC 为底边的等腰三角形,AC AF ∴=,80C AFC ∴∠=∠=︒,180180808020CAF C AFC ∴∠=︒-∠-∠=︒-︒-︒=︒,402060BAC BAD CAF ∴∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.10.C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∴图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.11.A【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠F AD =60°,AF =AD =2,又由四边形ABCD 是矩形,∠BAD =90°,得AF=1,由勾股定理得AH=,得到到∠F AH=30°,在Rt△AFH中,FH=12BH=AH+AB,再由勾股定理得BF=【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠F AD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠F AD+ ∠BAD=150°∴∠F AH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF=故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.12.C【分析】连接CD,过点A作AE⊥CD于点E,过点E作FG⊥x轴于点F,过点A作AG⊥FG于点G,设E(m,n),根据旋转证∠ACG=30°,CE,根据两角对应相等证△AEG∽△ECF,求出74E ⎛ ⎝⎭,52D ⎛ ⎝⎭,结合B (-2,0)求出BD =. 【详解】连接CD ,过点A 作AE ⊥CD 于点E ,过点E 作FG ⊥x 轴于点F ,过点A 作AG ⊥FG 于点G ,则∠AEC =∠OFG =∠G =90°,∵∠AOF =90°,∴∠OAG =90°,∴四边形AOFG 是矩形,∵(0,A ,∴FG =OA设E (m ,n ),∴AG =OF =m ,EF =n ,∴CF =m -1,EGn ,由旋转知,∠CAD =120°,AC =AD ,∴CE =DE ,∠ACG =30°,∴CE,∵∠CEF +∠ECF =∠AEG +∠CEF =90°,∴∠AEG =∠ECF ,∴△AEG ∽△ECF ,∴EF CE AG AE ==,∴=n m∵CF CE EG AE==∴74m =,n∴74E ⎛ ⎝⎭, ∵73144-=,735442+=,∴52D ⎛ ⎝⎭,∵∠ABO=60°,=OA∴OB =2,B (-2,0),∴BD =. 故选C .【点睛】本题主要考查了旋转,等腰三角形,含30°的直角三角形,两点间的距离公式,熟练掌握旋转图形全等性质,三线合一含30°角的直角三角形边的性质,两点间的距离公式是解决此题的关键.13.(6,1)-【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是点P '(﹣x ,﹣y ),进而得出答案.【详解】解:点(6,﹣1)关于原点的对称点的坐标为(﹣6,1).故答案为:(﹣6,1).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 14.100︒##100度【分析】根据旋转的性质得出80B C A ''∠=︒,C A AC '=,再根据角平分线的性质得出40CC A '∠=︒,利用等腰三角形的性质可求旋转角.【详解】解:∵ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,∴80C B C A A B ∠︒==''∠,C A AC '=,∵CC '平分B C A ''∠,∴1402CC A B C A '''∠=∠=︒,∴40CC A C CA ''∠=∠=︒,∴100C AC '∠=︒,故答案为:100°.【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练运用旋转的性质得出角的度数.15.30°##30度【分析】利用旋转的性质可求得AC =AC ′,∠CAB =∠C ′AB ′,由平行线性质和三角形内角和定理可求得∠C ′AC ;进而求得∠CAB ′即可解答;【详解】解:∵CC AB '∥,∴∠C ′CA =∠CAB =70°,由旋转的性质可得:AC =AC ′,∠CAB =∠C ′AB ′=70°,∴∠ACC ′=∠AC ′C =70°,∴∠C ′AC =180°-70°-70°=40°,∴∠CAB ′=∠C ′AB ′-∠C ′AC =70°-40°=30°,∵B D AC '∥,∴∠AB ′D =∠CAB ′=30°,故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质;掌握旋转的性质是解题关键.16.2【分析】由旋转的性质可得4AB AD ==,60BAD ∠=︒,可证ABD △是等边三角形,由直角三角形的性质可求解.【详解】解:如图,连接BD ,过点D 作DH BC ⊥于H ,将ABC 绕点A 逆时针旋转60︒,4AB AD ∴==,60BAD ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,60ABD ∠=︒,30DBC ∴∠=︒,DH BC ⊥,122DH BD ∴==, ∴点D 到BC 的距离是2,故答案为:2.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.17.见解析【分析】根据题意画出旋转后的图形即可;【详解】:如图,【点睛】本题主要考查了图形的旋转,掌握旋转图形的画法是解题的关键.18.(1)作图见详解,(4,5)-(2)作图见详解,13,03⎛⎫- ⎪⎝⎭(3)2-【分析】(1)已知ABC 三点坐标,ABC 关于原点O 对称的111A B C △各对应点的坐标与原坐标的横纵坐标均为相反数,由此即可作图;(2)作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小; (3)构造全等三角形求出等E 坐标,利用待定系数法即可解问题.【详解】(1)解:已知ABC 三点坐标(4,5)A -,(5,2)B -,(3,4)C -,关于原点对称,则对应点的坐标分别是1(4,5)A -,1(5,2)B -,1(3,4)C -,连接1A ,1B ,1C 所组成的图形为所求图形111A B C △,如图所示,(2)解:作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小,如图所示,已知(4,5)A -,(5,2)B -,(3,4)C -,点B'是点B 关于x 轴的对称点,∴'(5,2)B --、(34)C -,, ∴直线'BC 解析式为313y x =+,当0y =时,133x , ∴1303D ⎛⎫- ⎪⎝⎭,. (3)解:如图所示,作CH x ⊥轴于H EK x ⊥,轴于K ,根据题意得,(34)C -,,90CHP CPE PKE ∠=∠=∠=︒, ∴9090CPH HCP CPH EPK ∠+∠=︒∠+∠=︒,,∴PCH EPK ∠=∠,∵PC PE =,∴(AAS)PCH EPK △≌△,∴43PK CH EK PH t ====+,,∴4OK t =+,∴(43)E t t ++,,∵点E 在直线25y x =-+上,∴3245t t +=-++(),∴2t =-.