四轴飞行器报告(高级篇)

合集下载

电子设计大赛四旋翼飞行器报告

电子设计大赛四旋翼飞行器报告

选题编号:C题全国大学生电子设计竞赛设计报告选题名称:多旋翼自主飞行器主办单位:辽宁省教育厅比赛时间:2015年08月12日08时起2015年08月15日20时止摘要多旋翼飞行器也称为多旋翼直升机,是一种有多个螺旋桨的飞行器。

本设计实现基于ATMEGA328P和R5F100LEA的四旋翼飞行器。

本飞行器由飞行控制模块、导航模块、电源模块和航拍携物模块等四部分组成。

主控模块采用ATMEGA328P芯片,负责飞行姿态控制;导航模块以G13MCU为核心,由陀螺仪、声波测距等几部分构成,该模块经过瑞萨芯片处理采集的数据,用PID控制算法对数据进行处理,同时解算出相应电机需要的PWM增减量,及时调整电机,调整飞行姿态,使飞行器的飞行更加稳定;电源模块负责提供持续稳定电流;航拍携物模块由摄像头、电磁铁等构成,负责完成比赛相应动作。

飞行器测试稳定,实现了飞行器运动速度和转向的精准控制,能够完成航拍,触高报警,携物飞行,空中投递等动作要求。

关键词:四旋翼,PID控制,瑞萨目录摘要................................................................................................................................ i i1.题意分析 (1)2.系统方案 (1)2.1 飞行控制模块方案选择 (1)2.2 飞行数据处理方案选择 (1)2.3 电源模块方案选择 (2)2.4 总体方案描述 (2)3.设计与论证 (2)3.1 飞行控制方法 (2)3.2 PID控制算法 (3)3.3 建模参数计算 (3)3.4 建立坐标轴计算 (4)4.电路设计 (5)4.1 系统组成及原理框图 (5)4.2 系统电路图 (5)5.程序设计 (6)5.1 主程序思路图 (6)5.2 PID算法流程图 (7)5.3 系统软件 (7)6. 测试方案 (7)6.1 硬件测试 (7)6.2 软件仿真测试 (7)6.3 测试条件 (8)6.4 软硬件联调 (8)7.测试结果及分析 (8)7.1 测试结果 (8)7.2 结果分析 (9)8.参考文献 (9)1.题意分析设计并制作一架带航拍功能的多旋翼自主飞行器。

经验总结四轴

经验总结四轴

四轴DIY小结徐江 cnmusic@一、概述四轴可以说是机械结构最简单的飞行器了,而且自己做起来也不是很难。

维护起来成本也比一般航模要低不少,所以我就花了差不多6个月的时间摸索着做了2个来玩。

这篇文章就是一个大概的记录,希望对后来人能有些帮助。

由于不少都是自己摸索的,难免有不少错误,所以“仅供参考”!☺在这里要感谢网友feng_matrix对我的帮助,通过和他的交流让我少走了不少弯路。

二、马达、电调、桨的选则在我第一次选择马达的时候,我选择的是有刷马达。

原因很简单,不需要复杂的电调,直接用MOS管就可以驱动了,而且响应速度又快,价格又便宜。

可惜没有买到合适的有刷马达,只好用减速组配高转速马达。

这样一来成本反而高了,而且实际的测试结果是马达里面火化直冒也无法将四轴自身拉离地面。

原因就是马达转速和减速组搭配不合理,转速过快但拉力不够。

经历过失败后,决定不在冒险,于是选择了大众配置:新西达2212,1000KV外转子无刷马达,新西达30A电调(好赢兼容的程序),在解决了如何安装的问题后,终于可以将四轴自身拉离地面了。

