北师大版八年级数学上册第二章试题含答案

合集下载

北师大版八年级上册数学第二章实数单元测试(含答案)

北师大版八年级上册数学第二章实数单元测试(含答案)

八年级上册数学第二章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.在实数227,-6,39,0,π,-25中,无理数的个数是( )A .1B .2C .3D .4 2.下列结论中,正确的有( )①8=4;②179=±34;③-32的平方根是-3;④(-5)2的算术平方根是-5;⑤±76是11336的平方根. A .1个 B .2个 C .3个 D .4个 3.若(a -4)2与a -b +3互为相反数,则a +b 的值为( )A .3B .4C .11D .54.如图,正方形OABC 的边OC 落在数轴上,OC =2,以O 为圆心,OB 长为半径作圆弧与数轴交于点D ,则点D 表示的数是( )A .2 2B .-2 2 C. 2 D .-2 5.若31-2x 与33y -2互为相反数,且y ≠0,则2x +1y 的值是( )A .13B .23 C .2 D .3 6.利用计算器计算出的各数的算术平方根如下: … 0.0625 0.625 6.25 62.5 625 6 250 62 500 … …0.250.79062.57.9062579.06250…根据以上规律,若 1.69=1.3,16.9≈4.11,则 1 690≈( ) A .13 B .130 C .41.1 D .4117.实数a ,b 在数轴上的对应点的位置如图所示,化简(a +1)2+|a -b |+2(1-b)2-|a+b|的结果是()A.2a-b+1 B.a-2b+1 C.-a+2b-1 D.2a+b-18.把(2-x)1x-2的根号外的(2-x)适当变形后移入根号内,得()A.2-x B.x-2 C.-2-x D.-x-2 9.若45+a=b5(b为整数),则a的值可以是()A.15B.27 C.24 D.2010.如图①是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串有公共顶点O的直角三角形(如图②)演化而成的.如果OA1=A1A2=A2A3=…=A7A8=1,那么OA8的长为()A.10 B.4 C.3 D.22(第10题) (第11题) (第12题) 11.如图,已知△ABC为等腰直角三角形,∠ABC=90°,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1 , l2,l3之间的距离为3,则AC的长是()A.4 B.4 2 C.5 D.5 212.将1,2,3三个数按如图所示的方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(100,100)表示的两个数的积是()A.1 B. 2 C. 3 D.6二、填空题:本大题共6小题,每小题4分,共24分.13.若式子12x-1在实数范围内有意义,则x的取值范围是____________.14.已知y=x-4+4-x-5,则(x+y)2 023=________.15.定义新运算“△”:a △b =ab +1,则2△(3△5)=__________. 16.一个正数m 的两个平方根分别为1-3a 和a +5,则m 的立方根是__________. 17.=____________.18.“分母有理化”是根式运算的一种化简方法,如:2+3 2-3=(2+3)( 2+3)(2+3) (2-3)=7+43.除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简4+7-4-7,可以先设x =4+7-4-7,再两边平方,得x 2=(4+7-4-7)2=4+7+4-7-2(4+7)( 4-7)=2,又因为,4+7>4-7,所以x >0,所以x =2,故4+7-4-7=2.根据以上方法,化简 6 -36 +3+8+43-8-43的结果是__________.三、解答题(一):本大题共2小题,每小题8分,共16分. 19.计算:(1)⎝ ⎛⎭⎪⎫-12-1+|3-3|-(π-1)0-27(2)20+55-13×12-(3+2)(2-3).20.已知a,b,c满足a2-42a+8+b-5+|c-32|=0.(1)求a,b,c的值;(2)若a,b,c为三条线段的长,这三条线段能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.四、解答题(二):本大题共2小题,每小题10分,共20分.21.某农场有一块用铁栅栏围成的面积为700 m2的长方形空地,长方形空地的长与宽的比为7:4.(1)该长方形空地的长与宽分别为多少米?(2)农场打算把长方形空地沿边的方向改造出两块不相连的正方形试验田,两块正方形试验田的边长比为4:3,面积之和为600 m2,并把原来长方形空地的铁栅栏全部用来围两块正方形试验田,请问能改造出这样的两块不相连的正方形试验田吗?