【点睛】本题考查平面直角坐标系中图形的旋转变换,一次函数图像上的点的特征,轴对称最短问题等知识,解题的关键是熟练掌握旋转变换的性质,根据题意添加常用辅助线,构造全等三角形解决问题.19.(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义.20.(1)见解析(2)见解析(3)6【分析】(1)首先确定C 点的平移规律,依此规律平移A 、B 两点,从而得到111A B C △; (2)利用中心对称的性质作出A 、B 、C 的对应点2A 、2B 、2C 即可;(3)先求112AC C 的面积,四边形1221A C A C 的面积为112AC C 面积的2倍.(1)解:如图所示,111A B C △为所求作;(2)解:如图所示,222A B C △为所求作; (3)解:如图,123C C =,1A 到12C C 距离为2; 则112AC C 的面积为:13232⨯⨯=. ∴由图可得四边形1221A C A C 的面积为236S =⨯=.【点睛】本题考查了坐标的平移,中心对称图形的画法,网格中图形面积的求法,解题的关键是根据题意画出图象. 21.(1)见解析 (2)见解析,()3,3-【分析】(1)利用平移的坐标特征写出1A 、1B 、1C 的坐标,然后描点依次连接即可; (2)利用网格特点和旋转的性质找出 A 、B 、C 的对应点 2A 、2B 、2C ,然后描点依次连接即可得 (1)解:经过平移可得:()11,4A -,()14,4B -,()13,2C -,顺次连接,如图所示:111A B C △即为所求作;(2)解:旋转后的点的坐标分别为:()21,1A -,()21,4B -,()23,3C -,然后顺次连接, 如图所示:222A B C △即为所求作,2C 的坐标()3,3-【点睛】本题考查了作图:平移及旋转变换,找到对应点的坐标,然后顺次连接各点是解题关键. 22.(1)180 (2)12AF BE =,证明见解析;【分析】(1)由旋转可知∠DAE =180°-a ,所以得到:∠BAC +∠DAE =a +180°-a =180°; (2)连接并延长AF ,使FG =AF ,连接DG ,CG ;因为DF =CF ,AF =GF ;可以得到四变形ADGC 为平行四边形;从而有∠DAC +∠ACG =180°,再证∠ACG =∠BAE 继而证明△ABE ≌△CAG 得到BE =AG ,即可得线段AF 与BE 的数量关系; 【详解】(1)解:由旋转可知∠DAE =180°-a , ∠BAC +∠DAE =a +180°-a =180° 故答案为:180(2)解:如图所示:连接并延长AF ,使FG =AF ,连接DG ,CG ; ∵DF =CF ,AF =GF ;∴四变形ADGC 为平行四边形; ∴∠DAC +∠ACG =180°,即∠ACG =180°-∠DAC ,∠BAE =∠BAC +∠DAE-∠DAC =180°-∠DAC , 所以∠ACG =∠BAE ,∵四变形ADGC 为平行四边形; ∴AD =CG , 又∵AD =AE , AE =CG ,在△ABE 和△CAG 中,{AB CA BAE ACG AE CG=∠=∠=∴△ABE ≌△CAG , ∴BE =AG , ∴AF =12AG =12BE ,故线段AF 与BE 的数量关系:AF =12BE ;【点睛】本题考查了旋转的性质,旋转角的定义,以及全等三角形的性质的判定,解题的关键是熟悉并灵活应用以上性质. 23.(1)①()3,0,②()1,3- (2)①(3,3)a a ++,【分析】(1)①②根据“垂直图形”的定义可得答案;(2)①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,利用AAS证明PEG HGE '△≌△得3E H PG a '==+,3GH EP ==,从而得出答案;②由点E '的坐标可知,满足条件的点E '在第一象限的O 上,求出点E '的坐标,从而解决问题. (1)解:①点A 的坐标为()0,3, ∴点B 的坐标为()3,0,故答案为:()3,0;②当()3,1B 时,如图,()1,3A -,故答案为:()1,3-; (2)解:①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,90EGE ∠'=︒,EG E G =',90EGP E GH ∴∠+∠'=︒,90EGP E ∠+∠=︒, E E GH ∴∠=∠',EPG GHE ∠=∠',∴AAS HG PEG E '△≌△(), 3E H PG a ∴'==+,3GH EP ==,3OH a ∴=+,3,3E a a ∴'++();②如图,观察图象知,满足条件的点E '在第一象限的O 上,()3,3E a a '++,2OE '=,()()222332a a ∴+++=,3a +=负值舍去),3a ∴=,E ∴',EE ∴'EE ∴'【点睛】本题是几何变换综合题,主要考查了全等三角形的判定与性质,“垂直图形”的定义,坐标与图形,求出点E '的坐标是解题的关键.24.(1)见解析;(2)①见解析; 【分析】(1)证明△AMO ≌△BNO 即可;(2)①连接BN ,证明△AMO ≌△BNO ,得到∠A =∠OBN =45°,进而得到∠MBN =90°,且△OMN 为等腰直角三角形,再在△BNM 中使用勾股定理即可证明; ②分两种情况分别画出图形即可求解.【详解】解:(1)∵AOB 和MON △都是等腰直角三角形, ∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON ,∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOBBOM BOM , ==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45A OBN,AM BN =,∴454590ABNABOOBN,且OMN ∆为等腰直角三角形,∴MN ,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAH HM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AH HM;故46322AM或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 25.(1)见解析 (2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C ∴∠=∠AED AEC ∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠,1802EAC C ∠=︒-∠, ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒, 90ABC C ∴∠+∠=︒, 90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.。
人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。
初三旋转测试题卷子及答案

