Fortran常用函数
fortran里的exp用法

fortran里的exp用法Fortran是一种高级编程语言,经常用于科学计算和数值分析。
其中一个常用的内置函数是exp(),用于计算以自然对数底e为底的指数函数。
在Fortran中,exp()函数的语法如下所示:```result = EXP(x)```其中,x是作为指数的实数或复数,result是计算结果。
exp()函数返回e的x次幂,即e^x。
该函数的返回值类型与x的类型相同,可以是实数或复数。
当x为实数时,计算结果也为实数;当x为复数时,计算结果为复数。
下面是一些使用exp()函数的示例:1. 计算e的平方:```fortranprogram exp_exampleimplicit nonereal :: x, resultx = 2.0result = EXP(x)write(*,*) "e的平方 = ", resultend program exp_example```输出结果:e的平方 = 7.3890562. 计算e的负数次幂:```fortranprogram exp_exampleimplicit nonereal :: x, resultx = -1.0result = EXP(x)write(*,*) "e的负一次幂 = ", result end program exp_example```输出结果:e的负一次幂 = 0.3678794 3. 计算复数的指数函数:```fortranprogram exp_exampleimplicit nonecomplex :: z, resultz = (1.0, 1.0)result = EXP(z)write(*,*) "复数的指数函数 = ", resultend program exp_example```输出结果:复数的指数函数 = 1.468693+2.287355i在Fortran中,exp()函数可以非常方便地进行指数计算。
fortran基本函数

FORTRAN 90标准函数(一)(2012-07-03 17:14:57)转载▼分类:学习标签:fortran函数教育符号约定:●I代表整型;R代表实型;C代表复型;CH代表字符型;S代表字符串;L代表逻辑型;A代表数组;P代表指针;T代表派生类型;AT为任意类型。
●s:P表示s类型为P类型(任意kind值)。
s:P(k)表示s类型为P类型(kind值=k)。
●[…]表示可选参数。
●*表示常用函数。
注:三角函数名前有C、D的函数为复数、双精度型函数。
注:指数函数名、平方根函数名、对数函数名前有C、D的函数为复数、双精度型函数。
表4 参数查询函数atan2函数的值域是多少?我从网上找到一个fortran函数的日志,说此值域是-π~π,但正常反正切函数的值域应该是-π/2~π/2。
对atan2函数不够了解,所以不知道你的答案对不对,我个人认为不对。
我是用正常的反正切函数atan(v/u)来算的:FORTRAN:if (u>0..and.v>0.) dir=270-atan(v/u)*180/piif (u<0..and.v>0.) dir=90-atan(v/u)*180/piif (u<0..and.v<0.) dir=90-atan(v/u)*180/piif (u>0..and.v<0.) dir=270-atan(v/u)*180/piif (u==0..and.v>0.) dir=180if (u==0..and.v<0.) dir=0if (u>0..and.v==0.) dir=270if (u<0..and.v==0.) dir=90if (u==0..and.v==0.) dir=999其中uv等于零的五种情况要单独挑出来,不然程序会有瑕疵。
atan函数换成atand函数的话直接是度数,不用*180/pi我四个象限和轴都试了,应该没错。
fortran常用函数表

用0向左侧扩展x。x:I、L,结果:I
表2三角函数
函数名
说明
ACOS(x)*
求x的反余弦arccos(x)。x:R,结果类型同x,结果值域:0~π
ACOSD(x)*
求x的反余弦arccos(x)。x:R,结果类型同x,结果值域:0~180°
ASIN(x)*
求x的反正弦arcsin(x)。x:R,结果类型同x,结果为弧度,值域:0~π
表5实数检测和控制函数
函数名
说明
EXPONENT(x)*
求实数x机内编码表示的指数值。x:R,结果:I
FRACTION(x)*
求实数x机内编码表示的小数值。x:R,结果类型同x
NEAREST(x,s)
根据s的正负号求最接近x的值。x:R,结果:R,且不为0
RRSPACING(x)
求x与系统最大数之间的差值。x:R,结果类型同x
ATAN2(y,x)
求x的反正切arctg(y/x)。y:R,x和结果类型同x,结果值域:-π~π
ATAN2D(y,x)
求x的反正切arctg(y/x)。y:R,x和结果类型同x,结果值域:-180~180°
COS(x)*
求x的余弦cos(x)。x:R、C,x取值弧度,结果类型同x
COSD(x)*
求x的余弦cos(x)。x:R,x取值度,结果类型同x
COSH(x)
求x的双曲余弦ch(x)。x:R,结果类型同x
COTAN(x)*
求x的余切ctg(x)。x:R,x取值度,结果类型同x
SIN(x)*
求x的正弦sin(x)。x:R、C,x取值弧度,结果类型同x
SIND(x)*
求x的正弦sin(x)。x:R,x取值度,结果类型同x
fortran里sgn函数用法

fortran里sgn函数用法Fortran中的sgn函数用法1. 引言(约200字)Fortran(Formula Translation)是一种古老但仍广泛使用的编程语言,主要用于科学和工程计算。