如果能,原来的铁栅栏够用吗?22.阅读材料:因为2<6<3,所以6的整数部分为2,小数部分为6-2. 解决下列问题:(1)填空:73的小数部分是 ____________;(2)已知a 是19-4的整数部分,b 是19-4的小数部分,求代数式(a +1)3+(b +4)2的值;(3)已知m 是2+3的整数部分,n 是2+3的小数部分,求m -n 的相反数.五、解答题(三):本大题共2小题,每小题12分,共24分.23.规定新运算符号“☆”:a ☆b =ab +3b -3.例如:(-2)☆1=(-2)×1+31-3=1- 3. (1)求27☆3的值; (2)求(12+3)☆12的值;(3)若[-(2x -1)2]☆⎝ ⎛⎭⎪⎫-13=-3,求x 的值.24.观察下面的式子:S1=1+112+122,S2=1+122+132,S3=1+132+142,…,S n=1+1n2+1(n+1)2.(1)计算:S1=__________,S3=__________,猜想:S n=________(用含n的代数式表示);(2)计算:S=S1+S2+S3+…+S n.(用含n的代数式表示)答案一、1.C2.A3.C4.B5.D6.C7.C8.D 点拨:由1x-2≥0且x-2≠0,得x-2>0,故(2-x)1 x-2=-(x-2)1 x-2=-(x-2)2×1x-2=-x-2.9.D10.D点拨:因为OA1=A1A2=1,所以由勾股定理可得 OA 2=12+12=2,所以OA 3=(2)2+12=3, 所以OA 4=(3)2+12=4=2,…, 所以OA n =n , 所以OA 8=8=2 2. 11.D 12.C 二、13.x >1214.-1 点拨:因为y =x -4+4-x -5,所以x =4, y =-5,所以(x +y )2 023=(-1)2 023=-1. 15.3 16.2 17.10n 点拨:18.3 点拨:设x =8+43-8-43,两边平方,得x 2=(8+43-8-43)2=8+43+8-43-2(8+43)( 8-43)=8, 因为8+43>8-43, 所以x >0, 所以x =2 2. 故原式=6 -36 +3+22=( 6 -3)2( 6 +3)( 6 -3)+22=9-623+22=3-22+22=3.三、19.解:(1)原式=-2+3-3-1-33=-4 3.(2)原式=4+1-4-[22-(3)2]=2+1-2-(4-3)=1-1=0.20.解:(1)因为a2-42a+8+b-5+|c-32|=0,所以(a-22)2+b-5+|c-32|=0,所以a-22=0,b-5=0,c-32=0.所以a=22,b=5,c=3 2.(2)能.因为22+32=52>5,所以能构成三角形,三角形的周长=22+32+5=52+5.四、21.解:(1)设该长方形空地的长为7x m,则宽为4x m,依题意,得7x×4x=700,即x2=25,所以x=5(负值舍去).所以7x=35,4x=20.答:该长方形空地的长为35 m,宽为20 m.(2)设两块正方形试验田的边长分别为4y m,3y m,依题意,有(4y)2+(3y)2=600,即25y2=600,所以y=2 6 (负值舍去),所以4y=86,3y=6 6.因为86+66=146<35,86<20,所以能改造出这样的两块不相连的正方形试验田. 146×4=56 6 (m),(35+20)×2=110(m), 因为566>110,所以原来的铁栅栏不够用. 22.解:(1) 73-8(2)因为4<19<5, 所以0<19-4<1.因为a 是19-4的整数部分,b 是19-4的小数部分, 所以a =0,b =19-4, 所以(a +1)3+(b +4)2 =13+(19)2 =1+19 =20.(3)因为1<3<2,所以3<2+3<4.因为m 是2+3的整数部分,n 是2+3的小数部分, 所以m =3,n =2+3-3=3-1,所以m -n 的相反数为-(m -n )=n -m =3-4. 五、23.解:(1)27☆3=3 3×3+33-3=9. (2)(12+3)☆12 =(12+3)×12+312-3 =12+6+32-3 =18-32. (3)因为[-(2x -1)2]☆⎝ ⎛⎭⎪⎫-13=[-(2x -1)2]×⎝ ⎛⎭⎪⎫-13+3-13-3=-3,所以13(2x -1)2=9, 所以2x -1=±33,所以x=1+332或x=1-332.24.解:(1)32;1312;n(n+1)+1n(n+1)点拨:因为S1=1+112+122=94,所以S1=94=32.因为S2=1+122+132=4936,所以S2=7 6.因为S3=1+132+142=169144,所以S3=13 12,….所以S n=n(n+1)+1 n(n+1).(2)S=S1+S2+S3+…+S n=32+76+1312+…+n(n+1)+1n(n+1)=1+12+1+16+1+112+ (1)1n(n+1)=n+(1-12+12-13+13-14+…+1n-1n+1)=n+1-1 n+1=n2+2n n+1.。

