高中数学数列知识点总结+通项公式递推9大模型
高中数学数列知识点总结(精华版)

小小亲清辅导班一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项 a n与项数 n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集( 或它的有限子集) 的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列a n的第n项与序号之间可以用一个式子表示, 那么这个公式叫做这个数列的通项公式,即a n f (n) .3. 递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a n 1(或前几项)间的关系可以用一个式子来表示,即a n f (a n 1 ) 或 a n f ( a n 1 , a n 2 ) ,那么这个式子叫做数列a n的递推公式.如数列 a n中, a11, a n2a n 1 ,其中a n2a n 1 是数列a n的递推公式.4.数列的前 n项和与通项的公式① S n a1 a2a n;② a nS1(n 1)S n .S n 1 (n 2)5.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列 .①递增数列 : 对于任何n N ,均有 a n1②递减数列 : 对于任何n N ,均有 a n1③摆动数列 : 例如 :1,1,1,1,1, .④常数数列 : 例如 :6,6,6,6,,,.⑤有界数列 : 存在正数M使 a n M , na n.a n. N.⑥无界数列 : 对于任何正数M , 总有项a n使得a n M.1、已知a n n(n N * ) ,则在数列 { a n } 的最大项为__(答:1);n2156an 252、数列{ a n}的通项为a n,其中 a,b 均为正数,则 a n与 a n 1的大小关系为___(答:bn1a n a n 1);3、已知数列{ a n}中,a n n2n ,且 { a n } 是递增数列,求实数的取值范围(答: 3 );4、一给定函数y f ( x) 的图象在下列图中,并且对任意a1(0,1) ,由关系式a n 1 f ( a n )得到的数列 { a n } 满足 a n1a n (n N * ) ,则该函数的图象是()(答: A )二、 等差数列1、 等差数列的定义 :如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那 么 这 个 数 列 叫 做 等 差 数 列 , 这 个 常 数 叫 等 差 数 列 的 公 差 。
高中数列公式总结大全

高中数列公式总结大全数列是数学中比较基础的概念,也是高中数学中常出现的内容之一。
在学习数列时,我们需要掌握一些基本的公式,下面是高中数列公式总结大全。
一、定义1. 数列:按照一定的规律排列成的数的序列。
2. 通项公式:数列中第 n 项 a_n 与 n 之间的关系式。
3. 通项公式(递推公式):数列中第 n 项 a_n 与前几项(如前一项)之间的关系式。
二、等差数列公式1. 定义:如果一个数列从第二项开始,每一项与前一项的差等于同一个常数 d,那么这个数列就称为等差数列。
2. 通项公式:a_n = a_1 + (n-1)d3. 前 n 项和公式:S_n = n/2( a_1 + a_n) = n/2[2a_1 + (n-1)d]4. 差值公式:d = a_n - a_{n-1} = a_{n+1} - a_n = ... = a_2 - a_15. 求和公式:(1)n 为奇数时:S_n = [n/2(a_1+a_n)](2)n 为偶数时:S_n = n/2 [a_1+a_n]6. 证明:设等差数列有n项,公差为d,则:S_n = a_1 + (a_1+d) + ... + (a_1 + (n-1)d)将公式第一项和最后一项括起来,第二项和倒数第二项括起来,以此类推:S_n = [(a_1+a_n)+(a_2+a_{n-1})+...+(a_{n-1}+a_2)+(a_n+a_1)]/2设 a_1 + a_n = a_2 + a_{n-1} = ... = a_{n/2}+a_{n/2+1} = S则 S_n = [n/2]S三、等比数列公式1. 定义:如果一个数列从第二项开始,每一项与前一项的比等于同一个常数 q,那么这个数列就称为等比数列。
2. 通项公式:a_n = a_1*q^{n-1}3. 前 n 项和公式(n≠1):S_n = a_1*(1-q^n)/(1-q)4. 无穷级数收敛条件(|q|<1):S = a_1/(1-q)5. 等比中项公式:a_m = sqrt(a_{m-1}*a_{m+1})6. 连续 n 项的和:Sn = a_1*(q^n-1)/(q-1)四、等差数列与等比数列的转化1. 等差数列转化为等比数列令 b_n = a_n/d,则有:b_n = a_n/d = a_1/d*q^{n-1}即 b_n 是以 q 为公比的等比数列,通项公式是 b_n = (a_1/d)*q^{n-1}。
高中数学数列知识点总结(精华版)