其中的sgn函数是一种常用的数学函数,用于确定一个数的正负性。
本文将详细介绍sgn函数的用法,解释其背后的原理,并提供一些示例以帮助读者更好地理解。
2. sgn函数概述(约300字)sgn函数(sign函数的缩写)是用来判断一个实数的正负性的函数。
在Fortran中,sgn函数的定义方式如下:fortransgn(x)其中x是待判断的实数。
sgn函数的返回值根据x的正负性而定,规则如下:- 当x大于0时,sgn(x)返回1;- 当x小于0时,sgn(x)返回-1;- 当x等于0时,sgn(x)返回0。
sgn函数对于处理类似于数值范围检查和数据处理中的条件判断非常有用。
3. sgn函数示例(约500字)为了更好地理解sgn函数的用法,下面我们将给出一些示例。
示例一:在Fortran程序中,我们可能需要根据用户输入的数值判断该数是正数还是负数。
我们可以使用sgn函数来实现这个功能。
下面是一个示例代码片段:fortranprogram sgn_exampleimplicit nonereal :: xinteger :: swrite(*,*) '请输入一个实数:'read(*,*) xs = sgn(x)if (s > 0) thenwrite(*,*) '该数为正数'else if (s < 0) thenwrite(*,*) '该数为负数'elsewrite(*,*) '该数为零'end ifend program sgn_example在这个示例中,我们通过调用sgn函数将用户输入的实数x赋值给整数变量s。
然后我们使用if语句根据s的取值判断x的正负性,并输出相应的结果。
Fortran标准函数库

附录 FORTRAN 90标准函数符号约定:●I代表整型;R代表实型;C代表复型;CH代表字符型;S代表字符串;L代表逻辑型;A代表数组;P代表指针;T代表派生类型;AT为任意类型。
●s:P表示s类型为P类型(任意kind值)。
s:P(k)表示s类型为P类型(kind 值=k)。
●[…]表示可选参数。
●*表示常用函数。
表1 数值和类型转换函数函数名 说明ABS(x)* 求x的绝对值∣x∣。
x:I、R, 结果类型同x; x:C, 结果:RAIMAG(x) 求x的实部。
x:C, 结果:RAINT(x[,kind])* 对x取整,并转换为实数(kind)。
x:R, kind:I, 结果:R(kind)AMAX0(x1,x2,x3,…)* 求x1,x2,x3,…中最大值。
x I:I, 结果:RAMIN0(x1,x2,x3,…)* 求x1,x2,x3,…中最小值。
x I:I, 结果:RANINT(x[,kind])* 对x四舍五入取整,并转换为实数(kind)。
x:R, kind:I, 结果:R(kind) CEILING(x)* 求大于等于x的最小整数。
x:R, 结果:ICMPLX(x[,y][,kind])) 将参数转换为x、(x,0.0)或(x,y)。
x:I、R、C, y:I、R,kind:I, 结果:C(kind) CONJG(x) 求x的共轭复数。
x:C, 结果:CDBLE(x)* 将x转换为双精度实数。
x:I、R、C, 结果:R(8)DCMPLX(x[,y]) 将参数转换为x、(x,0.0)或(x,y)。
x:I、R、C, y:I、R, 结果:C(8) DFLOAT(x) 将x转换为双精度实数。
x:I, 结果:R(8)DIM(x,y)* 求x-y和0中最大值, 即MAX(x-y,0)。
x:I、R, y的类型同x,结果类型同x DPROD(x,y) 求x和y的乘积,并转换为双精度实数。
x:R, y:R, 结果:R(8)FLOAT(x)* 将x转换为单精度实数。
fortran find函数

Fortran Find函数1. 简介Fortran是一种高性能科学计算语言,广泛用于数值计算和科学工程。
在Fortran 中,有许多内置函数可用于数组和字符串的操作。
其中一个常用的函数是Find函数,用于查找数组中的元素。
2. Find函数的语法和用法Find函数的语法如下:index = Find(array, value [, dim])其中,array是要搜索的数组,value是要查找的元素,dim是可选参数,指定在哪个维度上进行查找。
如果不指定dim,则默认在整个数组中查找。
Find函数返回一个整数值,表示查找到的元素在数组中的位置。
如果找不到该元素,则返回0。
下面是一个示例代码,演示了Find函数的用法:program find_exampleimplicit noneinteger :: array(5) =[1, 3, 5, 7, 9]integer :: indexindex = Find(array, 5)if (index == 0) thenprint *, "Element not found"elseprint *, "Element found at index", indexend ifend program find_example上述代码中,我们定义了一个包含5个元素的整数数组array,并使用Find函数查找值为5的元素。
如果找到了该元素,则输出其在数组中的位置;如果未找到,则输出提示信息。
3. Find函数的工作原理Find函数的工作原理是通过遍历数组中的元素,逐个与要查找的元素进行比较,直到找到匹配的元素或遍历完整个数组。
在Fortran中,数组的索引是从1开始的。
因此,在查找过程中,Find函数会从数组的第一个元素开始比较,直到找到匹配的元素或遍历到最后一个元素。
4. Find函数的应用场景Find函数在很多情况下都可以派上用场。
fortran常用函数

Y=DMOD(X1,X2) 倍精度实数X1/X2之余数 REAL*8,REAL*8 REAL*8