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章实数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx题号一二三四<五总分得分[1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分.一、单选题(注释)1、下列各式计算正确的是A.B.(>)C.=、D.2、下列计算中,正确的是()A.B.C.5=5·D.=3a(3、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a<<a2B.-a<<a<a2 C.<a<a2<-a D.<a2<a<-a 4、下列各式中,计算正确的是()A.+=~B.2+=2C.a-b=(a-b)D.=+=2+3=55、在实数中,有()A.最大的数B.最小的数C.绝对值最大的数。

D.绝对值最小的数6、下列说法中正确的是()A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都不是无理数(7、一个正方形的草坪,面积为658平方米,问这个草坪的周长是()A.B.C.D.8、下列各组数,能作为三角形三条边的是()A.,,<B.,,C.,,D.,, 9、将,,用不等号连接起来为()A.<<B.<<C.<<@D.<<10、用计算器求结果为(保留四个有效数字)()A.B.±C.D.-!11、2nd x2 2 2 5 ) enter显示结果是()A.15B.±15C.-15D.25更多功能介绍、一个正方体的体积为28360立方厘米,正方体的棱长估计为()A.22厘米B.27厘米*C.厘米D.40厘米13、设=,=,下列关系中正确的是()A.a>b B.a≥b C.a<b D.a≤b-14、化简的结果为()A.-5B.5-C.--5D.不能确定15、在无理数,,,中,其中在与之间的有()^A.1个B.2个C.3个D.4个16、的算术平方根在()A.与之间B.与之间,C.与之间D.与之间17、下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。

北师大版八年级数学上册第二章测试题(附答案)

北师大版八年级数学上册第二章测试题(附答案)

北师大版八年级数学上册第二章测试题(附答案)一、单选题(共12题;共24分)1.实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是( )A. B.C. D.2.-8的立方根是()A. -2B. 2C.D.3.在-1.414,,,,3.142,2- ,2.121121112…中,无理数有()A. 1个B. 2个C. 3个D. 4个4.下列各式中,无论为任何数都没有意义的是()A. B. C. D.5.下列式子为最简二次根式的是()A. B. C. D.6.下列各数中,无理数是( )A. 0.121221222B.C. πD.7.下列各数中,是无理数的是()A. B. C. D.8.下列二次根式中为最简二次根式的是()A. B. C. D.9.二次根式在实数范围内有意义,则的取值范围是()A. B. C. D.10.下列计算正确的为()A. B. C. D.11.下列二次根式中,是最简二次根式的是()A. B. C. D.12.下列各式中,运算正确的是()A. B. C. D.二、填空题13.用一组a , b 的值说明式是错误的,这组值可以是a=________,b=________14.写出一个满足的整数a的值为:________.15.计算:________16.化简:=________。

17.大于且小于的所有整数的和是________。

18.如图,数轴上的点表示的数是,,垂足为,且,以点为圆心. 为半径画弧交数轴于点,则点表示的数为________.19.中的取值范围为________.20.化简二次根式的结果是________.三、计算题21.计算:22.计算:(1)(2)23.计算:(1); (2)24.已知4x2=81,求x的值.25.计算: 226.求下列各式中的x:(1)2x2-1=9;(2)(x+1)3+27=0.四、综合题(共2题;共20分)27. (1)化简:(2)如图,数轴上点A和点B表示的数分别是1和.若点A是BC的中点。

北师大 八年级数学上册第二章实数测试卷(精华)(带答案)

北师大 八年级数学上册第二章实数测试卷(精华)(带答案)

北师大 八年级数学上册第二章实数测试卷(精华)(带答案)第二章 实数 单元测试卷(一卷)一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。

1、若x 2=a,则下列说法错误的是( )(A )x 是a 的算术平方根 (B )a 是x 的平方(C )x 是a 的平方根 (D )x 的平方是a2、下列各数中的无理数是( )(A )16 (B )3.14(C )113 (D )0.1010010001…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )(A )任何一个实数都可以用分数表示(B )无理数化为小数形式后一定是无限小数(C )无理数与无理数的和是无理数(D )有理数与无理数的积是无理数4、9=( )(A )±3 (B )3 (C )±81 (D )815、如果x 是0.01的算术平方根,则x=( )(A )0.0001 (B )±0.0001 (C )0.1 (D )±0.16、面积为8的正方形的对角线的长是( )(A )2 (B )2 (C )22 (D )47、下列各式错误的是( )(A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-=8、4的算术平方根是( )(A )2 (B )2 (C )4 (D )169、下列推理不正确的是( )(A )a=b b a = (B )a=b 33b a =(C )a =(D )33b a = a=b10、如图(一),在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有( )条。