对于桨,由于条件所限,只能在淘宝上买到GWS三叶正反桨。

我测试的结果是10英寸桨最结实,因为它最大,最重,带来的结果就是低转速。

优点就是抗撞击。

一般的9英寸桨稍微碰到一点东西就断了,而10英寸桨一点事没有。

以前担心10英寸桨可能引起响应时间过长造成四轴无法稳定,后来发现真正影响响应时间的是电调,桨的关系倒不是很大。

当然这不是说10英寸桨就是金刚不坏之躯,只是比9英寸桨要结实一些罢了。

用商品化电调还是I2C电调?我一开始的四轴采用的就是商品电调,原因很简单,自己焊I2C电调多麻烦啊,还是用买的现成的省事。

但随着后面深入做下去,发现这2种电调的差异还是很大的。

对于我开始的商品电调,由于里面自带的PID控制器。

严重影响了转速的快速反应。

这就造成了对于四轴稳定性之一的“自动悬停”基本无法做到了。

由于自动悬停的首要要求就是在这就要求马达转速在四轴有倾斜时需要加快,而到快回到平衡位置时需要降下来。

关于四旋翼飞行器的心得

关于四旋翼飞行器的心得

关于四旋翼飞行器的心得第一篇:关于四旋翼飞行器的心得关于四旋翼飞行器的心得对于飞行器或者航模之类的映像,是在高中时期,学校有航模小组,经常可以看到拿着航模的学生在进行试飞,当时心中感觉“航模”是非常有意思并且“高科技”。

如今已经历高考进入大学,在学校的为我们安排的导师制计划中,非常幸运的加入无人机航拍飞行器小组,关于四旋翼飞行器,在查阅了相关资料后,有了一定的了解。

四旋翼飞行器也称为四旋翼直升机,是一种有4个螺旋桨且螺旋桨呈十字形交叉的飞行器。

Seraphi 是一款可用于空中拍摄的一体化多旋翼飞行器,它外观时尚精美,做工精湛,还拥有集成了自身研发的飞行动力系统,并配置专业的无线电遥控系统。

Seraphi集成易作、易维护的稳定设计,在出厂前已经设置并调试所有的飞行参数及功能,具有免安装、免调试的快速飞行模式。

Seraphi 携带方便,可以搭配GoPro或者其它微型相机录制空中视频。

记得在TED的讲座中,有一期叫做“TED-红遍全球的的炫酷飞行器”,这个讲座说明了四旋翼飞行器的一些特点。

1.时尚精美、做工精湛。

Seraphi外观时尚精美,做工精湛,还拥集成了自身研发的飞行动力系统,并配置专业的无线电遥控系统。

2.集成易作、易维护的稳定设计。

Seraphi集成易作、易维护的稳定设计。

Seraphi 携带方便,可以搭配GoPro或者其它微型相机录制空中视频。

3.自由切换多种飞行模式。

Seraphi内置自身研发的飞行控制系统,具备多种飞行模式,可以根据不同的飞行需要以及不同的飞行环境进行实时的智能切换以达到不一样的飞行体验。

4.方向控制灵活。

Seraphi具备自身研发飞控系统,方向控制灵活。

在通常飞行过程中,可以根据需要,进行灵活纵。

制作航拍飞行器能够让培养我们的团队合作意识,拓宽我们的知识领域,同时让我们动手实践的能力得到提升,相信这次经历肯定能成为我的大学生活中最值得回忆的事情之一。

第二篇:动态系统建模(四旋翼飞行器仿真)实验报告动态系统建模(四旋翼飞行器仿真)实验报告院(系)名称大飞机班学号学生姓名任课教师2011年X月四旋翼飞行器的建模与仿真一、实验原理I.四旋翼飞行器简介四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。

