各表面处理工艺涂层厚度
表面处理层厚度测定

测定表面层厚度有无损法和破坏法两大类。
无损法包括质量法、磁性法、涡流法、 射线反射法、X射线荧光法、双光束显微镜法、机械量具法等。
破坏法包括金相显微镜法、溶液法、液流法、点滴法、库仑法、轮廓仪法、干涉显微镜法、辉光放电光谱法、俄歇能普法等。
由于各种测量方法基于不同的机理和数学模式,因此就会得到不一致的检测结果。
为了明确膜厚测量的结果所代表的意义,通常必须注明测定方法。
以下介绍三种实用方法。
(1)通过涂层厚度仪测定不同的表面处理得到的涂层成分、厚薄有较大的差异,涂层的性质也有差异,基体镁合金是导电的,表面层多为不导电的氧化物或其他非导体,可以选择不同的涂层测厚仪进行非破坏性的测定。
例如光学法的位相差显微镜、多光束干涉、椭圆仪等;电学法的直流电流测定仪、涡流电流测定仪、石英晶体振荡仪等;质量法的微量天平测定仪;机械法的空气测微器、触针式光洁测定器等等(2)金相观测法这种方法适合测定较厚的表面层,需要将样件进行剖面分析,在样件的制备过程中,必须尽可能使剖面于表面垂直,不倒角,经腐蚀厚使表面层与基体镁合金有明显的界面,然后通过金相显微镜放大测试表面层的厚度。
(3)辉光放电光普法这是一种新型涂镀层厚度测试方法。
辉光放电光谱法要使用辉光放电光谱仪。
辉光放电光谱仪是通过离子溅射将表面层原子逐渐溅射剥蚀(有些类似于俄歇能谱仪,但剥蚀速度远远大于俄歇能谱仪),通过光电信号的转换,可以得到涂层成分沿其厚度的分布曲线。
从成分的陡变来分析判定涂层或膜层的厚度,可以分析10nm到上百微米厚,整个分析过程根据精度要求和剥蚀深度可从几分钟到几十分钟。
样件不需特殊准备,是进行镁合金表面厚度以及成分分析的一种有效方法。
当表面层总的厚度均不超过1mm时,可采用显微硬度计进行测定;当膜层低于几个微米时,显微硬度计无法测得,只有通过纳米试验机。
常用表面处理工艺

通过物理、化学方法,使添加材料在基体表面形成镀、涂层。 基材不参与涂层的形成。
UW-自动化工程部
三、常见的表面处理方法
3.1 表面改性技术
通过物理、化学等方法,改变材料表面的形貌、相组成、微观结 构、缺陷状态、应力状态。材料表面化学组成不变。
磷化处理零件
UW-自动化工程部
名称
处理条件
发黑
Байду номын сангаас
在浓碱溶液中煮沸 (135°-155°),生成四 氧化三铁氧化膜
颜色
膜特性
黑色(蓝色/ 膜厚度0.5-1.6um, 黑蓝色) 吸附性好
耐腐 蚀性
实际应用
金属热处理的一种常用手段,原理是 差 使金属表面产生一层氧化膜,以隔绝
空气,达到防锈目的;
磷化
在磷酸盐溶液中发生化学 反应,生成结晶性磷酸盐 膜
UW-自动化工程部
喷砂处理是利用高速喷射出的砂粒或铁粒,对工件表面进行撞击,以提高零件的部
分力学性能和改变表面状态的工艺方法。
UW-自动化工程部
喷砂与喷丸处理,工艺相似,主要差别在沙粒直径上。该工艺主要应用于提高零件机
械强度以及耐磨性、抗疲劳和耐蚀性等,还可用于表面消光、去氧化皮和消除铸、锻、焊
件的残余应力等。
3.3 表面转化膜技术
UW-自动化工程部
通过化学方法,使添加材料与基体发生化学反应,形成转化膜。
3.3.1 钢铁的发黑与磷化处理 3.3.2 不锈钢着色 3.3.3 铜及铜合金着色 3.3.4 铝合金的氧化与着色处理