(A )1 (B )2 (C )3 (D )4二、填空题(每空2分,共20分)1、任意写一对和是有理数的无理数 。

(一)2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。

3、如果a 21-有意义,则a 的取值范围是 。

北师大版八年级数学上册 第二章实数 综合测试卷(含答案)

北师大版八年级数学上册 第二章实数  综合测试卷(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯北师版八年级数学上册第二章实数综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.下列四个数:-3,0.5,23,5中,绝对值最大的数是( )A .-3B .-0.5C .23D . 52.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分3.下列各式一定是二次根式的是( ) A. a B.x 3+1 C.1-x 2 D.x 2+14.实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m|<1B .1-m>1C .mn>0D .m +1>05.如图,两个实数互为相反数,在数轴上的对应点分别是点A ,点B ,则下列说法正确的是( )A .原点在A 的左边B .原点在线段AB 的中点处C .原点在点B 的右边D .原点可以在点A 或点B 上6. 实数m 在数轴上对应的点的位置在表示-3和-4的两点之间,且靠近表示-4的点,则这个实数m 可能是( )A.-3 3 B.-2 3 C.-11 D.-157.下列等式成立的是()A.31=±1B.3225=15C.3-125=-5D.3-9=-38.-27的立方根与81的平方根之和是().A.0B.6 C.-12或6D.0或-69.估计8-1的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10.若2<a<3,则(2-a)2-(a-3)2的值为()A.5-2a B.1-2a C.2a-5D.2a-1二.填空题(共8小题,3*8=24)11.144的算术平方根是________.12. 代数式-3-a+b的最大值为________.13. 若3(4-k)3=k-4,则k的值为________.14. 若5个同样大小的正方体的体积是135 cm3,则每个正方体的棱长为________.15.比较大小:7-12________12(填“>”“<”或“=”).16. 大于2且小于5的整数是________.17.已知a-2+(b+5)2+|c+1|=0,那么a-b-c=________.18.下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为________.三.解答题(共7小题,66分)19.(8分) 计算下列各题:(1)(-1)2 019+6×27 2;(2)( 2-23)(23+2);(3)|3-7|-|7-2|-(8-272;20.(8分) 若33a -1与31-2b 互为相反数,求a b的值(b≠0).21.(8分) 已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.22.(10分)若a <0,求1bab 3+a b a 的值.23.(10分) 已知一个直角三角形的两条直角边长分别为(3+5)cm 和(5-3)cm ,求这个直角三角形的周长和面积.24.(10分)比较 2 023- 2 022与 2 022- 2 021的大小.25.(12分) 如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,求线段GH 的长.参考答案1-5ABDBB 6-10DCDBC11. 1212. -313. 414. 3 cm15. >16. 217. 818. 319. 解:(1)原式=-1+9=8;(2)原式=2-12=-10;(3)原式=(3-7)-(7-2)-(8-27)=-3;20. 解:因为33a -1与31-2b 互为相反数,所以3a -1与1-2b 互为相反数.所以3a -1=2b -1.所以3a =2b.又因为b≠0,所以a b =23.21. 解:由题意知a +b =0,cd =1,x =± 2.当x =2时,原式=-2+2=0;当x =-2时,原式=-2-2=-2 2,故原式的值为0或-2 2.22. 解:因为a <0,ab 3≥0,b a ≥0,b≠0,所以b <0,-a >0.所以-b >0. 所以1b ab 3+a b a =1b ab·b 2+a aba 2 =1b ab·(-b)2+a ab(-a)2=1b ·(-b)ab +a·1-a ab =-ab -ab=-2ab.23. 解:根据勾股定理可知, 这个直角三角形的斜边长是(3+5)2+(5-3)2=28+103+28-103=56=214(cm). 所以这个直角三角形的周长为(3+5)+(5-3)+214=10+214(cm),面积为12×(3+5)×(5-3)=12×(25-3)=11(cm 2).24. 解:12 023- 2 022 = 2 023+ 2 022( 2 023- 2 022)×( 2 023+ 2 022) = 2 023+ 2 022( 2 023)2-( 2 022)2 = 2 023+ 2 022,同理可得12 022- 2 021 = 2 022+ 2 021.而 2 023+ 2 022> 2 022+ 2 021,所以12 023- 2 022>12 022- 2 021.又因为 2 023- 2 022>0, 2 022- 2 021>0,所以 2 023- 2 022< 2 022- 2 021.25. 解:如图,延长BG 交CH 于点E ,因为四边形ABCD 是正方形,所以BC =AB =CD.又因为AG =CH ,BG =DH ,所以△ABG ≌△CDH(SSS).所以∠AGB =∠CHD ,∠2=∠6.因为AG =8,BG =6,AB =10,所以AG 2+BG 2=AB 2.所以△ABG 是直角三角形,且∠AGB =90°.所以△CDH 也是直角三角形,∠AGB =∠CHD =90°.所以∠1+∠2=90°,∠5+∠6=90°.又因为∠2+∠3=90°,∠4+∠5=90°,所以∠1=∠3,∠4=∠6=∠2.又因为AB=BC,所以△ABG≌△BCE(ASA).所以BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°.所以∠BEH=90°,GE=BE-BG=8-6=2,HE=CH-CE=8-6=2.在Rt△GHE中,GH=GE2+HE2=22+22=2 2.一天,毕达哥拉斯应邀到朋友家做客。