四轴总结范文

四轴总结范文

四轴总结1. 什么是四轴飞行器?四轴飞行器是一种无人机,由四个电动马达驱动四个螺旋桨提供升力,实现飞行控制。

它是最简单、最常见的多旋翼飞行器类型之一。

2. 四轴结构四轴飞行器主要由以下几个组件构成:•机身框架(Frame):通常是由轻质材料如碳纤维或铝合金制成,提供了安装电子元件和电动马达的支撑框架。

•电动马达(Motor):四个电动马达分别安装在飞行器的四个角落,用来驱动螺旋桨提供升力。

通常使用无刷电机,具有高功率输出和高效能的特点。

•螺旋桨(Propeller):四个螺旋桨与电动马达相连接,通过旋转提供升力。

螺旋桨的旋转速度和推力控制着飞行器的姿态和高度。

•飞行控制器(Flight Controller):飞行控制器是四轴飞行器的大脑,负责接收来自传感器的数据,并通过对电动马达的控制来实现飞行器的稳定飞行。

•电子速调(ESC):电子速调连接电动马达和飞行控制器,将控制信号传输给电动马达并调节电动马达的转速。

•电池(Battery):提供飞行器所需的电能。

电池的容量和电压决定了飞行器的续航时间和飞行能力。

•无线遥控器(RC Transmitter):通过无线信号与飞行器进行通信,控制飞行器的起飞、降落、姿态控制等操作。

3. 四轴飞行原理四轴飞行器借助传感器和飞行控制器实现飞行。

基本的飞行原理如下:1.姿态感知:飞行控制器通过加速度计和陀螺仪感知飞行器的姿态。

加速度计测量飞行器的加速度,以及地心引力在飞行器上的分量,从而确定飞行器的姿态。

陀螺仪测量飞行器在各个轴上的旋转速度。

2.姿态控制:飞行控制器根据姿态感知的数据,计算并调整电动马达的转速,使得飞行器保持平衡。

通过调整转速,飞行控制器可以控制飞行器的俯仰、横滚和偏航。

3.高度控制:飞行控制器使用气压计或超声波等传感器感知飞行器的高度,并通过调节电动马达的转速来控制飞行器的升降。

通过增加或减少升力,飞行器可以上升或下降。

4.遥控操作:无线遥控器发送无线信号给飞行器,控制其飞行。

四轴飞行器报告

四轴飞行器报告

四轴飞行器报告1. 前言四轴飞行器是一种无人机,由四个电动机驱动,具有稳定飞行的能力。

它在军事、民用及娱乐领域都有广泛的应用。

本报告将对四轴飞行器的结构、工作原理以及应用进行详细介绍。

2. 结构四轴飞行器主要由以下部件组成:•机架:提供了支撑和连接其他部件的框架结构,通常是以轻质材料如碳纤维制成。

•电动机:驱动飞行器飞行的关键部件,通常使用直流无刷电机。

•螺旋桨:由电动机驱动的旋转桨叶,用于产生升力和推力。

•电调:控制电动机的转速和方向,从而控制飞行器的姿态。

•飞控系统:负责接收和处理来自传感器的数据,计算飞行器的姿态和控制指令。

•电池:提供能量给电动机和其他电子设备。

3. 工作原理四轴飞行器的飞行原理基于牛顿第二定律。

通过调整四个电动机的转速和方向,可以控制飞行器的姿态和运动。

飞行器的姿态包括横滚、俯仰和偏航。

通过增加相对转速,可以产生横滚和俯仰的力矩,从而使飞行器向相应方向倾斜。

飞行器倾斜后,电动机产生的升力也会有所改变,使得飞行器能够前进、后退或悬停。

飞行器的稳定性是通过飞控系统来保证的。

飞控系统通过接收来自加速度计、陀螺仪和磁力计等传感器的数据,计算飞行器的姿态和运动状态,并根据用户的控制输入调整电动机的转速和方向,以保持飞行器的稳定。

4. 应用四轴飞行器在军事、民用及娱乐领域都有广泛的应用。

在军事领域,四轴飞行器可以用于侦查、监视和目标跟踪。

由于其小型化、高机动性和隐蔽性,可以在不可接近的区域执行任务,提供重要的情报支持。

在民用领域,四轴飞行器可以用于航拍、物流和巡检等任务。

航拍业务能够提供高质量的航空影像,广泛用于地理信息和城市规划等领域。