3.3.1 钢铁的发黑与磷化处理
UW-自动化工程部
材料表面处理工艺

材料表面处理工艺一、表面处理分以下方式:1、机械表面处理:喷砂、拉丝、机械抛光、压纹、喷涂、抛丸、磨光、刷光、刷漆、抹油化学表面处理:QPQ处理、光中氮化、铬化、镀铬、镀锌、化学镀镍、化学抛光、发黑/发蓝、酸洗2、电化学表面处理:阳极氧化、磷化、电化学镀镍、电化学抛光、电泳。
现代化超硬化表面处理:TD覆层处理、物理气相沉积(PVD)、物料化学气相沉积(PCVD)、化学气相沉积(CVD)3、其他类型表面处理:离子镀膜、离子注入、激光表面处理二、机械表面处理说明:1、喷砂:利用高速砂流的冲击作用清理和粗化零件表面,行成哑光珍珠银面。
特点:提高工件抗疲劳性,增加工件与涂层的附着力,延长涂层的耐久性,利于涂料的流平和装饰、表面易脏。
用途:可适用所有黑色金属及铝合金材料进行表处前进行或者不锈钢钣金表面。
2、拉丝:通过研磨产品在工件表面形成线纹,起到装饰效果的表面处理,形成缎面效果,体现金属材料的质感3、机械抛光:利用抛光工具和磨料颗粒或其它抛光介质对工件表面进行修饰加工,降低表面粗糙度,获得光亮、平整表面的加工方式。
4、压纹:压制各种纹理5、喷涂:覆盖其他非金属涂层。
钢钣金常用喷涂颜色:大波纹米白色静电喷涂、表面粉末静电喷涂黑色亚光、黑色细砂纹静电喷涂三、化学表面处理说明:1、QPQ:将黑色金属放入两种性质不同的盐浴中,通过多种元素渗入金属表面形成复合渗层,使表面改性的目的。
特点:良好的耐磨性和耐疲劳性;良好的抗腐蚀性;变形小;时间周期短;无公害。
误差可保持在0.005mm。
颜色:亮黑色用途:可适用所有黑色金属材料。
2、光中氮化:QPQ升级工艺,将钢或不锈钢放入由多种元素混合的盐浴中进行渗透处理,可达到淬火的硬度,特点:比QPQ优点在于完全不变形,硬度更高,深度更深,效率高,不需要抛光用途:可氮化精度高、非标及大型零部件。
2、铬化:用铬盐酸溶液与金属作用在表面生成三价或六价铬化层特点:耐腐蚀性、提高零件与有机涂层或者与无机覆盖层的结合力,吸附性好颜色:本色、金黄色、绿色用途:铝、镁及其合金3、镀铬:在零件表面镀上一层金属铬,厚度一般为20um,表面形成钝化膜,特点:硬度高、耐磨性好、耐高温和耐腐蚀。
介绍涂装等级及其质量要求、工艺过程,并介绍涂装工艺的设计步骤

D 涂层的配套性
(4)确定涂装工艺 (4)确定涂装工艺
漆前表面处理、涂料涂布操作在整个涂装工 程费用中所占的比例很大,一般比涂料本身的费 用高一倍以上,所以设计涂装工艺时要考虑涂装 施工的总成本核算。选择涂装工艺的各工序和设 备后,经过多种方案的比较和价值工程的计算, 最后确定涂装工艺。使用的涂料品种不同,需要 的施工工艺和方法也不同。
质量要求
除具有一般装饰作用之外,主要是防止金属 腐蚀,涂膜不应有皱皮,流痕,露底,外来杂质 及其他降低保护和装饰的的污浊等,允许有轻微 的擦伤和刷纹等。
工艺过程
表面处理 涂底漆 涂装1至2层面漆
一般保护性涂层(IV) 一般保护性涂层(IV)
一般保护性涂层(IV) 主要是供一般防腐蚀 用,装饰性无要求或要求较低,如用于使用条件 不十分苛刻的(室内或机内)制品或部件、管道的 涂层。
选择涂装方法的 选择涂装方法的注意事项 a产品形状