..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a(或前几项)间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、已知n*a2(nN)nn156,则在数列{}a的最大项为__(答:n125);2、数列{}a的通项为nana n,其中a,b均为正数,则a n与a n1的大小关系为___(答:bn1aa n1);n23、已知数列{a}中,a是递增数列,求实数的取值范围(答:3);ann,且{}nnn4、一给定函数yf(x)的图象在下列图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),则该函数的图象是()(答:A)neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高考数列必懂的知识点总结

高考数列必懂的知识点总结数列作为高中数学中重要的一个章节,经常出现在高考试卷中。
掌握数列的相关知识点对考试成绩至关重要。
下面将针对高考数列的必懂知识点进行总结与归纳。
一、等差数列1. 等差数列的定义:数列中任意两个相邻的数之差相等,这个公差为常数,就是等差数列。
2. 等差数列的通项公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ = a₁ + (n-1)d。
3. 等差数列的前n项和公式:设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则有Sₙ = n(a₁ + aₙ)/2。
4. 教材上常见的等差数列:斐波那契数列、等差数列的特殊形式等。
二、等比数列1. 等比数列的定义:数列中任意两个相邻的数之比相等,这个比值为常数,就是等比数列。
2. 等比数列的通项公式:设等比数列的首项为a₁,公比为q,第n项为aₙ,则有aₙ = a₁q^(n-1)。
3. 等比数列的前n项和公式:设等比数列的首项为a₁,公比为q,前n项和为Sₙ,则有Sₙ = a₁(q^n-1)/(q-1) (当q ≠ 1时)。
4. 教材上常见的等比数列:几何数列、等比数列的特殊形式等。
三、数列的性质与应用1. 数列的有界性:有界数列是指存在上界或下界(甚至同时存在上下界)的数列。
2. 数列的单调性:单调数列是指数列中的数单调递增或单调递减。
3. 数列的极限:数列的极限表示数列随着项数趋向于无穷时的极限值。
4. 数列的应用:数列可以用来解决各种实际问题,如计算质数、拓展数列的概念、运用数列解决函数极限等。
四、递推数列1. 递推数列的定义:数列的第n+1项与前面的n项有一定的关系。
2. 递推数列的通项公式:通过递推公式可以求得递推数列的任意项。
3. 递推数列的性质:递推数列具有独特的性质,如线性递推数列、非线性递推数列、齐次递推数列等。
5. 教材上常见的递推数列:斐波那契数列、阶乘数列等。
五、其它常见数列1. 二项式系数:二项式系数通常用来展开二项式的幂,是数学上常见的一种数列。
高中数学利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法某某汤阴一中 杨焕庆〔2006。
4〕1.形如)(1n f a a nn =-+型〔1〕假设f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,那么n a =d n a )1(1-+.〔2〕假设f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n +++-+-=- 即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- .例 1. 〔2003某某文〕 数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a证明:由得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--n n n ∴213-=n n a .例 2.数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n例3.数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-= 评注:a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①假设f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②假设f(n)是关于n 的二次函数,累加后可分组求和;③假设f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④假设f(n)是关于n 的分式函数,累加后可裂项求和。
数列函数知识点归纳总结