同时,四轴飞行器还可以用于运送货物,解决最后一公里的配送问题。

此外,四轴飞行器还可以用于巡检任务,如电力线路、管道和建筑物的巡检,提高作业效率和安全性。

在娱乐领域,四轴飞行器常被用作遥控飞行器,供爱好者进行操控和竞赛。

爱好者可以通过多种方式定制飞行器的外观和性能,提升飞行器的性能和飞行体验。

报告

报告

摘要为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。

首先我们进行了各个单元电路方案的比较论证,确定了硬件设计方案。

飞行器以16位微控制器R5F100LEA作为控制核心。

采用电调将直流转化为交流,驱动无刷直流电机,该电调具有控制简单的特性。

通过超声波测量高度反馈到MCU,控制四旋翼的高度;通过陀螺仪采集飞行器的角度,然后反馈到主控板,运用PID控制算法调整飞行器的姿态。

采用摄像头采集地面信息,实现了飞行器搜寻内沿黑线及指示线等功能;运用互补滤波算法将陀螺仪和加速度计融合起来,更好的控制姿态;实际测试表明,所采用的设计方案先进有效,完全达到了设计要求。

关键词:四旋翼;PID;循迹;超声波;R5F100LEA单片机目录1系统方案的设计与论证 (3)1.1系统总体框架 (3)1.2方案论证与比较 (3)2 理论分析与计算 (5)2.1 四旋翼飞行器动力学原理 (5)2.2 四旋翼飞行器的数学模型 (5)2.3四元数控制算法 (7)2.4姿态控制算法 (7)3系统的硬件电路设计 (9)3.1 系统硬件框图 (9)3.2模块的硬件设计原理图 (9)4飞行器的软件设计 (12)4.1系统程序流程图 (13)4.2互补滤波算法 (14)5测试方法和结论 (15)5.1 测试方案及测试仪器 (16)5.2 测试数据 (16)5.2.1基础部分A到B (16)5.2.2 基础部分B到A (16)5.1.3 发挥部分 (16)5.3 测试结果分析 (17)6小结 (17)参考文献 (17)附录1:电路原理图 (18)附录2:部分源程序清单................................... 错误!未定义书签。

1系统方案的设计与论证1.1系统总体框架根据题目分析,四旋翼飞行器需要在指定的地点飞行和指定的地点停止,由于飞行区域有指示线来为四旋翼飞行器导航,故本设计采用相应循迹模块为飞行器导航,同时采用测距模块测量实时的检测飞行器的高度,以使飞行器通过示高线,同时设计采用常见的姿态调整传感器——陀螺仪和加速度传感器来调整飞行器的飞行姿态,并且使用搬运模块实现飞行器的携带功能,系统框图如图1.1所示。

四轴飞控总结详尽的介绍各种飞控来源及硬件资源核心部分

四轴飞控总结详尽的介绍各种飞控来源及硬件资源核心部分

四轴飞控总结详尽的介绍各种飞控来源及硬件资源核心部分四轴飞控总结详尽的介绍各种飞控来源及硬件资源核心部分从团队选择无人机项目开始,我的前期工作就是了解现在市场上所有的飞控以及功能,为接下来的无人机飞控打下基础。

现在市场上的飞控种类很多,常见的有MK、KK、KK flycam、EAGLE N6、玉兔飞控、FF、WKM、FC1212-S、MWC、FY等等,国内也是有越来越多的团队开始研究四轴飞控,其中很多属于山寨。

MK是德国的开源项目,但一般价格较贵,整个一套估计要1000多,且对模友的基础要求较高,玩的人不是很多。

KK是法国的开源项目,国内许多团队利用其开源的特点,将硬件电路和程序照搬过来然后在市场上卖,竞争比较激烈,因此价格很便宜,贵一点的也就100多便宜的只要60左右,目前最新版本是KK5.5,与其他飞控相比,KK飞控只有一个低端的陀螺仪而且不含加速度计,因此不能实现自稳,但价格低廉是其最大的优势,而且支持固定翼模式,很多模友在玩。