形状简单的零件涂装适应性好,能够采用的 涂装方法也多。形状复杂的零件,特别是具有箱 式结构的产品要特别注意选择合适的施工方法。
b生产批量
大批量生产多采用静电喷涂或电泳涂装,小 批量生产可采用喷涂、浸涂等。
c 低材
不同的底材要求的漆前表面处理方法不同, 喷涂用的底漆也不同。
质量要求
涂膜面平滑,光亮如镜,无细微颗粒,擦伤, 裂纹,起皱,起泡及其他肉眼可见的缺陷,并有 足够的机械强度,外观美丽。
工艺过程
表面处理 腻子 打磨 抛光 打蜡 涂底漆 局部或全部填刮 涂装3至9层面漆
二级涂层(II)
二级涂层,又称装饰性涂层。虽然较 一级涂层水平稍低,仍具有很好的装饰效 果。按二级涂层涂装的有载重汽车和拖拉 机驾驶室与覆盖件、客车和火车车厢、机 床、自行车等。二级涂层由底漆、2~3道 面漆配套组成。
表面处理喷涂规范

涂装要求1. 涂装说明涂装的主要目的是为了防腐保护,延长设备及管道、材料的使用寿命,同时也具有区分设备及管道的功能、具有装饰美观,协调环境的作用。
为此设备制造厂家及施工单位必须严格按照本规定的涂漆品种,颜色,涂层结构,涂饰工艺进行施工,确保涂装质量。
1.1涂装施工要求按本规定涂装技术条件执行。
1.2对涂饰方法采用喷涂,确保涂装质量。
1.3本规定面漆色彩为设备的主颜色(详见表1),允许制造厂家在同一设备中局部使用不同颜色。
表11.4对某些设备及构件特殊部位或部件,尚须着其他色彩以装饰、警戒、转向、安全等标志。
(如操作手轮、阀门、联轴器、行轮轮廓和安全罩栏杆等)详见表2:表21.5涂装质量的验收标准⑴所用涂料类别符合设计要求;⑵表面处理、涂层结构、工艺符合JB/T 5000.12-1998标准;⑶面漆色彩符合色标;⑷表面漆膜均匀、平整、光亮、无针孔、气泡、裂纹、脱落、流挂、漏涂等缺陷。
1.6涂装所要求的漆膜颜色以GB3181-1995为准。
(详见该标准中的第4条)。
1.7在本文1.2中,对标准设备的涂装标明了面漆色彩的要求。
其涂层结构遵照表3中I、II、III类标准。
表3注: 1).表中涂层厚度为总厚度。
2).氯磺化聚乙烯涂料型号:底漆:J52-81 中间漆:J52 面漆:J52-61。
3).氯化橡胶涂料型号:底漆:LJ06-1 面漆:LJB04-2。
2. 涂装技术要求2.1涂装前物体表面处理:2.1.1各设备应采用喷砂除锈,处理质量不低于Sa2级或SSPC-SP6级(详见附录A及附录B)。
2.1.2各管道及金属结构件不论采用何种除锈方式,处理质量不低于St3级(详见附录A)要求。
2.1.3凡与高温直接接触的钢铁制件表面,表面不进行涂装或镀覆保护层时,处理质量必须达到St2级(详见附录A)。
2.1.4与混凝土接触或埋入其中的钢铁部件不必进行涂装。
2.1.5尺寸与重量较大的零件,可进行手工除锈,并达到St3级(详见附录A)。
铝合金型材表面处理技术要求

铝合金型材采用阳极氧化、电泳涂漆、粉末喷涂、氟碳喷涂进行表面处理时应符合现行国家标准《铝合金建筑型材》GB/T5237规定的质量要求,表面处理层的厚度应满足下表要求铝合金型材表面处理层的厚度7.7.1阳极氧化1.阳极氧化膜的厚度级别应根据使用环境加以选择,其要求应符合下表的规定,并在合同中注明。
未注明时,门窗型材符合AA10级,幕墙型材符合AA15级。