初三旋转测试题卷子及答案一、选择题(每题3分,共15分)1. 一个点绕原点旋转90度后,其坐标变为原来的什么?A. 相反数B. 倒数C. 两倍D. 四倍2. 一个图形绕某点旋转180度后,与原图形的关系是?A. 完全重合B. 完全相反C. 部分重合D. 没有关系3. 一个图形绕某点旋转60度后,其面积和周长会如何变化?A. 面积不变,周长不变B. 面积变小,周长变小C. 面积不变,周长变长D. 面积变小,周长变大4. 一个图形绕其对称轴旋转180度后,图形的位置会如何变化?A. 完全重合B. 完全相反C. 部分重合D. 没有变化5. 如果一个图形绕某点旋转了θ度,那么它的旋转矩阵是什么?A. [cosθ -sinθ; sinθ cosθ]B. [cosθ sinθ; -sinθ cosθ]C. [sinθ cosθ; cosθ -sinθ]D. [sinθ -sinθ; cosθ cosθ]二、填空题(每题2分,共10分)6. 一个点P(x, y)绕原点旋转θ度后,其新坐标为_________。
7. 若一个图形绕点(a, b)旋转θ度,其旋转后的图形与原图形的对应点坐标变化关系为_________。
8. 一个正方形绕其中心点旋转45度后,其四个顶点的坐标变化情况是_________。
9. 一个圆绕其圆心旋转任意角度,其形状和大小_________。
10. 旋转矩阵可以表示为_________,其中θ为旋转角度。
三、解答题(每题5分,共20分)11. 给定一个点P(1, 2),求该点绕原点旋转120度后的坐标。
12. 一个矩形ABCD,其中A(-1, 1),B(1, 1),C(1, -1),D(-1, -1),求该矩形绕点A旋转90度后的顶点坐标。
13. 描述一个正方形绕其对称轴旋转90度后,四个顶点的坐标变化情况。
14. 解释旋转矩阵在图形旋转变换中的作用。
四、综合题(每题5分,共10分)15. 一个正六边形绕其中心点旋转60度后,求其顶点坐标的变化。
初三旋转考试题及答案

初三旋转考试题及答案初三数学旋转考试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点P(3,4)绕原点O逆时针旋转90°后,新坐标为:A. (4,3)B. (-3,4)C. (3,-4)D. (4,-3)2. 一个正方形绕其中心点旋转45°后,其边长不变,面积不变,以下说法正确的是:A. 形状不变B. 形状改变C. 面积改变D. 形状和面积都改变3. 一个圆心在原点的圆,半径为r,绕原点旋转任意角度后,其半径:A. 变大B. 不变C. 变小D. 无法确定4. 若点A(1,2)绕点B(2,3)旋转30°,旋转后的点A'坐标为:A. (1.5, 3.5)B. (1.5, 2.5)C. (2.5, 3.5)D. 无法确定5. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状:A. 不变B. 变为等边三角形C. 变为等腰三角形D. 变为直角三角形二、填空题(每题2分,共10分)6. 一个矩形绕其中心点旋转180°后,其形状________。
7. 点P(2,-1)绕原点O逆时针旋转45°后,新坐标的横坐标为________。
8. 若一个圆绕其圆心旋转任意角度,其周长________。
9. 一个平行四边形绕其对角线交点旋转90°后,其形状变为________。
10. 一个等边三角形绕其一边的中点旋转60°,旋转后的图形与原图形________。
三、解答题(共25分)11. (5分)若点M(-1,1)绕点N(1,1)旋转60°,求点M'的坐标。
12. (10分)一个边长为4的正方形ABCD,以点A为旋转中心,逆时针旋转30°,求旋转后正方形A'B'C'D'的顶点坐标。
13. (10分)一个圆心在原点,半径为5的圆,绕原点旋转60°,求旋转后圆上任意一点P(x,y)的新坐标。
初三旋转测试题及答案

初三旋转测试题及答案一、选择题(每题3分,共30分)1. 旋转对称图形是指绕某一点旋转一定角度后能够与自身重合的图形。
下列选项中,哪一个不是旋转对称图形?A. 正方形B. 正三角形C. 五边形D. 圆2. 一个图形绕某点旋转180°后与原图形重合,这个点称为图形的:A. 旋转中心B. 对称轴C. 旋转角D. 旋转对称中心3. 一个图形绕一点旋转90°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正六边形4. 一个图形绕某点旋转180°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角5. 一个图形绕某点旋转120°后与自身重合,这个图形是:B. 正三角形C. 正五边形D. 正六边形6. 一个图形绕某点旋转360°后与自身重合,这个点是图形的:A. 对称轴B. 旋转中心C. 旋转对称中心D. 旋转角7. 一个图形绕某点旋转60°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正八边形8. 一个图形绕某点旋转45°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正五边形D. 正八边形9. 一个图形绕某点旋转30°后与自身重合,这个图形是:A. 正方形B. 正三角形C. 正六边形D. 正十二边形10. 一个图形绕某点旋转72°后与自身重合,这个图形是:A. 正方形C. 正六边形D. 正十边形二、填空题(每题4分,共20分)1. 一个图形绕某点旋转______度后与自身重合,这个点是图形的旋转中心。
2. 一个图形绕某点旋转______度后与自身重合,这个图形是正六边形。
3. 一个图形绕某点旋转______度后与自身重合,这个图形是正五边形。
4. 一个图形绕某点旋转______度后与自身重合,这个图形是正三角形。
5. 一个图形绕某点旋转______度后与自身重合,这个图形是正方形。
新人教版初中数学九年级数学上册第三单元《旋转》测试(含答案解析)

一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 2.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 3.下列图形一定不是中心对称图形的是( )A .正六边形B .线段()213y x x =-+≤≤C .圆D .抛物线2y x x =+4.以下四幅图案,其中图案是中心对称图形的是( )A .B .C .D .5.如图,将等边ABC 绕点C 逆时针旋转得到A B C '',旋转角为()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80°6.下列四个图案中,是中心对称图形的是( )A .B .C .D .7.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒8.如图,把ABC 绕点C 顺时针旋转35︒,得到A B C ''',A B ''交AC 于点D ,若105A CB '∠=︒,则ACB '∠度数为( )A .45︒B .30C .35︒D .70︒ 9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形 10.如图,在Rt △ABC 中,AB=AC ,D ,E 是斜边BC 上两点,且∠DAE=45°,将△ABE 绕点A 顺时针旋转90°后,得到△ACF ,连接DF ,则下列结论中有( )个是正确的.①∠DAF=45° ②△ABE ≌△ACD ③AD 平分∠EDF ④222BE DC DE +=A .4B .3C .2D .111.如图,△ABC 的顶点在网格中,现将△ABC 绕格点O 顺时针旋转α角(0°<α<360°),使旋转后所得三角形的顶点也在格点上,则当旋转前后的图形形成轴对称图形时,符合条件的α角的度有( )A .1个B .3个C .6个D .8个12.