Y=ISIGN(X1,X2) 取X1之值与X2之正负号 INTEGER,INTEGER INTEGER
Y=DATAN(X) X的倍精度正切反函数 REAL*8 REAL*8
Y=DSINH(X) X的倍精度双曲正弦函数 REAL*8 REAL*8
Y=DCOSH(X) X的倍精度双曲余弦函数 REAL*8 REAL*8
Y=DTANH(X) X的倍精度双曲正切函数 REAL*8 REAL*8
Y=DLOG(X) X的倍精度自然对数 REAL*8 REAL*8
Y=CDLOG(X) X的倍精度复数自然对数 COMPLEX*X) X的倍精度常用对数 REAL*8 REAL*8
Y=DSIN(X) X的倍精度正弦函数 REAL*8 REAL*8
Y=INT(X) 转换为整数 ALL(所有型态) INTEGER
Y=REAL(X) 转换为实数 INTEGER REAL
Y=DREAL(X) 取复数实部(倍精度) COMPLEX*16 REAL*8
Y=DIMAG(X) 取复数虚部(倍精度) COMPLEX*16 REAL*8
Y=DCMPLX(X1,X2) 转换为倍精度复数 ALL,ALL COMPLEX*16
Y=IABS(X) 整数绝对值 INTEGER INTEGER
Y=DABS(X) 倍精度实数绝对值 REAL*8 REAL*8
Y=CDABS(X) 倍精度复数绝对值 COMPLEX*16 REAL*8
Y=DCOS(X) X的倍精度余弦函数 REAL*8 REAL*8
FORTRAN

FORTRAN 90标准函数(⼀)符号约定:l I代表整型;R代表实型;C代表复型;CH代表字符型;S代表字符串;L代表逻辑型;A代表数组;P代表指针;T代表派⽣类型;AT为任意类型。
l s:P表⽰s类型为P类型(任意kind值)。
s:P(k)表⽰s类型为P类型(kind值=k)。
l […]表⽰可选参数。
l *表⽰常⽤函数。
表1 数值和类型转换函数函数名说明ABS(x)*求x的绝对值∣x∣。
x:I、R, 结果类型同x; x:C, 结果:RAIMAG(x)求x的实部。
x:C, 结果:RAINT(x[,kind])*对x取整,并转换为实数(kind)。
x:R, kind:I, 结果:R(kind)AMAX0(x1,x2,x3,…)*求x1,x2,x3,…中最⼤值。
x I:I, 结果:RAMIN0(x1,x2,x3,…)*求x1,x2,x3,…中最⼩值。
x I:I, 结果:RANINT(x[,kind])*对x四舍五⼊取整,并转换为实数(kind)。
x:R, kind:I, 结果:R(kind)CEILING(x)*求⼤于等于x的最⼩整数。
x:R, 结果:ICMPLX(x[,y][,kind]))将参数转换为x、(x,0.0)或(x,y)。
x:I、R、C, y:I、R,kind:I, 结果:C(kind)CONJG(x)求x的共轭复数。
x:C, 结果:CDBLE(x)*将x转换为双精度实数。
x:I、R、C, 结果:R(8)DCMPLX(x[,y])将参数转换为x、(x,0.0)或(x,y)。
x:I、R、C, y:I、R, 结果:C(8)DFLOAT(x)将x转换为双精度实数。
x:I, 结果:R(8)DIM(x,y)*求x-y和0中最⼤值, 即MAX(x-y,0)。
x:I、R, y的类型同x,结果类型同xDPROD(x,y)求x和y的乘积,并转换为双精度实数。
x:R, y:R, 结果:R(8)FLOAT(x)*将x转换为单精度实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、RANDOM_NUMBERSyntax ['sintæks] n. 语法CALL RANDOM_NUMBER (harvest结果)Intrinsic Subroutine(固有子程序):Returns a pseudorandom number greater than or equal to zero and less than one from the uniform distribution.返回大于或等于0且小于1,服从均匀分布的随机数2、RNNOA/ DRNNOA (Single/Double precision)Generate pseudorandom numbers from a standard normal distribution using an acceptance/rejection method.产生服从标准正态分布的随机数Usage(用法)CALL RNNOA (NR, R)Arguments(参数)NR— Number of random numbers to generate. (Input) 要产生随机数的个数R— Vector of length NR containing the random standard normal deviates. (Output)输出长度为NR,随机正态分布的向量Comments(注解)The routine RNSET can be used to initialize the seed of the random number generator. The routine RNOPT can be used to select the form of the generator.