KK flycam是韩国的模友在KK的基础上开发的,添加了加速度计,用了更好一点的陀螺仪,因此能实现自稳,价格为145美元,目前国内卖得一般是其山寨版本,功能差不多,只有280左右。

EAGLE N6是国内一个团队刚刚研发的,使用的AVR单片机且效果很不错,支持8种飞行模式,每次启动只需要将拨码开关拨至指定模式就完成了模式的切换,且其288元的价格得到了很多模友的追捧,美中不足的是其没有加速度计,不能实现自稳,航拍性能不好。

/item.htm?id=12801941326玉兔飞控也是近期比较热门的一种飞控,由国外模友研发,采用ARM处理器,售价为288元,性价比较高。

功能特点:•主处理器,ARM32位,主频50MHZ•可以支持140g的mini小4轴,要知道小4轴比大4轴更“贼”哦。

•板载高精度数字3轴陀螺仪和3轴加速度计,实现自动稳定和自动平衡。

•8路接收通道,除了主要的4个摇杆通道外,还可以定义辅助开关通道或云台控制通道。

四轴飞行器可行性分析

四轴飞行器可行性分析

四轴飞行器可行性分析四轴飞行器是一种以四个螺旋桨为主要动力装置的飞行器,受到了越来越多的关注和应用。

下面从技术可行性、市场可行性、安全可靠性以及法规可行性四个方面对四轴飞行器的可行性进行分析。

一、技术可行性:1. 翻滚稳定性:四轴飞行器通过通过调节四个电机的旋转速度来达到平衡和控制,飞行器需要具备良好的翻滚稳定性才能完成各种任务。

随着控制算法的发展,飞控系统可以更好地实现飞行器的稳定性控制,因此四轴飞行器在技术上是可行的。

2. 载荷承载能力:四轴飞行器的载荷承载能力相对较小,一般用于携带摄像头、轻负载和小型设备等。

但随着材料和结构的改进,以及电机和电力系统的提升,四轴飞行器的载荷承载能力也在不断增强,已能够满足许多商业和军事应用的需求。

3. 飞行风速限制:四轴飞行器的飞行受到风速限制,一般情况下可承受的风速为4-6级。

在较强风速时,飞行器受到风力的影响容易偏离目标轨迹,甚至造成失控,所以需要考虑风速对飞行器可行性的影响。

二、市场可行性:1. 民用应用:四轴飞行器在民用领域有广泛的应用前景,如航拍、地形测量、农业植保等。

越来越多的专业摄影师、地理测绘单位和农业生产者开始采用四轴飞行器进行工作,市场需求逐渐增长。

2. 娱乐消费品:四轴飞行器也被作为一种娱乐消费品,面向普通消费者销售。

随着技术的发展,四轴飞行器的价格逐渐下降,成为日常娱乐消遣的选择之一,市场潜力巨大。

三、安全可靠性:1. 飞行安全:四轴飞行器有时会出现飞行不稳定、飞行器失控等情况,这会带来一定的安全隐患。

因此,四轴飞行器需要具备可靠的飞行控制系统、传感器和自动导航系统,以减少飞行事故发生的可能性。

2. 电池寿命:四轴飞行器需要通过电池供电,而电池寿命有限,一般情况下仅能维持较短的飞行时间。

这对于商业应用来说可能限制了其实际操作时间,需要在技术上做进一步改进。

四、法规可行性:1. 航空法规:四轴飞行器作为一种无人机,其操作涉及航空法规的约束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四轴飞行器报告(高级篇)姓名: 阿力木江艾合买提江高瞻完成日期: 2014年12月29日星期一报告内容1.姿态解算用到的常用数学方法和处理手段2.自动控制原理PID和系统建模姿态解算用到的常用数学方法和处理手段姿态有多种数学表示方式,常见的是四元数,欧拉角,矩阵和轴角。