2.氧化膜的封孔质量采用磷铬酸侵蚀重量损失法试验,失重不大于30㎎/d㎡3.阳极氧化膜的耐蚀性采用铜加速醋酸盐雾试验(CASS)和滴碱试验检测,耐磨性采用落沙试验检测,结果应符合下表规定4.氧化膜的耐候性采用313B荧光紫外灯人工加速老化试验测试,经300h连续照射后,电解着色膜色差至少应达到1级,有机着色膜色差至少应达到2级。
5.产品表面不允许有电灼伤、氧化膜脱落等影响使用的缺陷。
距型材端头80mm以内允许局部无膜或电灼伤7.7.2粉末喷涂1.喷粉型材的牌号、状态和规格,应符合GB5237.1的规定。
涂层种类为热固化饱和聚酯粉末涂层2.基材喷涂前,其表面应进行预处理,以提高基体与涂层的附着力。
化学转化膜应有一定的厚度,当采用铬化处理时,铬化转化膜的厚度应控制在200㎎/㎡~1300㎎/㎡范围内(用重量法测定)3.涂层性能1)光泽涂层的60°光泽值应于合同一致。
光泽值≥80个光泽单位的高光产品,其允许偏差不得超过±10个光泽单位,其它产品允许偏差为±7个光泽单位2)颜色和色差涂层颜色应与合同规定的标准色板基本一致。
使用仪器测定时,单色粉末的涂层与标准色板间的色差△Eab≤1.5,同一批产品之间的色差△Eab≤1.5。
3)涂层厚度装饰面上的涂层最小局部厚度≥40μm注:由于挤压型材横截面形状的复杂性,致使型材某些表面(如内角、横沟等)的涂层厚度低于规定值是允许的装饰面上涂层最大厚度≤120μm4)压痕试验涂层经压痕试验,其抗压痕性≥805)附着力涂层经划格试验其附着力应达到0级6)耐冲击性涂层整面经冲击试验后应无裂开和脱落现象,但在四面的周边允许有细小皱纹7)杯突试验结果涂层经压痕深度为6mm的杯突试验后,应无裂开和脱落的现象8)抗弯曲性涂层经曲率半径为3mm,弯曲180°后,应无开裂和脱落现象9)耐化学稳定性耐酸碱性:涂层经盐酸试验后,目视检查表面不应有气泡和其他明显变化耐溶剂性:经二甲苯试验后,涂层应无软化及其他明显变化耐灰浆性:涂层经灰浆试验后,其表面不应有脱落和其他明显变化耐盐雾腐蚀性在带有交叉划痕的试板上,经1000h乙酸盐雾试验(ASS试验)后,先对交叉划线两侧各2.0mm以外部分进行目视检查,其涂层不应有腐蚀现象。
pcb各种表面处理厚度标准

PCB各种表面处理厚度标准1.镀铜厚度镀铜厚度是PCB表面处理中的重要参数之一,它直接影响到PCB的电气性能和可靠性。
根据不同的表面处理要求,镀铜厚度也会有所不同。
一般来说,常规的镀铜厚度在1-35μm之间。
对于一些高可靠性要求的应用,镀铜厚度可能会达到50μm以上。
2.涂层厚度涂层厚度也是PCB表面处理中的重要参数之一。
涂层的主要作用是保护PCB表面,防止氧化和腐蚀。
根据不同的涂层材料和工艺,涂层厚度也会有所不同。
一般来说,常规的涂层厚度在1-10μm之间。
对于一些高可靠性要求的应用,涂层厚度可能会达到20μm以上。
3.线路厚度线路厚度是指PCB上的导线厚度。
线路厚度直接影响到导线的电阻和载流能力。
根据不同的应用和工艺要求,线路厚度也会有所不同。
一般来说,常规的线路厚度在0.2-1.6mm之间。
对于一些高可靠性要求的应用,线路厚度可能会达到0.03mm以下。
4.焊盘厚度焊盘厚度是指PCB上用于焊接电子元件的金属片厚度。
焊盘厚度直接影响到焊接质量和可靠性。
根据不同的应用和工艺要求,焊盘厚度也会有所不同。
一般来说,常规的焊盘厚度在0.2-0.8mm之间。