数列函数知识点归纳总结一、定义和性质数列是按照一定规律排列的一系列数,常用表示形式为 {an} 或 (an),其中 n 代表项的位置,an 代表第 n 项的数值。
数列函数是指将自然数映射到实数集的函数。
1.1 递推公式数列函数常通过递推公式来表达,在递推公式中,每一项都由前一项和其他常数或函数决定。
例如:an = an-1 + 2,表示第 n 项等于前一项加上 2。
1.2 通项公式通项公式是指将数列的第 n 项用 n 表示的公式。
通项公式的存在能够方便计算任意项的值,常见的数列函数有等差数列、等比数列和斐波那契数列。
二、常见数列函数2.1 等差数列等差数列是指数列中相邻两项之差都相等的数列,通常表示为 {an} = a1 + (n-1)d,其中 a1 为首项,d 为公差。
等差数列的递推公式为 an = an-1 + d。
2.2 等比数列等比数列是指数列中相邻两项之比都相等的数列,通常表示为 {an} = a1 * r^(n-1),其中 a1 为首项,r 为公比。
等比数列的递推公式为 an = an-1 * r。
2.3 斐波那契数列斐波那契数列是指数列中的每一项都等于前两项之和,通常表示为{an},其中 a1 = 1,a2 = 1。
斐波那契数列的递推公式为 an = an-1 + an-2。
三、求和公式在数列函数的应用中,我们常常需要计算前 n 项和,以下是常见数列函数的求和公式。
3.1 等差数列的求和公式等差数列的前 n 项和用 Sn 表示,求和公式为 Sn = (n/2) * (a1 + an),其中 n 为项数,a1 为首项,an 为第 n 项。
3.2 等比数列的求和公式等比数列的前 n 项和用 Sn 表示,求和公式为 Sn = (a1 * (r^n - 1))/(r- 1),其中 n 为项数,a1 为首项,r 为公比(r ≠ 1)。
3.3 斐波那契数列的求和公式斐波那契数列的前 n 项和用 Fn 表示,求和公式为 Fn = F(n+2) - 1,其中 F 表示斐波那契数列的通项公式。
高中数学数列知识点精华总结

数 列 专 题考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .}2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3)(倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.;(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数②n 为何值时,a n 有最小值并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.考点二:等差数列和等比数列等差数列 等比数列 【定义 a n -a n -1=常数(n≥2) a na n -1=常数(n≥2) 通项公式a n =a 1+(n -1)da n =a 1qn -1(q≠0)…也是等差数列,(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3) 若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q≠-1). ,S n =na 1+a n 2=na 1+n n -12d(1)q≠1,S n =a 11-qn1-q =a 1-a n q 1-q(2)q =1,S n =na 11n n 个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值;:当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q∈R ).当p =0时,{a n }为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列;当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论—(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d.5)>5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2时,一定要注意分n =1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.%注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k·q n -k(k 为常数且k≠0,q≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:]1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =na 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!))利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.利用裂项相消法求和时应注意哪些问题(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2) 12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3) 1nn +1=1n -1n +1; (4) 1n +n +1=n +1-n ;(5)n +n +k =1k(n +k -n).5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
数列的递推公式和通项公式总结

数列的递推公式和通项公式总结一、数列的概念1.数列:按照一定顺序排列的一列数。
2.项:数列中的每一个数。
3.项数:数列中数的个数。
4.首项:数列的第一项。
5.末项:数列的最后一项。
6.公差:等差数列中,相邻两项的差。
7.公比:等比数列中,相邻两项的比。
二、数列的递推公式1.等差数列的递推公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的递推公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的递推公式:an = an-1 + an-2–an:第n项–an-1:第n-1项–an-2:第n-2项三、数列的通项公式1.等差数列的通项公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的通项公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的通项公式:an = (1/√5) * [((1+√5)/2)^n - ((1-√5)/2)^n]–an:第n项四、数列的性质1.收敛性:数列的各项逐渐接近某个固定的数。
2.发散性:数列的各项无限增大或无限减小。
3.周期性:数列的各项按照一定周期重复出现。
五、数列的应用1.数学问题:求数列的前n项和、某项的值、数列的收敛性等。
2.实际问题:人口增长、贷款利息计算、等差数列的求和等。
六、数列的分类1.有限数列:项数有限的数列。
2.无限数列:项数无限的数列。
3.交错数列:正负交替出现的数列。
4.非交错数列:同号连续出现的数列。
5.常数数列:所有项都相等的数列。
6.非常数数列:各项不相等的数列。
综上所述,数列的递推公式和通项公式是数列学中的重要知识点,通过这些公式,我们可以求解数列的各种问题。
同时,了解数列的性质和分类,有助于我们更好地理解和应用数列。
习题及方法:1.习题一:已知等差数列的首项为3,公差为2,求第10项的值。
答案:a10 = 3 + (10-1) * 2 = 3 + 18 = 21解题思路:利用等差数列的递推公式an = a1 + (n-1)d,将给定的首项和公差代入公式,求得第10项的值。