如图,已知△ABC 与△CDA 关于点O 成中心对称,过点O 任作直线EF 分别交AD,BC 于点E,F,则下则结论:①点E 和点F,点B 和点D 是关于中心O 的对称点;②直线BD 必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△AOE 与△COF 成中心对称.其中正确的个数为 ( )A .2B .3C .4D .5二、填空题13.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.14.如图,在边长为1的正方形ABCD 中,将射线AC 绕点A 按顺时针方向旋转α度(0<α≤360°),得到射线AE ,点M 是点D 关于射线AE 的对称点,则线段CM 长度的最小值和最大值的和为_____.15.如图,在平面直角坐标系中,若△ABC ≌△DEF 关于点H 成中心对称,则对称中心H 点的坐标是_________.16.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.17.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.18.如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =22.将△BDE 绕点B 逆时针方向旋转后得△BD'E',当点E'恰好落在线段AD'上时,则CE'=_______.19.如图,将边长为1的正三角形AOP 沿x 轴正方向作无滑动的连续反转,点P 依次落在点1P ,2P ,32020P P 的位置,则点2020P 的坐标为______.20.在平面直角坐标系中,将点P (﹣3,2)绕点Q (﹣1,0)顺时针旋转90°,所得到的对应点P '的坐标为____.三、解答题21.如图,等腰Rt △ABC 中,∠A =45°,∠ABC =90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE .(1)求∠DCE 的度数;(2)若AB =4,CD =3AD ,求DE 的长.22.如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3).(1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1.(2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2;②直接写出点B 2的坐标为 .23.如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N .(1)若30θ=︒时,求点A 的坐标;(2)设MBN △的周长为P ,在旋转正方形OABC 的过程中,P 值是否有变化?请证明你的结论;24.如图,△ABC 各顶点的坐标分别为A (4、4),B (-2,2),C (3,0), (1)画出它的以原点O 为对称中心的△A'B'C'(2)写出 A',B',C'三点的坐标.(3)把每个小正方形的边长看作1,试求△ABC 的周长.25.在平面直角坐标系中,四边形AOBC 是矩形,点(0 0)O ,,点(10 0)A ,,点(0 6)B ,.以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为点D ,E , F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB △≌BCA ;②求出ABH 面积.26.如图,在7×7的正方形网格中,选取14个格点,以其中3个格点为顶点画出△ABC .(1)请你以选取的格点为顶点再画出一个三角形,要求所画的三角形与△ABC 组成的图形是中心对称图形;(2)若网格中每个小正方形的边长为1,请猜想新得到的中心对称图形是什么特殊图形(不用证明),并求出它的面积.【参考答案】***试卷处理标记,请不要删除一、选择题解析:C【分析】根据中心对称图形的概念进行判断即可;【详解】A 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;B 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;C 、图形旋转180度之后能与原图形重合,故是中心对称图形;D 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;故选:C .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合;2.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.D解析:D【分析】根据中心对称图形的定义即可得.【详解】A 、正六边形是中心对称图形,此项不符题意;B 、线段()213y x x =-+≤≤是中心对称图形,对称中心是点(2,0),此项不符题意;C 、圆是中心对称图形,此项不符题意;D 、抛物线2y x x =+是关于直线12x =-轴对称的,不是中心对称图形,此项符合题意; 故选:D .【点睛】本题考查了中心对称图形、抛物线的图象等知识点,熟练掌握概念是解题关键.解析:A【分析】根据中心对称图形的定义逐一分析即可.【详解】解:A 、是中心对称图形,故此选项符合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、不是中心对称图形,故此选项不合题意.故选:A .【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解题的关键.5.A解析:A【分析】利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案;【详解】解:如图,∵ABC 和A B C ''均为等边三角形,∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=,∵160BDA '∠=︒∴160DOA A ''∠+∠=︒∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒ ∴20ACA '∠=︒∴α的大小是20°故选:A【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.6.B解析:B【分析】根据中心对称图形的概念和各图特点即可解答.【详解】解:根据中心对称图形的概念,可知B 中的图形是中心对称图形,而A 、C 和D 中的图形不是中心对称图形.故选:B .【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.C解析:C【分析】先根据旋转的性质可得,35A A ACA ''∠=∠∠=︒,再根据三角形的内角和定理可得A '∠的度数,由此即可得.【详解】由旋转的性质得:,35A A ACA ''∠=∠∠=︒,90A DC '∠=︒,18055A A DC ACA '''∴∠=︒-∠-∠=︒,55A A '∴∠=∠=︒,故选:C .【点睛】本题考查了旋转的性质、三角形的内角和定理,熟练掌握旋转的性质是解题关键. 8.C解析:C【分析】先根据旋转的定义可得35BCB ACA ''∠=∠=︒,再根据角的和差即可得.【详解】由旋转的定义得:BCB '∠和ACA '∠均为旋转角,35BCB ACA ''∴∠=∠=︒,105A CB '∠=︒,35ACB BCB A A CB CA '''∠=∠-∠'∴∠-=︒,故选:C .【点睛】本题考查了旋转的定义,熟练掌握旋转的概念是解题关键.9.