北师大版八年级上册数学第二章检测试题(附答案)

北师大版八年级上册数学第二章检测试题(附答案)

北师大版八年级上册数学第二章检测试题(附答案)北师大版八年级上册数学第二章检测试题(附答案)一、单选题(共12题;共24分)1.计算:()A。

5B。

7C。

-5D。

-72.若。

则。

A。

﹣B。

C。

D。

3.在3.14,的平方根是()A。

±5B。

5C。

±D。

4.设在。

π这四个数中,无理数有()A。

1个B。

2个C。

3个D。

4个5.估计介于()之间。

A。

1.4与1.5B。

1.5与1.6C。

1.6与1.7D。

1.7与1.86.下列计算正确的是()A。

B。

C。

D。

7.下列各式中,正确的是()A。

B。

C。

D。

8.设点P的坐标是(1+。

-2+a),则点P在()A。

第一象限B。

第二象限C。

第三象限D。

第四象限9.16的算术平方根是()A。

4B。

±4C。

±2D。

210.下列各式计算正确的是()A。

B。

C。

D。

11.下列根式中,最简二次根式是()A。

B。

C。

D。

12.计算。

的结果是()A。

B。

C。

D。

二、填空题(共6题;共6分)13.化简。

14.下列各数。

1.414.3..3.xxxxxxxx6…(每两个1之间依次多1个6)中,无理数有个,有理数有个,负数有个,整数有个。

15.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.则。

16.写出两个无理数,使它们的和为有理数。

17.已知为两个连续的整数,且。

则。

按此规定。

18.我们在二次根式的化简过程中得知。

…,则。

三、计算题(共3题;共30分)19.已知。

求。

20.计算。

21.设a,b,c为△ABC的三边,化简。

四、解答题(共4题;共20分)22.实数a,b在数轴上的位置如图所示,则化简 |a+b|+|a-b| 的值。

23.已知。

求。

24.已知。

求。

25.如图,正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接EG、FH交于点P,求证:AP=BP=CP=DP。

北师大版八年级上册数学第二章检测试题(附答案)一、单选题(共12题;共24分)1.计算:()A。

北师大版八年级数学上册第二章检测卷(附答案)

北师大版八年级数学上册第二章检测卷(附答案)

北师大版八年级数学上册第二章检测卷(附答案)一、单选题(共12题;共36分)1.估计的值在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间2.下列数中,是无理数的是()A. -3B. 0C.D.3.如图,在长方形ABCD中无重叠放入面积分别为16和12的两张正方形纸片,则图中空白部分的面积为()A. 16-8B. 8 -12C. 8-4D. 4-24.下列各数中,与的积为有理数的是()A. B. C. D.5.二次根式在实数范围内有意义,则x的取值范围是()A. x≥-3B. x≠3C. x≥0D. x≠-36.函数中自变量的取值范围是()A. B. C. 且 D. 且7.化简的结果是()A. 2B.C. 8D.8.下列选项中,计算正确的是()A. B. C. D.9.要使代数式有意义,x的取值范围满足()A. B. x≠2 C. x >2 D. x<210.下列计算正确的是()A. B. C. D.11.下列二次根式中是最简二次根式的是()A. B. C. D.12.对于的理解错误的是()A. 是实数B. 是最简二次根式C.D. 能与进行合并二、填空题(共6题;共18分)13.若m<2 <m+1,且m为整数,则m=________.14.下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有____个.15.有意义,则实数a的取值范围是________.16.当时,二次根式的值为________.17.二次根式中,字母a的取值范围是________。