程序RNSET可以用来初始化随机数发生器的种子ExampleIn this example, RNNOA is used to generate five pseudorandom deviates from a standard normal distribution.INTEGER ISEED, NOUT, NRREAL R(5)EXTERNAL RNNOA, RNSET, UMACHCCALL UMACH (2, NOUT)NR = 5ISEED = 123457CALL RNSET (ISEED)CALL RNNOA (NR, R)WRITE (NOUT,99999) R99999 FORMAT (' Standard normal random deviates: ', 5F8.4)ENDOutputStandard normal random deviates: 2.0516 1.0833 0.0826 1.2777 -1.22603、RESHAPEIntrinsic Function(内部函数)Constructs an array of a specified shape from the elements of another array. 构造规定形式的数组Syntax(语法)result = RESHAPE (source, shape [ , pad][ , order])source(Input) Any type. Array whose elements will be taken in standard Fortran array order (see Remarks), and then placed into a new array.shape(Input) Integer. One-dimensional array that describes the shape of the output array created from elements of source. 描述输出数组的大小的一维数组,The elements of shape are the sizes of the dimensions of the reshaped array in order. If pad is omitted 省略, the total size specified by shape must be less than or equal to source.pad 可选参数(Optional; input) Same type as source. Must be an array. If there are not enough elements in source to fill the result array, elements of pad are added in standardFortran array order. If necessary, extra copies of pad are used to fill the array.order 可选参数(Optional; input) Integer. One-dimensional array. Must be the same length as shape.Permutes the order of dimensions in the result array. The value of order must be a permutation of (1, 2,...n) where n is the size of shape.Return Value(返回值)The result is an array the same data type and kind as source and a shape as defined in shape.ExamplesINTEGER AR1( 2, 5)REAL F(5,3,8)REAL C(8,3,5)AR1 = RESHAPE((/1,2,3,4,5,6/),(/2,5/),(/0,0/),(/2,1/))! returns 1 2 3 4 5! 6 0 0 0 0!! Change Fortran array order to C array orderC = RESHAPE(F, (/8,3,5/), ORDER = (/3, 2, 1/))END4、SUMIntrinsic Function(内部函数)Sums elements of an array or the elements along an optional dimension. The elements summed can be selected by an optional mask.将数组中的元素求和Syntax(语法)result = SUM (array [ , dim] [ , mask])array(Input) Integer, real, or complex. Array whose elements are to be summed.dim 可选参数(Optional; input) Integer. Dimension along which elements are summed.1 ≤dim≤n, where n is the number of dimensions in array.mask 可选参数(Optional; input) Logical. Must be same shape as array. If mask is specified, only elements in array that correspond to .TRUE. elements in mask are summed.Return Value(返回值)Same type and kind as array and equal to the sum of all elements in array or the sum of elements along dimension dim. If mask is specified, only elements that correspondto .TRUE. elements in mask are summed. Returns a scalar if dim is omitted or array is one-dimensional. Otherwise, returns an array one dimension smaller than array.ExamplesINTEGER array (2, 3), i, j(3)array = RESHAPE((/1, 2, 3, 4, 5, 6/), (/2, 3/))! array is 1 3 5! 