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意;B 、不是轴对称图形,是中心对称图形.故不符合题意;C 、是轴对称图形,不是中心对称图形.故不符合题意;D 、是轴对称图形,也是中心对称图形.故符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.B解析:B【分析】①根据旋转的性质可得出∠BAE=∠CAF ,由∠BAC=90°、∠DAE=45°可得出∠CAD+∠CAF=45°,即可判断①;②根据旋转的性质可得出△BAE ≌△CAF ,不能推出△BAE ≌△CAD ,即可判断②;③根据∠DAE=∠DAF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=DF ,求出∠DCF=90°,根据勾股定理推出即可.【详解】∵在Rt △ABC 中,AB=AC ,∴∠B=∠ACB=45°,①由旋转,可知:∠CAF=∠BAE ,∵∠BAD=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠CAF+∠BAE=∠DAF=45°,故①正确;②由旋转,可知:△ABE ≌△ACF ,不能推出△ABE ≌△ACD ,故②错误;③∵∠EAD=∠DAF=45°,∴AD 平分∠EAF ,故③正确;④由旋转可知:AE=AF ,∠ACF=∠B=45°,∵∠ACB=45°,∴∠DCF=90°,由勾股定理得:CF 2+CD 2=DF 2,即BE 2+DC 2=DF 2,在△AED 和△AFD 中,AD AD EAD DAF AE AF =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△AFD (SAS ),∴DE=DF,∴BE2+DC2=DE2,故④正确.故选B.【点睛】本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.11.B解析:B【分析】画出图形,利用图象法解决问题即可.【详解】观察图象可知,满足条件的α的值为90°或180°或270°,故选B.【点睛】本题考查了旋转变换,轴对称的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.12.D解析:D【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,可根据上述特点对各结论进行判断.【详解】△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F;B和D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形ABCD是中心对称图形,正确;(4)四边形DEOC与四边形BFOA的面积必相等,正确;(5)△AOE与△COF成中心对称,正确;其中正确的个数为5个,故选D.【点睛】熟练掌握平行四边形的性质和中心对称图形的性质是解决此题的关键.二、填空题13.【分析】延长BN交CM与E判定△NME为等腰直角三角形求出NE的长再据勾股定理可计算得MN的长【详解】解:如下图在正方形ABCD中延长BN交CM于E由题意据中心对称的性质得∠ABE=∠CDM∠MDC解析:2【分析】延长BN交CM与E,判定△NME为等腰直角三角形,求出NE的长,再据勾股定理可计算得MN的长.【详解】解:如下图在正方形ABCD中延长BN交CM于E,由题意据中心对称的性质,得∠ABE=∠CDM,∠MDC与∠MCD互余,∠ABE与∠EBC互余∴∠EBC=∠DCM;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE为等腰直角三角形,且∠NEM是直角,ME=NE=1,由勾股定理得222+=NE ME2【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC≌△CMD.14.﹣1【分析】由轴对称的性质可知AM=AD故此点M在以A圆心以AD为半径的圆上故此当点AMC在一条直线上时CM有最小值【详解】解:如图所示:连接AM∵四边形ABCD为正方形∴AC==∵点D与点M关于A解析:2﹣1【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【详解】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC2222+=+2AD CD11∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′2﹣1,21.【点睛】本题主要考查的是旋转的性质,正方形的性质,依据旋转的性质确定出点M运动的轨迹是解题的关键.15.(2-1)【分析】连接对应点ADCF根据对应点的连线经过对称中心则交点就是对称中心H点在坐标系内确定出其坐标【详解】解:如图连接ADCF则交点就是对称中心H点观察图形可知H(2-1)故答案为:(2-解析:(2,-1)【分析】连接对应点AD、CF,根据对应点的连线经过对称中心,则交点就是对称中心H点,在坐标系内确定出其坐标.【详解】解:如图,连接AD、CF,则交点就是对称中心H点.观察图形可知,H(2,-1).故答案为:(2,-1).【点睛】本题考查了中心对称的性质:对应点的连线经过对称中心,且被对称中心平分.确定H点位置是解决问题的关键.16.【分析】根据旋转的性质△ABC≌△EDBBC=BD求出∠CBD的度数再求∠BCD的度数【详解】解:根据旋转的性质△ABC≌△EDBBC=BD则△CBD是等腰三角形∠BDC=∠BCD∠CBD=180°解析:15【分析】根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BCD的度数.【详解】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°-∠DBE=180°-30°=150°,∠BCD=1(180°-∠CBD)=15°.2故答案为15°.【点睛】本题考查了旋转的性质,解题时根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转求出即可.17.120°【解析】试题分析:若△ABC以O为旋转中心旋转后能与原来的图形重合根据旋转变化的性质可得△ABC旋转的最小角度为180°﹣60°=120°故答案为120°考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.18.【分析】如图连接CE′过B作BH⊥CE′于H根据等腰直角三角形的性质可得AB=BC=BD=BE=2根据旋转的性质可得∠D′BD=∠ABE′D′B=BE′=BD=2根据角的和差关系可得∠ABD′=∠C解析:26+【分析】如图,连接CE′,过B作BH⊥CE′于H,根据等腰直角三角形的性质可得AB=BC=22,BD=BE=2,根据旋转的性质可得∠D′BD=∠ABE′,D′B=BE′=BD=2,根据角的和差关系可得∠ABD′=∠CBE′,利用SAS可证明△ABD′≌△CBE′,可得∠D′=∠CE′B=45°,可得出BH=E′H=22BE′=2,利用勾股定理可求出CH的长,进而可得CE′的长.