18.计算:的结果是________.三、计算题19.计算:(1)(2)20.计算:.四、解答题21.若,为实数,且,求的值.22.已知:2m+1的平方根是±5,3m+n+1的平方根是±7,求m+2n的平方根.五、综合题23.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2.善于思考的小明进行了以下探索:设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m2+2n2+2mn .∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a、b,得:a=________,b=________;(2)利用探索的结论,找一组正整数a、b、m、n (a、b都不超过20)填空:________+________ =(________+________ )2;(3)若a+6 =(m+n )2,且a、m、n均为正整数,求a的值?24.求下列代数式的值:(1)如果a2=4,b的算术平方根为3,求a+b的值.(2)已知x是25的平方根,y是16的算术平方根,且x<y,求x﹣y的值.答案一、单选题1. B2. D3. B4. C5. A6. D7. D8. C9. A 10. D 11. C 12. D二、填空题13. 5 14. 3 15. a≥1 16. 2 17. a≥-1 18.三、计算题19. (1)解:原式=(2)解:原式=20. 解:原式=5+1-2+2=6.四、解答题21. 解:由题意得,y2-1≥0且1-y2≥0,所以,y2≥1且y2≤1,所以,y2=1所以,y=±1,又∵y+1≠0,∴y≠-1,所以,y=1,所以,x= , ∴22. 解:∵2m+1的平方根是±5,∴2m+1=25,解得:m=12,∵3m+n+1的平方根是±7,∴3m+n+1=49,∴36+n+1=49,解得:n=12,∴m+2n=36,∴m+2n的平方根为±6.五、综合题23. (1)m2+5n2;2mn(2)8;2;1;1(3)解:∵a+6 =(m+n )2=m2+3n2+2mn ,∴a=m2+3n2,2mn=6,∴mn=3,∵a、m、n均为正整数,∴m=1,n=3或m=3,n=1,∴a=28或1224. (1)解:∵a2=4,∴a=±2.∵b的算术平方根为3,∴b=9,∴a+b=﹣2+9=7或a+b=2+9=11 (2)解:∵x是25的平方根,∴x=±5.∵y是16的算术平方根,∴y=4.∵x<y,∴x=﹣5,∴x﹣y=﹣5﹣4=﹣9.。

北师大版八年级数学上册 第二章 实数 单元测试卷(有答案)

北师大版八年级数学上册 第二章 实数 单元测试卷(有答案)

