带电粒子在磁场中运动的多解问题

合集下载

2024届物理一轮复习讲义专题强化十七 带电粒子在匀强磁场中的多解和临界问题含答案

2024届物理一轮复习讲义专题强化十七 带电粒子在匀强磁场中的多解和临界问题含答案

2024届物理一轮复习讲义专题强化十七带电粒子在匀强磁场中的多解和临界问题学习目标会分析带电粒子在匀强磁场中的多解问题和临界极值问题,提高思维分析综合能力。

考点一带电粒子在磁场中运动的多解问题造成多解问题的几种情况分析类型分析图例带电粒子电性不确定带电粒子可能带正电荷,也可能带负电荷,初速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解如带正电,其轨迹为a;如带负电,其轨迹为b磁场方向不确定只知道磁感应强度大小,而未具体指出磁感应强度方向,由于磁感应强度方向不确定而形成多解粒子带正电,若B垂直纸面向里,其轨迹为a,若B垂直纸面向外,其轨迹为b临界状态不唯一带电粒子飞越有界磁场时,可能穿过磁场飞出,也可能转过180°从入射界面一侧反向飞出,于是形成多解运动具有周期性带电粒子在部分是电场、部分是磁场空间运动时,运动往往具有周期性,因而形成多解例1 (多选)(2022·湖北卷) 在如图1所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。

离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP 成30°角。

已知离子比荷为k ,不计重力。

若离子从P 点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )图1A.13kBL ,0° B.12kBL ,0° C.kBL ,60° D.2kBL ,60°答案 BC解析 若离子通过下部分磁场直接到达P 点,如图甲所示,甲根据几何关系,有R =L ,q v B =m v 2R ,可得v =qBLm =kBL ,根据对称性可知出射速度与SP 成30°角向上,故出射方向与入射方向的夹角为θ=60°。

当粒子上下均经历一次时,如图乙所示,乙因为上下磁感应强度均为B ,则根据对称性有R =12L ,根据洛伦兹力提供向心力有q v B =m v 2R ,可得v =qBL 2m =12kBL ,此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题

y
A2
P (x,y)
sin FA1 x 2 R1
A1 A2 R2 R1
⑨ OE
解得,cosθ=0.6 R1 =5.0cm ⑩
d a

E=2.5 ×104 V/ m

θ FA1 D
θ C
x b
当匀强电场旳场强E=2.5 ×104 V/ m 或
E
6.4 104 n2
V/m
(n = 2, 3, 4…)时,粒子能经过坐标原点O.
若qv0B>mg则f=μ(qv0B-mg) 滑环作减速运动,
当减速到v1时,若qv1B=mg f1=0则以v1作匀速运动
Wf=1/2mv02 - 1/2mv12 < I2/2m 所以选项A C D正确。
qv0B qv1B f
mg mg
4. 运动旳反复性形成多解 带电粒子在部分是磁场,部分是电场旳空间运动时,
v2 qvB1 m R1

qvB2
m
v2 R2

(1)若粒子没能进入磁场区Ⅱ而最终能经过坐标原 点O,则粒子每次进入磁场区Ⅰ中运动都是转动半周 后后就离开磁场进入电场,反复运动直到经过坐标原 点O,粒子旳一种运动轨迹如图所示,有
n ∙ 2R1 =x

y
R1 ≤d

解得 R1 =8.0/n ( cm ) (n = 2, 3, 4…) ⑥
O
Px
分析:要使粒子能经过P点,其初始位置必须在匀强 电场区域里。因为没有明确粒子所在位置,讨论如下:
(1)若粒子从y轴上由静止释放,在电场加速下沿y 轴从原点O进入磁场做半径为R旳匀速圆周运动。因 为粒子可能偏转一种、二个……半圆到达P点,
故 a 2nR( n 1,2… )

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题带电粒子在只受洛仑兹作用下的圆周运动考查的重点都集中在粒子在有边界的磁场中做不完整的圆周运动的情况,由于题设中隐含条件的存在,就会出现多解问题,下面通过实例对此类问题进行分析。

一、粒子的带电性质不明的情况【例1】如图1所示,匀强磁场的磁感应强度为B,方向垂直纸面向里,MN是它的下边界。

现有质量为m,电荷量大小为q的带电粒子与MN成30°角垂直射入磁场,求粒子在磁场中运动的时间.二、磁场方向的不确定带电粒子在磁场方向不同的磁场中,所受洛伦兹力的方向是不同的,在磁场中运动的轨迹就不同,若题目中只告诉磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的双解。