2 4 6i = SUM((/ 1, 2, 3 /)) ! returns 6j = SUM(array, DIM = 1) ! returns [3 7 11]WRITE(*,*) i, jEND5、SEEDRun-Time Subroutine Changes the starting point of the pseudorandom number generator. 改变随机数发生器的起始点ModuleUSE MSFLIBSyntax(语法)CALL SEED (iseed)iseed(Input) INTEGER(4). Starting point for RANDOM.Remarks(注解)SEED uses iseed to establish the starting point of the pseudorandom number generator.A given seed always produces the same sequence of values from RANDOM.If SEED is not called before the first call to RANDOM, RANDOM always begins with a seed value of one. If a program must have a different pseudorandom sequence each time it runs, pass the constant RND$TIMESEED (defined in MSFLIB.F90) to the SEED routine before the first call to RANDOM.ExampleUSE MSFLIBREAL randCALL SEED(7531)CALL RANDOM(rand)6、RANDOMPurposeRun-Time Subroutine Returns a pseudorandom number greater than or equal to zero and less than one from the uniform distribution. 返回大于或等于0且小于1,服从均匀分布的随机数ModuleUSE MSFLIBSyntaxCALL RANDOM (ranval)ranval(Output) REAL(4). Pseudorandom number, 0 ≤ranval< 1, from the uniformdistribution.RemarksA given seed always produces the same sequence of values from RANDOM.If SEED is not called before the first call to RANDOM, RANDOM begins with a seed value of one. If a program must have a different pseudorandom sequence each time it runs, pass the constant RND$TIMESEED (defined in MSFLIB.F90) to SEED before the first call to RANDOM.All the random procedures (RANDOM, RAN, and RANDOM_NUMBER, and the PortLib functions DRAND, DRANDM, RAND, IRANDM, RAND, and RANDOM) use the same algorithms and thus return the same answers. They are all compatible and can be used interchangeably. (The algorithm used is a “Prime Modulus M Multiplicative Linear Congruential Generator,” a modified version of t he random number generator by Park and Miller in “Random Number Generators: Good Ones Are Hard to Find,” CACM, October 1988, Vol. 31, No. 10.)CompatibilityCONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIBExampleUSE MSFLIBREAL(4) ranCALL SEED(1995)CALL RANDOM(ran)7、FFT2BCompute the inverse Fourier transform of a complex periodic two-dimensional array.