函数图像PPT课件

合集下载

《函数的图像》课件

《函数的图像》课件
3.菜地离玉米地多远?从菜地到玉米地用了多少时间? 4.小明给玉米地锄草用了多少时间? 5.玉米地离家多远?他从玉米地回家的平均速1
小 明
o
15 25
37
55
80
x/分
对点导练
1、下图是北京与上海在某天的气温随时间变化的图象.则: 7 点和___ 12 点的时候,两地气温相同; (1)在___ 7 点到___ 12 点之间,北京的气温比上海的气温要高 . (2)在___ (3)这一天内,哪段时间北京的温度比上海的温度低?
人民教育出版社义务教育教科书八年级数学(下册)
由函数图象获取信息
课件制作:杨仕洲
执 教:杨仕洲
【导学目标】: 理解函数图象的意义,能结合实际问题情境和函数图象获得相关信息。
一、课前预习案
二、课内探究案
三、限时训练
四、自助练习
1、什么叫函数的图像? 一般地,对于一个函数,如果把自变 量与函数的每对 对应值 分别作为点 的 横、纵 坐标,那么坐标平面内由这 些点组成的 图形 ,就是这个函数的图 象,通过图象可以 数形结合 地研究函 数。
500 400 300
200 B
100
2
4
6
8
10
12
14
16
18
第2 题 第3 题 3、如果A、B两人在一次百米赛跑中,路程s(米)与赛跑的时间t(秒)的关 系如图所示,则下列说法正确的是( C) A A比B先出发 B A、B两人的速度相同 C A先到达终点 D B比A跑的路程多
4、汽车在行驶过程中,速度往往是变化的,下图图象表示的是 一辆汽车的速度随时间变化而变化的情况。 24分钟。 (1).汽车从出发到最后停止共经过了 多少时间? 它的最高时速 是多少? 是90km/h. (2).汽车在 哪些时间段保持匀速行驶?时速分别是多少? 第2至6分钟,速度为30km/h 第18至22分钟,速度为90km/h (3).出发后8分钟到10分钟之间可能发生了什么情况? 比如:上高速公路前的收费站停车缴费。

高考数学《函数的图像》PPT复习课件

高考数学《函数的图像》PPT复习课件
19
作出下列函数的图象: (1)y=12|x|;(2)y=|log2(x+1)|; (3)y=2xx--11;(4)y=x2-2|x|-1.
20
[解] (1)先作出 y=12x的图象,保留 y=12x图象中 x≥0 的部分, 再作出 y=12x的图象中 x>0 部分关于 y 轴的对称部分,即得 y=12|x| 的图象,如图①实线部分.
8
(4)翻转变换
①y=f(x)的图象―x―轴x―轴下―及方―上部―方分―部翻―分折――不到―变上―方→y= |f(x)|

图象;
②y=f(x)的图象―原―y轴y―轴左―右侧―侧―部部―分分―去翻―掉折―,―到右―左侧―侧不―变→y= f(|x|)
的图象.
9
[常用结论] 1.关于对称的三个重要结论 (1)函数 y=f(x)与 y=f(2a-x)的图象关于直线 x=a 对称. (2)函数 y=f(x)与 y=2b-f(2a-x)的图象关于点(a,b)中心对称. (3)若函数 y=f(x)的定义域内任意自变量 x 满足:f(a+x)=f(a-x), 则函数 y=f(x)的图象关于直线 x=a 对称.
A
B
C
D
29
(1)D
(2)B
(3)A
[(1)∵f(-x)
=cossi-n-x+x--xx2
=-csoins
x+x x+x2
=-f(x),
∴f(x)是奇函数.又∵f(π)=csoins ππ++ππ2=-1π+π2>0,∴选 D.
(2)当 x=0 时,-f(2-x)=-f(2)=-1;当 x=1 时,-f(2-x)=
高考数学《函数的图像》PPT复习 课件
[最新考纲] 1.在实际情境中,会根据不同的需要选择恰当的方 法(如图象法、列表法、解析法)表示函数.2.会运用基本初等函数的图 象分析函数的性质,并运用函数的图象解简单的方程(不等式)问题.