北师大版八年级数学上册第二章实数单元测试卷一、选择题(本大题共10小题,共30分)1. 在实数√3,π,−37,3.5,√163,0,3.102100210002,√4中,无理数共有( )A. 3个B. 4个C. 5个D. 6个 2. 下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)√83的平方根是±√2;(4)√8+183=2+12=212.共有多少个是错误的?( ) A. 1 B. 2 C. 3 D. 4 3. 在实数−2√5、0、−5、3中,最小的实数是( )A. −2√5B. 0C. −5D. 34. 估计√8+√18的值应在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间5. 在二次根式√0.2a ,√28,√10x ,√a 2−b 2中,最简二次根式有( )A. 1 个B. 2 个C. 3 个D. 4 个6. 如图,数轴上A ,B 两点对应的实数分别是1和√3.若点A 与点C 到点B 的距离相等,则点C 所对应的实数为( )A. 2√3−1B. 1+√3C. 2+√3D. 2√3+1 7. 计算:(2019−π)0+(−2)2−(12)−1的值为( )A. 3B. −5C. 4.5D. 3.58. 已知a −b =14,ab =6,则a 2+b 2的值是( )A. 196B. 208C. 36D. 2029. 如果√2.373≈1.333,√23.73≈2.872,那么√23703约等于( )A. 28.72B. 0.2872C. 13.33D. 0.133310. 已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是( )A. 30cm 2B. 30πcm 2C. 15cm 2D. 15πcm 2二、填空题(本大题共5小题,共15分)11. 实数227,√7,−8,√23,√36,π3中的无理数是____________ .12. 用计算器计算:√2018≈______(结果精确到0.01)13. √4+(−3)2−20140×|−4|+(16)−1=______.14. 将实数√5,π,0,−6由小到大用“<”号连起来,可表示为______.15. 定义新运算“☆”:a ☆b =√ab +1,则2☆(3☆5)=______.三、计算题(本大题共1小题,共8.0分)16. 计算:(1)−√11125; (2)√0.09−√0.25.四、解答题(本大题共5小题,共55分)17. 按要求把下列各数填入相应的括号里:2.5,−0.5252252225…(每两个5之间依次增加一个2),−102,0,13,2π−6,3.(1)非负数集合:{};(2)非负整数集合:{};(3)有理数集合:{};(4)无理数集合:{}.18.求下列各式中x的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级数学上册第二章试题含答案
(满分:120分 考试时间:120分钟)
分数:________
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.在实数-15,3-27,π
2
,16,8,0中,无理数的个数为( B )
A .1个
B .2个
C .3个
D .4个 2.下列属于最简二次根式的是( B ) A.8 B. 5 C. 4
D.
13
3.规定用符号[m ]表示一个实数m 的整数部分,例如:⎣⎡⎦
⎤23=0,[3.14]=3.按此规定,[10+1]的值为( B )
A .3
B .4
C .5
D .6
4.如图,在Rt △PQR 中,∠PRQ =90°,RP =RQ ,边QR 在数轴上.点Q 表示的数为1,点R 表示的数为3,以Q 为圆心,QP 的长为半径画弧交数轴负半轴于点P 1,则点P 1表示的数是( C )
A .-2
B .-2 2
C .1-2 2
D .22-1
5.化简二次根式-8a 3的结果为( A ) A .-2a -2a B .2a 2a C .2a -2a
D .-2a 2a
6.(2020·孝感)已知x =5-1,y =5+1,那么代数式x 3-xy 2
x (x -y )的值是( D )
A .2 B. 5 C .4 D .2 5
二、填空题(本大题共6小题,每小题3分,共18分)
7.(2020·徐州)7的平方根是 ±7 .
8.已知a 是10的整数部分,b 是10的小数部分,则(b -10)a 的立方根是 -3 . 9.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,则a +b
m
+m 2-cd 的值为 1 .
10.★将一列数2,2,6,22,10,…,102按如图的数表排列,按照该方法进行排列,32的位置可记为(2,4),26的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m ,n ),则m +n 的值为 23 .
2 2 6 22 10 2
3 1
4 4 3 2 2
5 22 2
6 … … …
… … … … 10 2
11.若a ,b 为有理数,且(3+2)2-3+23
=a +b 6,则a = 4 ,b = 5
3 .
12.对于实数a ,b 作如下新定义:a @b =ab ,a *b =a b ,在此定义下,计算:

⎛⎭
⎫43-32@12-(75-43)*2= 1-3 2 .
选择、填空题答题卡
一、选择题(每小题3分,共18分)
题号
1
2
3
4
5
6
得分 答案 B B B C A D
二、填空题(每小题3分,共18分) 得分:______ 7. ±7 8. -3 9. 1 10. 23
11. 4 5
3 12. 1-3 2
13.求下列各式中x 的值: (1)4x 2=225; 解:x 2=225
4,
x =±
2254
, x =±152
.
(2)(2x -0.7)3=0.027. 解:2x -0.7=3
0.027, 2x -0.7=0.3, x =0.5.
14.计算下列各题:
(1)(-2)2-9+(2-1)0+⎝⎛⎭⎫
13-1
; 解:原式=4-3+1+3 =5.
(2)⎝⎛⎭⎫12-1-|-2|-12-1+(-1-2)2.
解:原式=2-2-(2+1)+3+2 2
=2-2-2-1+3+2 2 =4.
15.如图,在四边形ABCD 中,AB =AD ,∠BAD =90°.若AB =22,CD =43,BC =8,求四边形ABCD 的面积.
解:∵AB =AD ,∠BAD =90°,AB =22, ∴BD =AB 2+AD 2=4.
∵BD 2+CD 2=42+(43)2=64=BC 2, ∴△BCD 为直角三角形,且∠BDC =90°. ∴S 四边形ABCD =S △ABD +S △BCD =12×22×22+1
2
×43×4 =4+8 3.
16.已知3既是(x -1)的算术平方根,又是(x -2y +1)的立方根,求x 2-y 2的平方根.
解:由题意可知⎩⎪⎨⎪⎧x -1=9,
x -2y +1=27.
解得⎩
⎪⎨⎪⎧x =10,
y =-8.
∴±x 2-y 2=±36=± 6.
17.已知x =12(7+3),y =1
2(7-3),求代数式x 2+y 2-xy 的值.
解:∵x =12(7+3),y =1
2(7-3),
∴x +y =12(7+3)+1
2(7-3)=7,
xy =12(7+3)×1
2(7-3)=1.
∴x 2+y 2-xy =(x +y )2-2xy -xy =(x +y )2-3xy
=(7)2-3× 1 =4.
四、(本大题共3小题,每小题8分,共24分)
18.设a ,b ,c 是实数,且(2-a )2+a 2+b +c +|c +8|=0,ax 2+bx +c =0,求x 2+2x +3的算术平方根.
解:由(2-a )2+a 2+b +c +|c +8|=0,得 2-a =0,c +8=0,a 2+b +c =0, 解得a =2,b =4,c =-8,
把a ,b ,c 的值代入ax 2+bx +c =0中,得
2x2+4x-8=0,
2x2+4x=8,
x2+2x=4,
所以x2+2x+3=4+3=7.
x2+2x+3的算术平方根为7.
19.已知a,b,c在数轴上对应点的位置如图所示,化简:
|a|-|a+b|+(c-a)2+|b-c|.
解:由数轴可知b<a<0<c,
∴a+b<0,c-a>0,b-c<0.
∴原式=-a-[-(a+b)]+(c-a)+[-(b-c)]
=-a+a+b+c-a-b+c
=-a+2c.
20.某市在招商引资期间,把已倒闭的机床厂租给外地某投资商,该投资商为减少固定资产投资,将原有的正方形场地改建成800 平方米的长方形场地,且其长、宽的比为5 ∶2.
(1)求改建后的长方形场地的长和宽;
(2)如果把原来面积为900 平方米的正方形场地的金属栅栏围墙全部利用,来作为新场地的长方形围墙,栅栏围墙是否够用?为什么?
解:(1)设长方形场地的长为5x 米,
则其宽为2x 米,
根据题意得5x·2x=800,
解得x=45或x=-45(舍去),
∴长为45×5=205(米),
宽为45×2=85(米).
答:改建后的长方形场地的长和宽分别为20 5 米,8 5 米.
(2)栅栏围墙不够用,理由:
设正方形场地的边长为y 米,
则y2=900,
解得y=30或y=-30(舍去),
∴原正方形场地的周长为120 米.
∵新长方形场地的周长为
(205+85)×2=56 5 (米),
∵120<565,
∴栅栏围墙不够用.
五、(本大题共2小题,每小题9分,共18分)
21.如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.
(1)如图①,以格点为顶点的△ABC中,判断AB,BC,AC三边的长度是有理数还是无理数?
(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.
解:(1)AB=4,AC=32+32=32,
BC=12+32=10,
所以AB的长度是有理数,
AC和BC的长度是无理数.
(2)如图②所示,△DEF即为所求.(答案不唯一)
22.为了比较5+1与10的大小,小伍和小陆两名同学对这个问题分别进行了研究.
(1)小伍同学利用计算器得到了5≈2.236,10≈3.162,所以确定5+1>10(选填“>”“<”或“=”).
(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出如图所示的图形,其中∠C=90°,BC=3,点D在BC上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对5+1和10的大小作出准确的判断.
解:∵AC=1,CD=2,
∴AD=5,
同理可得AB=10.
∵AD+BD>AB,
∴5+1>10.
六、(本大题共12分)
23.(大悟县期中)如图是一块正方形纸片.
(1)如图①,若正方形纸片的面积为1 dm2,则此正方形的对角线AC的长为______dm;
(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆______C正;(选填“>”“<”或“=”)
(3)如图②,若正方形的面积为16 cm2,李明同学想沿这块正方形边的方向裁出一块面积为12 cm2的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由?
解:(1)由已知AB2=1,则AB=1.由勾股定理,得AC= 2.故答案为 2.
(2)由圆面积公式,可得圆半径为2,周长为22π,正方形周长为42π.
C 圆C 正=2π242π=π2=π4
<1.故答案为<.
(3)不能.理由:由已知设长方形长和宽为3x cm 和2x cm ,
∴长方形面积为2x ×3x =12, ∴解得x =2,
∴长方形长边为32>4, ∴他不能裁出.。

相关文档
最新文档