计算二维复数数组的逆傅里叶变换Usage(用法)CALL FFT2B (NRCOEF, NCCOEF, COEF, LDCOEF, A, LDA)Arguments(参数)NRCOEF— The number of rows of COEF. (Input) 数组COEF的行数NCCOEF— The number of columns of COEF. (Input) 数组COEF的列数COEF—NRCOEF by NCCOEF complex array containing the Fourier coefficients to be transformed. (Input) NRCOEF行NCCOEF列数组LDCOEF— Leading dimension of COEF exactly as specified in the dimension statement of the calling program. (Input)A—NRCOEF by NCCOEF complex array containing the Inverse Fourier coefficients of COEF. (Output) NRCOEF行NCCOEF列复数数组,包含数组COEF的逆傅里叶系数LDA— Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)Comments(注解)1.Automatic workspace usage isFFT2B4 * (NRCOEF + NCCOEF) + 32 + 2 *MAX(NRCOEF, NCCOEF) units, orDFFT2B8 * (NRCOEF + NCCOEF ) + 64 + 4 *MAX(NRCOEF, NCCOEF) units.Workspace may be explicitly provided, if desired, by use of F2T2B/DF2T2B. The reference isCALL F2T2B (NRCOEF, NCCOEF, A, LDA, COEF, LDCOEF,WFF1, WFF2, CWK, CPY)The additional arguments are as follows:WFF1— Real array of length 4 *NRCOEF + 15 initialized by FFTCI. The initialization depends on NRCOEF. (Input)WFF2— Real array of length 4 *NCCOEF + 15 initialized by FFTCI. The initialization depends on NCCOEF. (Input)CWK— Complex array of length 1. (Workspace)CPY— Real array of length 2 *MAX(NRCOEF, NCCOEF). (Workspace)2.The routine FFT2B is most efficient when NRCOEF and NCCOEF are the product of small primes.3.The arrays COEF and A may be the same.4.If FFT2D/FFT2B is used repeatedly, with the same values for NRCOEF and NCCOEF, then use FFTCI to fill WFF1(N = NRCOEF) and WFF2(N = NCCOEF). Follow this with repeated calls to F2T2D/F2T2B. This is more efficient than repeated calls toFFT2D/FFT2B.AlgorithmThe routine FFT2B computes the inverse discrete complex Fourier transform of a complex two-dimensional array of size (NRCOEF = N) ⨯ (NCCOEF = M). The method used is a variant of the Cooley-Tukey algorithm , which is most efficient when N and M are both products of small prime factors. If N and M satisfy this condition, then the computational effort is proportional to N M log N M. This considerable savings has historically led people to refer to this algorithm as the "fast Fourier transform" or FFT.Specifically, given an N⨯M array c = COEF, FFT2B returns in aFurthermore, a vector of Euclidean norm S is mapped into a vector of normFinally, note that an unnormalized inverse is implemented in FFT2D. The routine FFT2B is based on the complex FFT in FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the