《函数的图象》课件优秀(完整版)6

《函数的图象》课件优秀(完整版)6

(1)7,12
(2)这一天内,上海在哪段时间比北京气温高?在哪段时间 试想,如果乌龟没有追求胜利的信念,没有渴望成功的意志,他是绝对不会有战胜兔子、战胜自我的那一刻的。
设点R运动的路程为x,∆MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到( )
比北京气温低? (4)如果长期观察这样的气温图象,我们能总结出气温的变化规律吗?
检测提升
4、小明外出散步,从家走了20分钟后到达了一个离 家900米的报亭,看了10分钟的报纸然后用了15分钟 返回到家.则下列图象能表示小明离家距离与时间关 系的是( )
检测提升
5、下图表示一辆汽车的速度随时间变化的情况:
速度/(千米/时) 90 60 30
0 4 8 12 16 20 24 时间/分
展示反馈
下图是某一天北京与上海的气温随时间变化的图象. (4)如果长期观察这样的气温图象,我们能总结出气温的变化规律吗?
图(2)反映了这个过程中,小明离他家的距离 y与时间 x之间的对应关系.
2、柿子熟了,从树上落下来.
如图,平面直角坐标系中,在边长为1的正方形ABCD的边上有一动点沿A→B→C→D→A运动一周,则P的纵坐标Y与点P走过的路程S之
通过图象,我们可以数形结合地研究函数.
展示反馈
1、下列四个图象中,不表示某一函数图 设点R运动的路程为x,∆MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到( )
5、下图表示一辆汽车的速度随时间变化的情况: (2)高:0~7,12~24
象的是( ) (2)小明吃早餐用了多少时间?
检测提升
1、周一的升旗仪式上,同学们看到匀速上升的旗子,
能反应其高度与时间关系图象大致是(

函数图像ppt课件

函数图像ppt课件

03
描点法
根据函数表达式,在坐标 系中逐个描出对应的点(x, y),然后用平滑的曲线将 这些点连接起来。
计算法
利用数学软件或计算器, 输入函数表达式,自动生 成函数图像。
表格法
根据函数表达式和已知数 据,制作表格,然后在坐 标系中根据表格数据绘制 出函数图像。
函数图像的观察与分析
观察图像形状
通过观察函数的图像,可以初 步判断函数的类型(如一次函 数、二次函数、三角函数等)
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复合函数的图像
复合函数的定义与性质
总结词
理解复合函数的定义与性质是绘制和分 析其图像的基础。
VS
详细描述
复合函数是由两个或多个函数的组合而成 的函数。它具有一些特殊的性质,如复合 函数的导数、极限等。了解这些性质有助 于更好地绘制和分析复合函数的图像。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
二次函数的图像
二次函数的定义与性质
总结词
二次函数的定义、性质和 表达式
二次函数的定义
二次函数是指形式为 y=ax^2+bx+c(其中a、 b、c为常数,且a≠0)的 函数。
二次函数的性质
二次函数具有开口方向、 顶点、对称轴等性质,这 些性质决定了函数图像的 形状和位置。
复合函数图像的绘制
总结词
掌握绘制复合函数图像的方法是理解其性质 和应用的必要手段。
详细描述
绘制复合函数图像需要使用数学软件或绘图 工具,如Matlab、GeoGebra等。在绘制 过程中,需要注意函数的定义域、值域以及 函数的单调性、奇偶性等性质。

函数图像专题PPT课件图文

函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称

八年级函数ppt课件ppt课件

八年级函数ppt课件ppt课件
八年级函数ppt课件
CATALOGUE
目 录
• 函数基本概念 • 一次函数与正比例函数 • 反比例函数 • 二次函数及其图像和性质 • 函数在实际问题中应用举例 • 总结回顾与拓展延伸
01
CATALOGUE
函数基本概念
函数定义与性质
函数定义
详细解释函数的定义,包括函数 的概念、定义域、值域等。
实际问题中的综合应用
在某些实际问题中,可能需要同时考虑反比例函数和一次函数的关系。例如,在研究电路中电流、电 压和电阻之间的关系时,可能需要同时考虑欧姆定律和反比例函数来描述这种关系。通过综合应用这 两种函数,可以更全面地理解和解决这类问题。
04
CATALOGUE
二次函数及其图像和性质
二次函数表达式及图像特点
导入
通过实际问题引入最大( 小)值的概念,如利润最 大化、成本最小化等。
建立函数模型
将实际问题转化为函数模 型,明确目标函数和约束 条件。
求解方法
介绍求解最大(小)值问 题的常用方法,如导数法 、不等式法等,并举例说 明其应用。
方案设计类问题解决方法与策略
导入
通过实际问题引入方案设计类问 题的概念,如产品设计、工程规
03
工程中的速率与时间关系
在工程问题中,有时需要计算某个任务在不同速率下完成所需的时间。
当任务量一定时,速率与时间成反比关系。因此,可以用反比例函数来
描述这种关系。
反比例函数与一次函数综合应用
图像交点问题
当反比例函数与一次函数在同一坐标系中作图时,可能会存在交点。这些交点满足两个函数的方程组 ,因此可以通过解方程组来求解交点的坐标。
函数性质
介绍函数的奇偶性、单调性、周 期性等基本性质,并举例说明。

函数的图象(精品课件)