【例2】(2007年全国卷Ⅱ)如图2所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T0,轨道平面位于纸面内,质点速度方向如图2中箭头所示,现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则()A.若磁场方向指向纸里,质点运动的周期将大于T0B.若磁场方向指向纸里,质点运动的周期将小于T0C.若磁场方向指向纸外,质点运动的周期将大于T0D.若磁场方向指向纸外,质点运动的周期将小于T0三、临界条件不唯一的情况【例3】如图3所示,M、N是两块水平放置的平行金属板,板长为L,板间距离为d,两板间存在磁感应强度为B,方向垂直于纸面向里的匀强磁场。

有一质量为m,电荷量为q 的带正电粒子从磁场左侧靠近N板处水平射入,欲使粒子不能打到金属板上,则粒子的入射速度v应满足什么条件?四、运动的反复性带电粒子在复合场中运动时,或与挡板等边界发生碰撞,将不断地反复在磁场中运动,也会形成一些多解问题。

【例4】如图4所示,半径为r的圆筒中有沿圆筒轴线方向、大小为B的匀强磁场,质量为m、带电荷量为+q的粒子以速度v从筒壁小孔A处沿半径方向垂直磁场射入筒中,若它在筒中仅受洛伦兹力作用,且与筒的碰撞无能量损失,并保持原有电荷量,粒子在筒中与壁相撞并绕壁一周仍从A孔射出,则B的大小必须满足什么条件?五、粒子运动的周期性引起的多解问题【例5】如图5所示,垂直纸面向里的匀强磁场以MN为边界,左侧磁感应强度为B1,右侧磁感应强度为B2,B1=2B2=2T,荷质比为2×106C/kg的带正电粒子从O点以v0=4×104m/s 的速度垂直MN进入右侧的磁场区域,求粒子通过距离O点4cm的磁场边界上的P点所需的时间。

带电粒子在磁场中运动多解问题归类分析

带电粒子在磁场中运动多解问题归类分析

带电粒子在磁场中运动多解问题归类分析作者:刘德华来源:《中学教学参考·理科版》2014年第05期新课程改革要求着力培养学生的创新能力,近年高考中经常出现多解问题。

要解答好多解问题,要求学生具有相应的发散性思维能力。

带电粒子在磁场中运动类问题是高考中常出现的问题,分析研究带电粒子在磁场中运动的多解问题,提高考生对这类题的解题能力,提高考生的高考得分能力,对广大高三师生而言,具有重要的意义。

造成带电粒子在磁场中运动时多解的原因主要有以下几种:1.带电粒子所带电荷电性不确定造成多解;2.带电粒子运动方向不确定造成多解;3.带电粒子速度大小不确定造成多解;4.磁场方向不确定造成多解;5.临界状态不确定造成多解;6.粒子运动的周期性造成多解。

下面结合例题进行分类分析。

一、带电粒子带电性的不确定造成多解图1电荷有正有负,有不少试题,没有明确题中所说的带电粒子是带正电荷,还是带负电荷,这时解题者应当分别讨论粒子带正电荷和带负电荷两种情况,从而保证试题解答的完整性。

分析:由于运动电荷在磁场中所受洛伦兹力的方向与其带电性质有关,所以带电小球第一次经过最低点时,所受洛伦兹力的方向就有可能不同,在分析时通过画出第一次经过最低点时的受力示意图,让学生深刻理解多解的情况,拓宽学生思维的广度和深度。

二、速度方向的不确定造成多解速度具有方向性,有不少试题,没有明确题中所说的研究对象的运动方向,这时解题者应当考虑带电粒子速度方向的不确定所造成的洛伦兹力方向的多样性,以防漏解。

变式:上题中,若小球带正电,则小球通过最低点时,悬线对小球的拉力多大?分析:由于运动电荷在磁场中所受洛伦兹力方向与其运动方向有关,所以小球经过最低点时,所受洛伦兹力的方向就有两种,通过发散性思维,在分析时画出从A点摆到C点时以及从B点回到C点时小球的受力情况(如图2甲、乙所示),从而得出小球在最低点时,拉力的两种情况。

三、速度大小的不确定造成多解运动电荷在磁场中所受洛伦兹力的大小与其速度大小有关,有不少试题,没有明确题中所说的带电粒子在磁场中初速度的大小,这时解题者应当考虑初速度大小的不确定性造成的初始时刻洛伦兹力的大小存在多种情况。