【详解】如图,连接CE′,过B作BH⊥C E′于H,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,∴AB=BC=22,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,在△ABD′和△CBE中AB BCABD CBE BD BE''=⎧⎪∠=∠''⎨⎪=⎩∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=22BE′=2,在Rt△BCH中,CH=22BC CH-=826-=,∴CE′=26+,26【点睛】本题考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定与性质及勾股定理的应用,熟练掌握旋转的性质是解题关键.19.【分析】根据图形的翻转分别得出的横坐标再根据规律即可得出各个点的横坐标进一步得出答案即可【详解】解:由题意可知的横坐标是1的横坐标是25的横坐标是4的横坐标是依此类推下去的横坐标是2017的横坐标是 解析:(2020,0)【分析】根据图形的翻转,分别得出1P 、2P 、3P ⋯的横坐标,再根据规律即可得出各个点的横坐标,进一步得出答案即可.【详解】解:由题意可知1P 、2P 的横坐标是1,3P 的横坐标是2.5,4P 、5P 的横坐标是4,6P 的横坐标是5.5⋯依此类推下去,2017P 、2018P 的横坐标是2017,2019P 的横坐标是2018.5,2020P 的横坐标是2020,2020P ∴的坐标是(2020,0),故答案为(2020,0).【点睛】本题考查翻折变换,等边三角形的性质及坐标与图形性质,根据题意得出1P 、2P 、3P ⋯的横坐标,得出规律是解答此题的关键.20.(12)【分析】根据题意画出图形即可解决问题【详解】如图观察图象可知P (12)故答案为:(12)【点睛】本题考查坐标与图形变化-旋转解题的关键是理解题意学会利用图象法解决问题属于中考常考题型解析:(1,2).【分析】根据题意,画出图形即可解决问题.【详解】如图,观察图象可知,P '(1,2).故答案为:(1,2).【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.三、解答题21.(1)90°;(2)【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得∠DCE的度数;(2)根据勾股定理求出AC的长,根据CD=3AD,可得CD和AD的长,根据旋转的性质可得AD=EC,再根据勾股定理即可得DE的长.【详解】解:(1)∵△ABC为等腰直角三角形,∴∠BAD=∠BCD=45°,由旋转的性质可知∠BAD=∠BCE=45°,∴∠DCE=∠BCE+∠BCA=45°+45°=90°;(2)∵BA=BC,∠ABC=90°,∴AC==∵CD=3AD,∴AD=DC=由旋转的性质可知:AD=EC,∴DE==【点睛】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质.22.(1)作图见解析;(2)①作图见解析;②(-3,3).【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)①利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2即可;②利用所画图形写出B2点的坐标.【详解】解:(1)如图,△A1B1C1为所作;(2)①画如图,△A2B2C2为所作;②点B2的坐标为(﹣3,3).故答案为(-3,3).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角.23.(1)(2,23);(2)不变【详解】解:(1)如图1,过A作AD⊥y轴,交y轴于点Dθ=︒,正方形OABC的边长是4∵AD⊥y轴,30∴AD=2,OD=23∴A的坐标是(2,23)(2)P值无变化.证明:延长BA交y轴于E点.(如图2)在△OAE 与△OCN 中90?AOE CON OAE OCN OA OC =⎧⎪==⎨⎪=⎩∠∠∠∠∴△OAE ≌△OCN (AAS )∴OE=ON ,AE=CN .在△OME 与△OMN 中45?OE ON MOE MON OM OM =⎧⎪∠=∠=⎨⎪=⎩,∴△OME ≌△OMN (SAS )∴MN=ME=AM+AE ,∴MN=AM+CN ,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=8.∴在旋转正方形OABC 的过程中,P 值无变化.【点睛】此题主要考查了一次函数的综合应用、全等三角形的判定与性质等知识,利用图形旋转的变化规律得出对应边之间关系是解题关键.24.(1)见解析;(2)A′坐标为(-4,-4);B′坐标为(2,-2);C′坐标为(-3,0);(3)2101729++.【分析】(1)找到各点关于原点对称的点,顺次连接可得到△A′B′C′;(2)结合直角坐标系可得出出A′,B′,C′三点的坐标;(3)根据勾股定理得到AB ,AC ,BC 的长,相加即可求得△ABC 的周长.【详解】解:(1)所画图形如下:(2)结合图形可得A′坐标为(-4,-4);B′坐标为(2,-2);C′坐标为(-3,0); (3)2262210AB =+=221417AC =+222529.BC +=.则△ABC 的周长为【点睛】此题考查了旋转作图及中心对称、勾股定理的知识,解答本题的关键是根据旋转的三要素,中心对称的性质,得到各点的对应点,难度一般.25.(Ⅰ)(2,6)D ;(Ⅱ)①见解析;②1025. 【分析】(Ⅰ)根据旋转可得AD=OA=10,又因为AC=6,利用勾股定理即可求出CD 的长度,从而知道BD 的长度,即可求出点D 的坐标;(Ⅱ)①根据AD=BC ,AB=BA ,即可得到Rt Rt ADB BCA ∆∆≌;②设AH BH m ==,则10HC BC BH m =-=-,在Rt AHC ∆中,根据222AH HC AC =+,可以求出m 的值,再根据三角形面积公式即可求出三角形ABH 面积.【详解】解:(Ⅰ)(10,0)A ,(0,6)B ,10OA ∴=,6OB =,四边形AOBC 是矩形, 6AC OB ∴==,10OA BC ==,90OBC C ∠=∠=︒. 矩形ADEF 是由矩形AOBC 旋转得到, 10AD AO ∴==.在Rt ADC ∆中,8CD ==,108=2BD BC CD ∴=-=-,(2,6)D ∴.(Ⅱ)由四边形ADEF 是矩形,得到90ADE ∠=︒, 点D 在线段BE 上,90ADB ∴∠=︒.由(Ⅰ)可知,=AD AO BC =,=90C ADB ∠=︒∠,在Rt △ADB 和Rt △BCA 中,=BA AB AD BC ⎧⎨=⎩Rt ADB Rt (HL)BCA ∴∆∆≌.②如图②中,由ADB BCA ∆∆≌,BAD CBA ∴∠=∠,BH AH ∴=.设AH BH m ==,则10HC BC BH m =-=-,在Rt AHC ∆中,222AH HC AC =+,2226(10)m m ∴=+-,解得453m =453BH ∴=, 113410262255ABHS BH AC ∴=⨯⨯=⨯⨯=. 【点睛】本题主要考查了旋转以及三角形全等,熟练旋转的性质以及全等三角形的判定是解决本题的关键.26.(1)如图所示见解析;(2)是平行四边形,面积是6.【分析】(1)确定出对称中心,然后根据中心对称图形的性质作出即可;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,再根据格点的特点,利用三角形的面积公式即可得平行四边形的面积.【详解】(1)如图所示:所画的三角形与△ABC 组成的图形是中心对称图形;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,面积是:123262⨯⨯⨯=. 【点睛】本题考查了利用中心对称的性质作图,平行四边形的判定,熟练掌握中心对称的性质是作图的关键,要注意对称中心的确定.。