函数的图象(精品课件)
解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12

人教版初二数学上册公开课《函数的图像PPT精品优秀课件》

人教版初二数学上册公开课《函数的图像PPT精品优秀课件》

漫步在诗书的时间轮,望着赤日炎炎 的夏天 ,思绪 不禁翻 开了卷 卷黄页 。那种 感觉如 夏雨落 入尘世 的前奏 ,秋意 渐渐袭 来了, 恍若濒 临初始 的某一 种感触 一样地 散漫而 来。发 散于一 种感意 ,趋于 身体遍 布,渐 次全方 位被感 触到这 种秋凉 的感受 来。秋 来了, 树枯了 ,叶萎 了,人 意却持 续了这 一年里 的努力 辛苦。 也只有 在秋意 纷飞的 季段, 人总是 忙碌不 庸的。 着眼于 像秋收 一样的 丰功伟 绩,着 实于现 实中的 可堪的 经济效 果,着 助于生 活点滴 的美好 不耐。 秋风来了,早始的凉意轻缓而来,轻 抚至我 的身体 ,抚撩 我赤裸 的上体 。一种 从心底 的温凉 从肌肤 扩至全 身。我 起身进 房披了 被单, 在阳台 上抽烟 ,烟气 氤氲, 火动了 一小丁 清醒且 亢奋的 情绪。 不知哪 里起一 曲歌来 ,心里 荡涤这 曾经的 回忆, 我自语 :秋寒 将至, 伊人何 以安暖 !
3、图象法:直观地反映了函数随自 变量的变化而变化的规律。
观察与思考:
观察函数的图象要注意一些什么事 项呢?
(1)弄清横、纵坐标表示的意义。 (2)自变量的取值范围。 (3)图象中函数随着自变量变化的规律。
回顾 1、画出函数 y = x + 0.5 的图象
解:1、列表
x … -3 -2 -1 0 1 2 3 … y … -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 …
一阵凉风抚面而来,轻盈可人,似伊 人的含 笑视射 ,迎合 她的动 人微凉 ,切合 成一种 内感外 物的融 合无瑕 。没有 的葱绿 的展露 ,没有 飘舞的 雪花, 没有炙 热的气 流,但 总在美 好中寻 找珍贵 。风的 起卷成 势,在 一些人 眼里如 昙花一 现的普 遍,没 有人真 正在意 过,风 的物语 ——浮 华流转 ,一种 美好的 记忆停 留在一 刻,拂 过的记 忆恍若 秋水, 不经不 意,美 好如昨 ,懂得 它的转 式,你 也一定 是美好 的守护 者。 九月的阳光,网吧一角,一米光芒映 在身侧 ,万千 荣光生 于心中 感怀, 光耀的 一刻, 站在了 一切积 极的巅 峰,浮 华若梦 。它的 温暖, 感官上 的吸热 逐于心 房徜徉 ,莫名 的兴奋 点亮了 心中的 希望, 所有目 标于人 都促推 一股动 力。动 力秋后 的工作 ,爱情 ,理想 。 秋凉微渗,溪雨人思,清风撩人,暖 阳怡人 ,花生 开开, 一层层 有维度 的结面 ,定然 了秋最 美丽的 姿态和 内涵。 秋若无 情画宏 图,吾 似有意 执恒心 。万般 皆是空 若恨, 千载难 逢秋似 伊。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1.3 函数图象
2020年10月2日
1
Ⅰ.提出问题、创设情境
我们在前面学习了函数意义,并掌握了函数关系式的 确立。但有些函数问题很难用函数关系式表示出来,然而 可以通过图来直观反映。例如用心电图表示心脏生物电流 与时间的关系。
即使对于能列式表示的函数关系,如果也能画图表示 则会使函数关系更清晰.
5.由纵坐标看出,玉米地离小明家2千米.由横坐标看出,
小明从玉米地走回家用了25分钟.所以平均速度为:
2÷25=0.08(千米/分钟).
2020年10月2日
12
我们通过两个活动已学会了如何观察分析图象信 息.那么已知函数关系式,怎样画出函数图象呢?
2020年10月2日
13
例:在下列式子中,对于x的每个确定的值。y有唯一 的对应值,即y是z的函数.请画出这些函数的图象。
变量x及对应的函数值S当作一个点的横坐标与纵坐标,即 可在坐标系中得到一些点。
2020年10月2日
3
大家思考一下,表示x与S的对应关系的点有多少个? 如果全在坐标中指出的话是什么样子?可以讨论一下,然 后发表你们的看法。
2020年10月2日
4
这样的点有无数个,如果全描出来太麻烦,也不可能。 我们只能描出其中一部分,然后想象出其他点的位置,用 光滑曲线连接起来。
第二步:描点.在直角坐标系中,以自变量的值为横 坐标,相应函数值为纵坐标,描出表中对应各点.
第三步:连线.按照坐标由小到大的顺序把所有点用 平滑曲线连结起来.
2020年10月2日
18
尝试练习:
课本P15思考题。 解答