带电粒子在磁场运动的多解问题

带电粒子在磁场运动的多解问题

答案
若粒子带正电,则运动时间为
2m(π-θ) 2mθ ,若粒子带负电,则运动时间为 qB qB
2.磁场方向不确定形成多解 例2.某电子以固定的正点电荷为圆心在匀强磁场中沿逆时 针方向做匀速圆周运动,磁场方向垂直于它的运动平面, 电子所受正点电荷的电场力是洛伦兹力的3倍.若电子电荷 量为e、质量为m,磁感应强度为B,不计重力,则电子运 动的角速度可能是(AC )
• 2.磁场方向不确定形成多解 • 例2.某电子以固定的正点电荷为圆心在 匀强磁场中沿逆时针方向做匀速圆周运 动,磁场方向垂直于它的运动平面,电 子所受正点电荷的电场力是洛伦兹力的 3倍.若电子电荷量为e、质量为m,磁 感应强度为B,不计重力,则电子运动 的角速度可能是( ) 4Be 3Be 2Be Be A. m B. m C. m D. m
答案
若粒子带正电,则运动时间为
2m(π-θ) 2mθ ,若粒子带负电,则运动时间为 qB qB
2.磁场方向不确定形成多解 例2.某电子以固定的正点电荷为圆心在匀强磁场中沿逆时 针方向做匀速圆周运动,磁场方向垂直于它的运动平面, 电子所受正点电荷的电场力是洛伦兹力的3倍.若电子电荷 量为e、质量为m,磁感应强度为B,不计重力,则电子运 动的角速度可能是( )
FT1=3mg-2mgcos α-qB 2gL1-cos α. FT2=3mg-2mgcos α+qB 2gL1-cos α.
例1.如图所示,一带正电的质子以速度v0从O点垂直射入, 两个板间存在垂直纸面向里的匀强磁场.已知两板之间距 离为d,板长为d,O点是板的正中间,为使质子能从两板间 射出,试求磁感应强度应满足的条件(已知质子的带电荷量 为e,质量为m).
例1.如图所示,一带正电的质子以速度v0从O 点垂直射入,两个板间存在垂直纸面向里的匀 强磁场.已知两板之间距离为d,板长为d,O 点是板的正中间,为使质子能从两板间射出, 试求磁感应强度应满足的条件(已知质子的带 电荷量为e,质量为m).

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。

② 则粒子做匀速直线运动。

(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。

(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。

二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。

速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。

2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。

)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。

或者说两圆心连线OO ′与两个交点的连线AB 垂直。

(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。

透析带电粒子在匀强电场中的多解问题及成因

透析带电粒子在匀强电场中的多解问题及成因

浅谈带电粒子在匀强磁场中运动的多解问题及成因太和中学物理组 潘正海摘要:带电粒子在匀强磁场中的运动是高中物理电磁学的重点内容之一,它所涉及的内容较多,难度较大,特别是多解问题,尤其复杂,对学生来说是个难点,本文就阐述了带电粒子在匀强磁场中运动的多解问题及成因,并就例题分析提出了自己的一点感想,以便更好的掌握和解决该问题提供一个参考。

关键词:带电粒子,多解性,周期性,临界状态。

引言:在匀强磁场,带电粒子受到洛伦兹力作用而做匀速圆周运动,由于带电粒子电性的不确定、电荷量多少的不确定、磁场方向的不确定、临界状态的不唯一、以及运动的周期性都会导致多解、下面通过例题加以分析。

一、带电粒子电性不确定形成的多解众所周知,自然界中的带电粒子只有两种,一种带正电,另一种带负电,由于很多题目没有告诉带电粒子的电性,那么在解题时就要考虑带电粒子的正负不同情况,从而带来了问题的多解性。

【例1】如图1所示,第一象限范围内有垂直于xoy 平面的匀强磁场,磁感应强度为B ,质量为m ,电荷量为q 的带电粒子在xoy 平面里经原点O 射入磁场中,初速度为v 0与x 轴夹角为θ=60º,试分析计算:(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角多大? (2)带电粒子在磁场中运动时间多长?× × × × × × × × × × × × × × × ×yx图1图2θ1Oy xO 1AO 2BR Rθ2θ1 v 0解析 若带电粒子带负电,进入磁场后做顺时针方向的匀速圆周运动,圆心为O 1,粒子向x 轴偏转,并从A 点离开磁场。

若带电粒子带正电,进入磁场后做逆时针方向的匀速圆周运动,圆心为O 2,粒子向y 轴偏转,并从B 点离开电场。

不论粒子带何种电荷,其运动轨道半径均为qBmv R 0=。

带电粒子在匀强磁场中的运动-临界、极值及多解问题

带电粒子在匀强磁场中的运动-临界、极值及多解问题
• 关键点:1.分成正电荷和负电荷讨论,画图是关 键.2.注意正负电荷受洛伦兹力方向不同,偏转方向 不同.3.最大速度都是轨迹和右边界相切时的速度.