人教版九年级上册《旋转》测试题及答案

九年级上第23 章《旋转》测试题一、相信你的选择(每题 4 分,共 32 分).1.正方形的对称轴的条数为()A .1B .2C. 3D. 42.以下图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正方形D.正五边形6.如图,在 Rt△ ABC 中,∠ ACB=90 °,∠ ABC=30 °,将△ ABC 绕点 C 顺时针旋转至△A′B′C,使得点 A′恰好落在 AB 上,则旋转角度为()A .30°B .60°C 90°D. 150°7.如图,将△ABC 沿 BC 方向平移2cm 获得△ DEF ,若△ ABC 的周长为16cm,则四边形ABFD 的周长为()A .16cmB .18cm C. 20cm D. 22cm8.将点 P(﹣ 2, 3)向右平移 3 个单位获得点P1,点 P2与点 P1对于原点对称,则P2的坐标是()A .(﹣ 5,﹣ 3)B.( 1,﹣ 3)C.(﹣1,﹣ 3)D.( 5,﹣ 3)xkb1.com二、试一试你的身手(每题 4 分,共 20 分).11. 如图,将等边△ABC 绕极点 A 顺时针方向旋转,使边AB 与 AC 重合得△点 E 的对应点为F,则∠ EAF 的度数是.ACD ,BC 的中12.如图,在平面直角坐标系 xOy 中,已知点 A( 3,4),将 OA 绕坐标原点 O 逆时针旋转90°至13. 将 y=x OA′,则点 A′的坐标是.的图象向上平移 2 个单位,平移后,若y>0,则x 的取值范围是.三、挑战你的技术(共48分).14.( 8 分)如图,△ABC与△DEF对于某条直线对称,请用无刻度的直尺,在下边两个图中分别作出该直线 .15. (10 分 )如图,在 Rt△ ABC 中,∠ ACB=90 °,∠ B=30 °,将△ ABC 绕点 C 按顺时针方向旋转 n 度后,获得△ DEC ,点 D 恰好落在 AB 边上.(1)求 n 的值;(2)若 F 是 DE 的中点,判断四边形 ACFD 的形状,并说明原因.16.( 8 分)在棋盘中成立如下图的直角坐标系,三颗棋子A, O,B 的地点如图,它们的坐标分别是1, 1 ,(0,0),(1,0).(1)如图 2,增添棋 C 子,使四颗棋子 A, O, B, C 成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其余格点地点增添一颗棋子 P,使四颗棋子 A,O, B, P 成为轴对称图形,请直接写出棋子 P 的地点的坐标 . (写出 2 个即可)17. ( 12 分)如图,△ ABC 三个极点的坐标分别为 A ( 1, 1), B( 4, 2), C( 3, 4).( 1)请画出△ ABC 向左平移 5 个单位长度后获得的△ A 1B1C1;(2)请画出△ ABC 对于原点对称的△ A 2B 2C2;(3)在 x 轴上求作一点 P,使△ PAB 的周小最小,请画出△ PAB ,并直接写出 P 的坐标.18.( 10 分)如图,已知二次函数y=a( x﹣ h)2+的图象经过原点O( 0,0), A( 2,0).(1)写出该函数图象的对称轴;(2)若将线段 OA 绕点 O 逆时针旋转 60°到 OA′,试判断点 A′能否为该函数图象的顶点?参照答案:一、1.D 2. C 3. A 4. C 5. B 6 . B7.C8.C二、9.45°10.55°11.60°12.(-4,3)13.x>﹣ 4三、 14.15.解:( 1)∵在 Rt△ ABC 中,∠ ACB=90 °,∠ B=30 °,将△ ABC 绕点 C 按顺时针方向旋转 n 度后,获得△ DEC,∴AC=DC ,∠ A=60 °,∴△ ADC 是等边三角形,∴∠ ACD=60 °,∴n 的值是 60;(2)四边形ACFD 是菱形;原因:∵∠ DCE= ∠ ACB=90 °, F 是 DE 的中点,∴F C=DF=FE ,∵∠CDF= ∠ A=60 °,∴△DFC 是等边三角形,∴D F=DC=FC ,∵△ ADC 是等边三角形,∴AD=AC=DC ,∴A D=AC=FC=DF ,∴四边形 ACFD 是菱形.16.略17.解:( 1)△ A 1B1C1如下图;(2)△ A 2B 2C2如下图;(3)△ PAB 如下图, P( 2, 0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 选择题1.下列图形中,既是轴对称图形又是中心对称图形的是( ).2. 如图,△ABC 与△A ′B ′C ′成中心对称,下列说法不正确的是( ) A. S △ACB =S △A ′B ′C ′ B. AB =A ′B ′,A ′C ′=AC ,BC =B ′C ′ C. AB ∥A ′B ′,A ′C ′∥AC ,BC ∥B ′C ′ D. S △A ′B ′O =S △ACO3. 如图,已知点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,则下列说法正确的是( ).A. △ODE 绕点O 顺时针旋转60°得到△OBCB. △ODE 绕点O 逆时针旋转120°得到△OABC. △ODE 绕点F 顺时针旋转60°得到△OABD. △ODE 绕点C 逆时针旋转90°得到△OAB 4.如图,把直角三角形ABC 绕直角顶点顺时针方向旋转90°后到达C B A '''∆,延长AB 交B A ''于点D ,则A AD '∠的度数是( ). A. 30° B. 60° C. 75° D. 90°5.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是( ). A .第一张、第二张 B .第二张、第三张 C .第三张、第四张D .第四张、第一张 (1) (2)6.已知点A 的坐标为),(b a ,O 为坐标原点,连接OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为( ).A .),(b a -B .),(b a -C .),(a b -D .),(a b -7. 有两个完全重合的矩形,将其中一个始终保持不动,另一个 矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°, 第1次旋转后得到图(1),第2次旋转后得到图(2),…,则第 10次旋转后得到的图形与图(1)~(4)中相同的是( ).A. 图(1)B. 图(2)C. 图(3)D. 图(4)8.在平面直角坐标系中,对于平面内任一点),(b a 若规定以下三种变换: ),(),()1(b a b a f -=,如)3,1()3,1(-=f ),(),()2(a b b a g =,如)1,3()3,1(=g ),(),()3(b a b a h --=,如)3,1()3,1(--=h按照以上变换有:)2,3()2,3())3,2((=-=-f g f 那么))3,5((-h f 等于( ). A .)3,5(-- B .)3,5( C .)3,5(- D .)3,5(- 二、 填空题9. 点P (2,-5)关于原点对称的点Q 的坐标为________.10. 等边△ABC 绕其三条中线的交点O 旋转,至少要旋转_____才能与原图形重合. 11. 如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF ,将△ABE 绕A ’ DBA CB ’正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则a =______. 