解:1.由题意可知,开始时壶内有一定量水,最终漏
完,即开始时间z=0时,壶底水面高y≠0.最终漏完即
(1)y=x+0.5
(2)y= 6 (x
从上式可看出,x取任意实数式子都有意义,所以x的取 值范围是全体实数. 从x的取值范围中选取一些数值, 算出了的对应值.列表如下:
x…
y…
2020年10月2日
-3 -2 -1 0 -2.5 -1.5 -0.5 0
1 2 3… 0.5 1.5 3.5…
我们这节课就来解决如何画函数图象的问题及解读函
数图象信息.
2020年10月2日
2
Ⅱ.导入新课
我们先来看这样一个问题: 正方形的边长x与面积S的函数关系是什么?其中自变量x
的取值范围是什么?计算并填写下表:
x 0.5 1 1.5 2 2.5 3 3.5 s
好!如果我们在直角坐标系中,将你所填表格中的自
2020年10月2日
11
活动结论
1.由纵坐标看出,菜地离小明家1.1千米;由横坐标看出, 小明走到菜地用了15分钟.
2.由平行线段的横坐标可看出,小明给菜地浇水用了10 分钟
3.由纵坐标看出,菜地离玉米地0.9千米.由横坐标看出, 小明从菜地到玉米地用了12分钟.
4.由平行线段的横坐标可看出,小明给玉米地锄草用了18 分钟.
2.这天中凌晨4时气温最低为一3℃,14时气温最高为8℃.
3.从0时至4时气温呈下降状态,即温度随时间的增加而下 降.从4时至14时气温呈上升状态,从14时至24时气温又呈下 降状态.
4.我们可以从图象中直观看出一天中气温变化情况及任一 时刻的气温大约是多少.
5.如果长期观察这样的气温图象,我们就能得到更多信息, 掌握更多气温变化规律.
曲线即为函数 s = x 2 (x>0)的图象.
函数图象可以数形结合地研究函数,给我们带来便利。
2020年10月2日
7
活动一
下图是自动测温仪记录的图象,它反映了北京的春季某 天气温T如何随时间t的变化而变化。你从图象中得到了哪 些信息?
2020年10月2日
8
活动结论:
1.一天中每时刻t都有唯一的气温T与之对应.可以认为, 气温T是时间t的函数.
2020年10月2日
9
活动二
下图反映的过程是小明从家去菜地浇水,又去玉米地锄 草,然后回家.其中x表示时间,y表示小明离他家的距 离.
2020年10月2日
10
根据图象回答下列问题: 1.菜地离小明家多远?小明走到菜地用了多少时间? 2.小明给菜地浇水用了多少时间? 3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间? 4.小明给玉米地锄草用了多长时间? 5.玉米地离小明家多远?小明从玉米地走回家平均速度是 多少?
交点,即x=a时,y有三个值与其对应,不符合函数 意义.
2020年10月2日
20
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
14
根据表中数值描点(x,y),并用光滑曲线连结这些点.
从函数图象可以看出,直线从左向右上升,即当x由小变
2020大年10时月2,日 y=x+0.5随之增大.
15
(2)y= 6 (x>0) x
自变量的取值为x>0的实数,即正实数.按条件选取自变量 值,并计算y值列表:
x … 0.5 1 1.5 2 2.5 3 3.5 4 …
2020年10月2日
5
这样我们就得到了一幅表示S与x关系的图.图中每个 点都代表x的值与S的值的一种对应关系。如点(2,4)表示 x=2时S=4。
2020年10月2日
6
一般地,对于一个函数。如果把自变量与函数的每对 对应值分别作为点的横、纵坐标,那么坐标平面内由这些 点组成的图形,就是这个函数的图象(graph).上图中的
y…

2020年10月2日
16
据表中数值描点(x, y)并用光滑曲线连结这些点,就得到图象.
从函数图象可以看出,曲线从左向右下降,即当x由小变大
202时0年,10y月2=日
6 x
随之减小.
17
我们来总结归纳一下描点法画函数图象的一般步骤,好 吗?
第一步:列表.在自变量取值范围内选定一些值.通过 函数关系式求出对应函数值列成表格.
时间小到某一值时y=0.
故(1)图错.
又因为壶内水面高低影响水的流速,开始漏得快,逐
渐慢下来.
所以(3)图更适合表示这个函数关系.
2020年10月2日
19
2.图(1)曲线表示y是x的函数. 因为过(a,0)画y轴平行线与图形曲线只有一个交
点。即x=a时,y有唯一的值与其对应。符合函数意
义. 图(2)曲线不表示y是x的函数. 因为过点(a,0)画y轴平行线,与图中曲线有三个
相关文档
最新文档