对于一些高可靠性要求的应用,焊盘厚度可能会达到1mm以上。
5.孔壁厚度孔壁厚度是指PCB上钻孔后形成的金属壁厚度。
孔壁厚度直接影响到PCB 的机械强度和电气性能。
根据不同的应用和工艺要求,孔壁厚度也会有所不同。
一般来说,常规的孔壁厚度在0.1-0.5mm之间。
对于一些高可靠性要求的应用,孔壁厚度可能会达到0.8mm以上。
6.阻焊膜厚度阻焊膜是一种用于保护PCB表面导线和其他敏感区域的薄膜。
阻焊膜厚度直接影响到其保护效果和可靠性。
根据不同的应用和工艺要求,阻焊膜厚度也会有所不同。
一般来说,常规的阻焊膜厚度在0.03-0.2mm之间。
对于一些高可靠性要求的应用,阻焊膜厚度可能会达到0.3mm以上。
7.字符高度字符高度是指在PCB上打印元件标识、编号等信息的字体高度。
电镀镀层厚度标准

电镀镀层厚度标准电镀是一种常见的表面处理工艺,通过在金属表面沉积一层金属或合金,来改善其表面性能和装饰效果。
而电镀镀层的厚度是影响其性能的重要因素之一。
在工业生产中,为了保证电镀产品的质量和稳定性,制定了一系列的电镀镀层厚度标准。
首先,不同的电镀材料和工艺会对镀层厚度有不同的要求。
例如,一般的镀铬层厚度一般在0.5-1.0μm之间,而对于一些高要求的产品,如汽车零部件,其镀层厚度可能需要在20μm以上。
这是因为不同的产品对于耐腐蚀性、耐磨损性、导电性等性能的要求不同,因此需要制定相应的镀层厚度标准。
其次,电镀镀层厚度的标准还受到国家标准和行业标准的影响。
国家标准是针对全国范围内的产品生产和质量监督制定的,而行业标准则是针对特定行业或特定产品的标准。
这些标准的制定是为了保证产品的质量和安全,对于电镀镀层厚度也有着具体的规定和要求。
另外,电镀镀层厚度的测量方法也是至关重要的。
常见的测量方法有磁感应法、X射线荧光法、涂层厚度计等。
这些方法各有优劣,需要根据实际情况选择合适的测量方法来确保测量结果的准确性和可靠性。
此外,电镀镀层厚度的标准化管理也是十分重要的。
在生产过程中,需要建立健全的质量管理体系,制定相应的工艺流程和操作规范,对生产过程进行严格的控制和监督,以确保产品的镀层厚度符合标准要求。
总的来说,电镀镀层厚度标准是保证产品质量和性能稳定的重要保障。
只有严格遵守相关标准要求,合理选择镀层材料和工艺,科学合理地进行测量和管理,才能生产出质量优良的电镀产品,满足市场和客户的需求。
因此,各生产企业和相关部门应加强标准化管理,提高对电镀镀层厚度标准的认识和执行力度,推动电镀行业的健康发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用各种工艺提高工具和精密元件的表面质量,并改进它们的特性和性能。
如果将通常所用的涂层工艺的属性与我们的表面处理工艺的属性相比较,则欧瑞康巴尔查斯所用的PVD和PACVD工艺会显示出明显的优势。
表面处理方法的涂层厚度和沉积温度
1 等离子喷涂
2 电解和化学沉积
3 磷酸盐化
4 氮化(白色涂层)
5 硼化
6 CVD
7 PVD,PACVD
8 P3e TM
PVD=物理气相沉积
PACVD=等离子增强化学气相沉积
P3e TM = 强脉冲电弧蒸发
执行这些工艺时,将工具或元件置于处理腔中,然后抽空该腔的空气以形成真空。
只有在真空条件下,具有定义的成分和特定属性的几微米厚涂层才能反复沉积。