他们各自有其自身的优点,在不同的领域使用不同的表示方式。

在四轴飞行器中使用到了四元数和欧拉角。

四元数是由爱尔兰数学家威廉·卢云·哈密顿在1843年发现的数学概念。

从明确地角度而言,四元数是复数的不可交换延伸。

如把四元数的集合考虑成多维实数空间的话,四元数就代表着一个四维空间,相对于复数为二维空间。

四元数大量用于电脑绘图(及相关的图像分析)上表示三维物件的旋转及方位。

四元数亦见于控制论、信号处理、姿态控制、物理和轨道力学,都是用来表示旋转和方位。

相对于另几种旋转表示法(矩阵,欧拉角,轴角),四元数具有某些方面的优势,如速度更快、提供平滑插值、有效避免万向锁问题、存储空间较小等等。

以上部分摘自维基百科-四元数。

莱昂哈德·欧拉用欧拉角来描述刚体在三维欧几里得空间的取向。

对于在三维空间里的一个参考系,任何坐标系的取向,都可以用三个欧拉角来表现。

参考系又称为实验室参考系,是静止不动的。

而坐标系则固定于刚体,随着刚体的旋转而旋转。

以上部分摘自维基百科-欧拉角。

下面我们通过图例来看看欧拉角是如何产生的,并且分别对应哪个角度。

姿态解算的核心在于旋转,一般旋转有4种表示方式:矩阵表示、欧拉角表示、轴角表示和四元数表示。

矩阵表示适合变换向量,欧拉角最直观,轴角表示则适合几何推导,而在组合旋转方面,四元数表示最佳。

因为姿态解算需要频繁组合旋转和用旋转变换向量,所以采用四元数保存组合姿态、辅以矩阵来变换向量的方案。

总结来说,在飞行器中,姿态解算中使用四元数来保存飞行器的姿态,包括旋转和方位。

在获得四元数之后,会将其转化为欧拉角,然后输入到姿态控制算法中。

姿态控制算法的输入参数必须要是欧拉角。

AD值是指MP U6050的陀螺仪和加速度值,3个维度的陀螺仪值和3个维度的加速度值,每个值为16位精度。

AD值必须先转化为四元数,然后通过四元数转化为欧拉角。

这个四元数可能是软解,主控芯片(STM32)读取到AD值,用软件从AD值算得,也可能是通过MP U6050中的DMP硬解,主控芯片(STM32)直接读取到四元数。

具体参考《MP U60x0的四元数生成方式介绍》。

下面就是四元数软解过程,可以由下面这个框图表示:下面介绍一下四元数,然后给出几种旋转表示的转换。

这些运算在飞行器的代码中都会遇到。

四元数可以理解为一个实数和一个向量的组合,也可以理解为四维的向量。

这里用一个圈表示q是一个四元数(很可能不是规范的表示方式)。

四元数的长度(模)与普通向量相似。

下面是对四元数的单位化,单位化的四元数可以表示一个旋转。

四元数相乘,旋转的组合就靠它了。

旋转的“轴角表示”转“四元数表示”。

这里创造一个运算q(w,θ),用于把绕单位向量w转θ角的旋转表示为四元数。

通过q(w,θ),引伸出一个更方便的运算q(f,t)。

有时需要把向量f的方向转到向量t的方向,这个运算就是生成表示对应旋转的四元数的(后面会用到)。

然后是“四元数表示”转“矩阵表示”。

再次创造运算,用R(q)表示四元数q对应的矩阵(后面用到)。

多个旋转的组合可以用四元数的乘法来实现。

“四元数表示”转“欧拉角表示”。

用于显示。

使用MP U6050硬件DMP解算姿态是非常简单的,下面介绍由三轴陀螺仪和加速度计的值来使用四元数软件解算姿态的方法。

我们先来看看如何用欧拉角描述一次平面旋转(坐标变换):设坐标系绕旋转α角后得到坐标系,在空间中有一个矢量在坐标系中的投影为,在内的投影为由于旋转绕进行,所以Z坐标未变,即有。