12. 如图,在Rt△ABC 中,∠ACB =90°,AC =BC =1,将Rt△ABC 绕点A 逆时针旋转30°后得到Rt△ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是___________.13.在Rt△ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =_______.14. 如图,已知Rt △ABC 的周长为3.14,将△ABC 的斜边放在直线l 上,按顺时针方向在直线l 上转动两次, 转到△A 2B 1C 1位置,则AA 2=________.15. 图中是正比例函数与反比例函数的图象,相交于A 、B 两点, 其中点A 的坐标为(1,2),分别以点A 、B 为圆心,以1个单位长 度为半径画圆,则图中两个阴影部分面积的和是________.16.如图,在Rt △ABC 中,∠ACB =90º, ∠BAC=60º,AB =6.Rt △AB ´C ´可以看作是由 Rt △ABC 绕A 点逆时针方向旋转60º得到的, 则线段B ´C 的长为____________. 三、 解答题17. 如图,四边形ABCD 绕点点O 旋转后,顶点A 的对应点为点E .试确定旋转后的四边形.18.在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7),线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合; (2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的 对应边为DE ,请直接写出点B 的对应点F 的坐标; (3)画出(2)中的△DEF ,并和△ABC 同时绕坐标 原点O 逆时针旋转90°,画出旋转后的图形.19. 如图(1),△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE .(1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图(1)中的△CEF 绕点C 旋转一定的角度,得到图(2),(1)中的结论还成立吗?作出判断并说明理由;(3)如果将图(1)中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形(草图(第11题) A B C DF E300EC D AB(第12题)(第13题)即可),那么(1)中的结论还成立吗?作出判断,不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.(1) (2)(第19题)20. 李兵同学家买了新房,准备装修地面,为节约开支,购买了两种质量相同、颜色相同的残缺地砖,现已加工成如图(1)所示的等腰直角三角形,李兵同学设计出如图(2)所示的四种图案:(1)请问你喜欢哪种图案,并简述该图案的形成过程;(2)请你利用平移、旋转、轴对称等知识再设计一幅与上述不同的图案.(1)(2)(第20题)21. 如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD.若AB=3,AC=2,求∠BAD的度数与AD的长.(第21题)22.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.(第22题)23.如图(1)(2)(3),在□ABCD中,AB⊥AC,AB=1,BC=5,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转.分别交BC、AD于点E、F.(1)试说明在旋转过程中,线段AF与EC总保持相等;(2)如图(2),证明:当旋转角为90o时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点O顺时针旋转的度数.(1)(2)(3)(第23题)附加题(共10分,不计入总分)24. 已知在正方形ABCD中,E为对角线BD上一点,过点E作EF⊥BD交BC于点F,连接DF,G为DF的中点,连接EG、CG.(1)求证:EG=CG;(2)将图(1)中△BEF绕点B逆时针旋转45°,如图(2)所示,取DF中点G,连接EG、CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图(2)中△BEF绕点B旋转任意角度,如图(3)所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)(1) (2)(3)(第24题)第二十三章综合提优测评卷1.D2. D3. C4.B5.A6. C7. B8.B9. (-2,5) 10. 120°11.90 12.1π613.80和12014. 3.14 15. π16.3716. △CPS旋转得到△EPQ.17. (1)连接OA、OE、OB、AC.(2)以OB为一边作∠BOF,使∠BOF=∠AOE.(3)在射线OF上截取OF=OB;再分别以E、F为圆心,以AC、AD为半径在线段EF的右上侧画弧,两弧交于点G;再分别以E、G为圆心,以AD、CD为半径在线段EG的右侧画弧,两弧交于点H.(4)连接EF、FG、GH、HE.四边形EFGH就是四边形ABCD绕点O旋转后的图形.(第17题)18.(1)将线段AC先向右平移6个单位,再向下平移8个单位.(其他平移方式也可)(2)F(-1,-1)(3)画出如图所示的正确图形:(第18题)19. (1)AF=BE.证明如下:∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60°.∴△AFC≌△BEC.∴AF=BE.(2)第(1)题的结论成立.理由如下:∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°.∴∠ACB-∠FCB=∠FCE-∠FCB,即∠ACF=∠BCE.∴△AFC≌△BEC.∴AF=BE.(3)此处图形不唯一.如图,题(1)中的结论仍成立.(第19题)(4)根据以上证明、说理、画图,归纳如下:大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.20. 略21. ∠BAD=60°,AD=522. (1)图略,点C1的坐标为(-3,2);(2)图略,点C 2的坐标(-3,-2). 23.略 提示:(1)证△AOF ≌△COE ;(2)证EF ∥AB ;(3)当EF ⊥AB 时,四边形BEDF为菱形,旋转角为45o.24. (1)在Rt △FCD 中,∵ G 为DF 的中点,∴ CG =12FD .同理,在Rt △DEF 中,EG =12FD .∴ CG =EG .(2)(1)中结论仍然成立,即EG =CG .连接AG ,过点G 作MN ⊥AD 于点M ,与EF 的延长线交于点N .在△DAG 与△DCG 中,∵ AD =CD ,∠ADG =∠CDG ,DG =DG ,∴ △DAG ≌△DCG .∴ AG =CG .在△DMG 与△FNG 中,∵ ∠DGM =∠FGN ,FG =DG ,∠MDG =∠NFG ,∴ △DMG ≌△FNG .∴ MG =NG . 在矩形AENM 中,AM =EN . 在Rt △AMG 与Rt △ENG 中,∵ AM =EN ,MG =NG , ∴ △AMG ≌△ENG .∴ AG =EG .∴ EG =CG .(3)(1)中的结论仍然成立,即EG =CG .其他的结论还有EG ⊥CG .。