例题
有些题目只告诉了磁感应的大小,而未具体 指出磁感应强度的方向,此时必须要考虑磁
感应强度方向不确定而形成多解
电场力方向一定指向圆心,而洛伦兹力方向可能指向圆心,也可能背离圆心, 从而形成两种情况.
• 2.方法界定将一半径为 的圆绕着入射点旋转, 从而探索出临界条件,这种方法称为“旋转法”.

旋转法”模型示例
带电粒子在磁场中运动的多解问题
• 带电粒子电性不确定形成多解 • 受洛伦兹力作用的带电粒子,可能带正电荷,也可
能带负电荷,在相同的初速度的条件下,正、负粒 子在磁场中运动轨迹不同,导致形成多解.

“放缩圆”模型示例
“旋转法”解决有界磁场中的临界问题
• 1.适用条件(1)速度大小一定,方向不同带电粒子 进入匀强磁场时,他们在磁场中做匀速圆周运动的 半径相同,若射入初速度为v0,则圆周半径为 . 如图所示.(2)轨迹圆圆心——共圆带电粒子在磁 场中做匀速圆周运动的圆心在以入射点P为圆心、 半径 的圆上.
临界状态不唯一形成多解
• 带电粒子在洛伦兹力作用下飞越有界磁场 时,由于粒子运动轨迹是圆弧状,因此, 他可能直接穿过去了,也可能转过180°从 入射界面反向飞出,于是形成了多解.如图 所示.

Байду номын сангаас
带电粒子在匀强磁场中的运动临界、极值及多解问题
• 1.有界磁场中临界问题的处 理方法
• 2.带电粒子在磁场中运动的 多解问题
1.有界磁场中临界问题的处理方法
• “放缩法”解决有界磁场中的临界问题 • 1.适用条件 • (1)速度方向一定,大小不同粒子源发射速度方向一定、大小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在磁场中运动的多解问题
1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解.
如图1甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b.
图1
2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解.
如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b.
3.临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过磁场飞出,也可能转过180°从入射界面这边反向飞出,从而形成多解,如图2甲所示.
图2
4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示.
典例1(多选)如图17所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,那么下列说法中正确的是()
图17
A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场
B .若该带电粒子在磁场中经历的时间是23
t 0,则它一定从ad 边射出磁场 C .若该带电粒子在磁场中经历的时间是54
t 0,则它一定从bc 边射出磁场 D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场
答案 AC
解析 如图所示,作出刚好从ab 边射出的轨迹①、刚好从bc 边射出的轨
迹②、从cd 边射出的轨迹③和刚好从ad 边射出的轨迹④.由从O 点沿纸面
以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场可
知,带电粒子在磁场中做圆周运动的周期是2t 0.可知,从ad 边射出磁场经历的时间一定小于13t 0;从ab 边射出磁场经历的时间一定大于等于13t 0,小于56
t 0;从bc 边射出磁场经历的时间一定大于等于56t 0,小于43t 0;从cd 边射出磁场经历的时间一定是53
t 0. 典例2 如图18所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在磁场a 中,磁感应强度为2B ,方向垂直于纸面向里,在磁场b 中,磁感应强度为B ,方向垂直于纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电粒子从P 点沿y 轴负方向射入磁场b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.求:
图18
(1)粒子从P 点运动到O 点的最短时间是多少?
(2)粒子运动的速度可能是多少?
答案 (1)53πm 60qB (2)25qBl 12nm
(n =1,2,3,…)
解析 (1)设粒子的入射速度为v ,用R a 、R b 、T a 、T b 分别表示粒子在磁场a 中和磁场b 中运动的轨道半径和周期,则有
R a =m v 2qB ,R b =m v qB ,T a =2πm 2qB =πm qB ,T b =2πm qB
当粒子先在磁场b 中运动,后进入磁场a 中运动,然后从O 点射出时,粒子从P 点运动到
O 点所用的时间最短,如图所示.根据几何知识得tan α=3l 4l =34
,故α=37°
粒子在磁场b 和磁场a 中运动的时间分别为
t b =2×(90°-α)360°T b ,t a =2×(90°-α)360°
T a 故从P 点运动到O 点的时间为
t =t a +t b =53πm 60qB
(2)由题意及上图可知
n (2R a cos α+2R b cos α)=(3l )2+(4l )2
解得v =25qBl 12nm
(n =1,2,3,…).。

相关文档
最新文档