转换成矩阵形式表示为:整理一下:所以从旋转到可以写成上面仅仅是绕一根轴的旋转,如果三维空间中的欧拉角旋转要转三次:上面得到了一个表示旋转的方向余弦矩阵。

不过要想用欧拉角解算姿态,其实我们套用欧拉角微分方程就行了:上式中左侧,,是本次更新后的欧拉角,对应row,pit,yaw。

右侧,是上个周期测算出来的角度,,,三个角速度由直接安装在四轴飞行器的三轴陀螺仪在这个周期转动的角度,单位为弧度,计算间隔时T陀螺角速度,比如0.02秒0.01弧度/秒=0.0002弧度。

间因此求解这个微分方程就能解算出当前的欧拉角。

前面介绍了什么是欧拉角,而且欧拉角微分方程解算姿态关系简单明了,概念直观容易理解,那么我们为什么不用欧拉角来表示旋转而要引入四元数呢?一方面是因为欧拉角微分方程中包含了大量的三角运算,这给实时解算带来了一定的困难。

而且当俯仰角为90度时方程式会出现神奇的“GimbalLock”。

所以欧拉角方法只适用于水平姿态变化不大的情况,而不适用于全姿态飞行器的姿态确定。

四元数法只求解四个未知量的线性微分方程组,计算量小,易于操作,是比较实用的工程方法。

我们知道在平面(x,y)中的旋转可以用复数来表示,同样的三维中的旋转可以用单位四元数来描述。

我们来定义一个四元数:我们可以把它写成,其中,。

那么是矢量,表示三维空间中的旋转轴。

w是标量,表示旋转角度。

那么就是绕轴旋转w 度,所以一个四元数可以表示一个完整的旋转。

只有单位四元数才可以表示旋转,至于为什么,因为这就是四元数表示旋转的约束条件。

而刚才用欧拉角描述的方向余弦矩阵用四元数描述则为:所以在软件解算中,我们要首先把加速度计采集到的值(三维向量)转化为单位向量,即向量除以模,传入参数是陀螺仪x,y,z值和加速度计x,y,z值:下面把四元数换算成方向余弦中的第三行的三个元素。

刚好vx,vy,vz 其实就是上一次的欧拉角(四元数)的机体坐标参考系换算出来的重力的单位向量。

axyz是机体坐标参照系上,加速度计测出来的重力向量,也就是实际测出来的重力向量。

axyz是测量得到的重力向量,vxyz是陀螺积分后的姿态来推算出的重力向量,它们都是机体坐标参照系上的重力向量。

那它们之间的误差向量,就是陀螺积分后的姿态和加计测出来的姿态之间的误差。

向量间的误差,可以用向量叉积(也叫向量外积、叉乘)来表示,exyz就是两个重力向量的叉积。

这个叉积向量仍旧是位于机体坐标系上的,而陀螺积分误差也是在机体坐标系,而且叉积的大小与陀螺积分误差成正比,正好拿来纠正陀螺。

(你可以自己拿东西想象一下)由于陀螺是对机体直接积分,所以对陀螺的纠正量会直接体现在对机体坐标系的纠正。

用叉积误差来做P I修正陀螺零偏四元数微分方程,其中T为测量周期,为陀螺仪角速度,以下都是已知量,这里使用了一阶龙哥库塔求解四元数微分方程:最后根据四元数方向余弦阵和欧拉角的转换关系,把四元数转换成欧拉角:所以有:四轴的姿态解算无疑是最繁琐的步骤没有之一,但是自从MP U6050出现了硬件DMP的时候,大妈都能完成姿态解算了!飞行器使用了MP U6050自带的硬件四元数单元,可以通过IIC直接读取四元数,省却了软件解算繁琐的算法步骤,非常方便易用。