National Center for Atmospheric Research.ExampleIn this example, we first compute the Fourier transform of the 5 ⨯ 4 arrayfor 1 ≤n≤ 5 and 1 ≤m≤ 4 using the IMSL routine FFT2D. The resultis then inverted by a call to FFT2B. Note that the result is an array a satisfying a = (5)(4)x = 20x. In general, FFT2B is an unnormalized inverse with expansion factor N M.INTEGER LDA, LDCOEF, M, N, NCA, NRACOMPLEX CMPLX, X(5,4), A(5,4), COEF(5,4)CHARACTER TITLE1*26, TITLE2*26, TITLE3*26INTRINSIC CMPLXEXTERNAL FFT2B, FFT2D, WRCRNCTITLE1 = 'The input matrix is below 'TITLE2 = 'After FFT2D 'TITLE3 = 'After FFT2B 'NRA = 5NCA = 4LDA = 5LDCOEF = 5C Fill X with initial dataDO 20 N=1, NRADO 10 M=1, NCAX(N,M) = CMPLX(FLOAT(N+5*M-5),0.0)10 CONTINUE20 CONTINUECCALL WRCRN (TITLE1, NRA, NCA, X, LDA, 0)CCALL FFT2D (NRA, NCA, X, LDA, COEF, LDCOEF)CCALL WRCRN (TITLE2, NRA, NCA, COEF, LDCOEF, 0)CCALL FFT2B (NRA, NCA, COEF, LDCOEF, A, LDA)CCALL WRCRN (TITLE3, NRA, NCA, A, LDA, 0)CENDOutputThe input matrix is below1 2 3 41 ( 1.00, 0.00) ( 6.00, 0.00) ( 11.00, 0.00) ( 16.00, 0.00)2 ( 2.00, 0.00) ( 7.00, 0.00) ( 12.00, 0.00) ( 17.00, 0.00)3 ( 3.00, 0.00) ( 8.00, 0.00) ( 13.00, 0.00) ( 18.00, 0.00)4 ( 4.00, 0.00) ( 9.00, 0.00) ( 14.00, 0.00) ( 19.00, 0.00)5 ( 5.00, 0.00) ( 10.00, 0.00) ( 15.00, 0.00) ( 20.00, 0.00) After FFT2D1 2 3 41 ( 210.0, 0.0) ( -50.0, 50.0) ( -50.0, 0.0) ( -50.0, -50.0)2 ( -10.0, 13.8) ( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)3 ( -10.0, 3.2) ( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)4 ( -10.0, -3.2) ( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0)5 ( -10.0, -13.8) ( 0.0, 0.0) ( 0.0, 0.0) ( 0.0, 0.0) After FFT2B1 2 3 41 ( 20.0, 0.0) ( 120.0, 0.0) ( 220.0, 0.0) ( 320.0, 0.0)2 ( 40.0, 0.0) ( 140.0, 0.0) ( 240.0, 0.0) ( 340.0, 0.0)3 ( 60.0, 0.0) ( 160.0, 0.0) ( 260.0, 0.0) ( 360.0, 0.0)4 ( 80.0, 0.0) ( 180.0, 0.0) ( 280.0, 0.0) ( 380.0, 0.0)5 ( 100.0, 0.0) ( 200.0, 0.0) ( 300.0, 0.0) ( 400.0, 0.0)8、TIMEFPurposePortLib Function Returns the number of seconds since the first time it is called, or zero.ModuleUSE PORTLIBSyntaxresult=TIMEF ( )Return ValueREAL(8). Number of seconds that have elapsed since the first time TIMEF( ) was called. The first time called, TIMEF returns 0.0D0.CompatibilityCONSOLE STANDARD GRAPHICS QUICKWIN GRAPHICS WINDOWS DLL LIBExampleUSE PORTLIBINTEGER i, jREAL(8) elapsed_timeelapsed_time = TIMEF() DO i = 1, 100000j = j + 1END DOelapsed_time = TIMEF() PRINT *, elapsed_time END。