这里还是要首先介绍下四元数,四元数要说的实在太多,因为它的优点很多,利用起来很方便,但是理解起来就有点蹩脚了。

我们百度四元数,一开始看到的就是四元数来历,还有就是四元数的基本计算。

对于来历,还是想说一下,四元数(Quaternions)是由威廉·卢云·哈密尔顿(William Row anHamilton,1805-1865)在1843 年爱尔兰发现的数学概念。

将实数域扩充到复数域,并用复数来表示平面向量,用复数的加、乘运算表示平面向量的合成、伸缩和旋,这就是我们熟知的复数的二维空间含义,所以人们会继续猜想,利用三维复数不就可以表达三维空间的变换了吗,历史上有很多数学家试图寻找过三维的复数,但后来证明这样的三维复数是不存在的。

有关这个结论的证明,我没有查到更明确的版本,据《古今数学思想》中的一个理由,三维空间中的伸缩旋转变换需要四个变量来决定:两个变量决定轴的方向,一个变量决定旋转角度,一个变量决定伸缩比例。

这样,只有三个变量的三维复数无法满足这样的要求。

但是历史上得到的应该是比这个更强的结论,即使不考虑空间旋转,只从代数角度来说,三维的复数域作为普通复数域的扩张域是不存在的。

并且,据《古今数学思想》叙述,即使像哈密尔顿后来引入四元数那样,牺牲乘法交换律,这样的三维复数也得不到。

经过一些年的努力之后,Hamilton 发现自己被迫应作两个让步,第一个是他的新数包含四个分量,而第二个是他必须牺牲乘法交换律。

(《古今数学思想》第三册177 页)但是四元数用作旋转的作用明显,简化了运算,而且避免了Gimbal Lock,四元数是最简单的超复数,我们不能把四元数简单的理解为3D 空间的矢量,它是4 维空间中的的矢量,也是非常不容易想像的。

我们知道在平面(x,y)中的旋转可以用复数来表示,同样的三维中的旋转可以用单位四元数来描述。

我们来定义一个四元数:我们可以把它写成,其中,。

那么V是矢量,表示三维空间中的旋转轴。

w是标量,表示旋转角度。

那么就是绕轴V旋转w度,所以一个四元数可以表示一个完整的旋转。

只有单位四元数才可以表示旋转,至于为什么,因为这就是四元数表示旋转的约束条件。

所以大家可以理解为,单位四元数能够表示旋转。

我们给出一组单位四元数和欧拉角的转换关系,通过这个关系来将采集到的四元数转化成欧拉角,原理将在软件解算中给出,这里直接使用就可以了:所以在四轴飞行器中,传感器读取到四元数,首先应先将它归一化成单位四元数:归一化后根据四元数和欧拉角转换公式把四元数转化为欧拉角,OK,硬件姿态解算完成!自动控制原理PID和系统建模PID控制算法四轴如何起飞的原理四轴飞行器的螺旋桨与空气发生相对运动,产生了向上的升力,当升力大于四轴的重力时四轴就可以起飞了。

四轴飞行器飞行过程中如何保持水平:由于四个电机转向相同,四轴会发生旋转。

我们控制四轴电机1和电机3同向,电机2电机4反向,刚好抵消反扭矩,巧妙的实现了平衡:实际上由于电机和螺旋桨本身制造的差异我们无法做到四个电机转速完全相同,如果我们控制同样的转速很有可能飞行器起飞之后就侧翻了。

由于电机的不平衡,在人眼的观察下发现飞机向右侧翻,我们控制右侧电机1电机2提高转速增加升力,飞机归于平衡。

由于飞机是一个动态系统,在接下来我们会一直重复:观察->大脑计算->控制->观察->大脑计算->控制这个过程。

但事实上这是不可能的,因为人无法长时间精确的同时控制四个电机。

我们需要一个自动反馈系统替代人操作来完成飞机的自稳定,我们人只需要控制飞机的方向和高度就可以了。

相关文档
最新文档