第九讲(1)-机器人动力学--拉格朗日方程
分析力学基础-拉格朗日方程

其他应用领域
要点一
机器人学
在机器人学中,拉格朗日方程被用于描述机器人的运动规 律。通过建立机器人运动的拉格朗日方程,可以求解出机 器人的关节角度和速度,为机器人的运动控制提供理论依 据。
要点二
生物力学
在生物力学中,拉格朗日方程也被应用于描述生物体的运 动规律。例如,在分析动物的运动行为或人体姿势控制时 ,可以使用拉格朗日方程来描述生物体的运动状态和变化 规律。
解析解法的优缺点分析
优点
解析解法可以得到系统的精确解,适用 于简单模型和特定条件下的复杂模型。
VS
缺点
对于复杂模型,解析解法可能非常困难甚 至无法求解,需要借助数值方法或其他近 似方法。
04
拉格朗日方程的数值解法
数值解法的概念和步骤
概念
数值解法是一种通过数学计算来求解数学问 题的方法,它通过将问题离散化,将连续的 问题转化为离散的问题,然后使用计算机进 行计算求解。
步骤
1.建立数学模型:根据实际问题建立数学模 型,将实际问题转化为数学问题。2.离散化 :将连续的问题离散化,将连续的时间和空 间划分为若干个小的单元,每个单元称为一 个网格点或节点。3.求解离散化后的方程: 使用数值方法求解离散化后的方程,得到每 个网格点的数值解。4.后处理:对计算结果 进行后处理,提取所需的信息,并进行分析
分析力学基础-拉格 朗日方程
目录
• 引言 • 拉格朗日方程的推导 • 拉格朗日方程的解析解法 • 拉格朗日方程的数值解法 • 拉格朗日方程的应用领域
01
引言
拉格朗日方程的背景和重要性
背景
拉格朗日方程是分析力学中的基 本方程,它描述了系统的运动规 律。
重要性
拉格朗日方程在理论物理、工程 技术和科学研究等领域有着广泛 的应用,是理解和研究复杂系统 运动行为的关键工具。
四足机器人动力学建模拉格朗日动力学

四足机器人动力学建模:拉格朗日动力学引言在机器人领域中,四足机器人是一种常见的机器人类型。
它们具有四条腿和能够模拟和模仿动物行走的能力。
为了实现自主步行和平稳运动,我们需要对四足机器人的动力学进行建模和分析。
本文将介绍使用拉格朗日动力学方法对四足机器人进行建模的过程和步骤。
拉格朗日动力学简介拉格朗日动力学是一种描述系统动力学行为的方法。
它基于拉格朗日原理,通过最小化系统的运动方程,求解系统中的广义坐标和约束力。
在机器人动力学中,拉格朗日动力学方法被广泛应用于建模和控制。
四足机器人动力学建模步态与坐标系在进行四足机器人动力学建模之前,首先需要确定机器人的步态和坐标系。
通常,四足机器人的步态可以分为步行和跑步两种模式。
对于步行模式,机器人的步态可以简化为前后左右四个联系稳定的点。
在这种情况下,机器人的坐标系可以选择为正前方为x轴正方向,右侧为y轴正方向,地面为z轴正方向。
运动学分析在进行动力学建模之前,需要进行机器人的运动学分析。
运动学分析可以得到机器人各个关节的位置、速度和加速度信息。
这些信息对于后续的动力学建模非常重要。
动力学建模操作要素在进行动力学建模之前,需要确定机器人系统的操作要素。
这些要素包括机器人的质量、惯性、关节约束等。
通过对这些要素的分析和建模,可以得到机器人的整体动力学方程。
拉格朗日方程拉格朗日动力学方法使用拉格朗日方程来描述系统的运动方程。
拉格朗日方程可以通过系统的动能和势能表达式得到。
对于四足机器人,为了简化模型,通常可以假设机器人为刚体,并且忽略其柔软特性。
拉格朗日方程的形式如下:L = T - V其中,L为拉格朗日函数,T为系统的动能,V为系统的势能。
动力学模拟通过对拉格朗日方程进行求解,可以得到系统的运动方程。
为了模拟机器人的动力学行为,可以使用数值方法进行迭代求解。
常见的数值方法有欧拉法和中点法等。
结论通过拉格朗日动力学方法进行建模,可以得到四足机器人的运动方程和动力学模拟。
机器人操作的数学导论——机器人动力学1

2、开链机器人动力学
2.1 开链机器人的拉格朗日函数 计算n个关节的开链机器人的动能,可将其中每一连杆动能求和, 定义一固连于第i杆质心的坐标系Li,则可得Li位形:
第i杆质心的物体速度为:
式中
ξ Ad1ˆ j j j
(e
e
ˆ i i
gsl i (0))
j
j i
为相对于第i连杆坐标系的第j个瞬时关节运动螺旋。
机器人的动力学及控制
1.拉格朗日方程
2.开链机器人动力学方程
1、拉格朗日方程
1.1 刚体的惯性 设V R3表示刚体的体积,ρ(r), r∈V是刚体的密度。如果物 体是均匀的,那么ρ(r)= ρ为常量。 刚体的质量可以表示为:
m (r )dV
V
刚体的质心是密度的加权平均:
r 1 (r )rdV mV
如图所示刚体,在质心建立 物体坐标系,g=(p,R)∈SE(3)为 物体相对于惯性坐标系的运动轨 迹,r∈R3为刚体上一点相对于 物体坐标系的坐标,现求刚体的 动能。
1、拉格朗日方程
1.1刚体的惯性 点在惯性坐标系的速度为:
物体的动能可用如下求得:
展开计算可得:
=
其中w为在物体坐标系中表示的刚体角速度,矩阵З ∈R3x3为物体坐标 系中的物体惯性张量
T=(1/2)VT
V=(1/2)(AdgV)T (Adg)-1
(AdgV)
=(AdgT)-1
选取三个坐标轴,使刚体的广义惯性矩阵为对角阵,则这三个轴 为刚体的惯性主轴。
1、拉格朗日方程
1.2 拉格朗日方程 定义拉格朗日函数示为:
式中T和V分别表示系统的动能和势能。 对于广义坐标为q∈Rm、拉格朗日函数为L的机械系统,其运动方 程为: 作用于第i个广 义坐标的外力 上式即为拉格朗日方程,将其写成矢量形式为:
理论力学-拉格朗日方程PPT

拉格朗日方程的推导
拉格朗日方程的推导基于哈密顿原则,通过对系统的运动原理进行最小作用 量的假设,推导出系统的运动方程。
拉格朗日方程的应用
拉格朗日方程在各个物理学和工程学领域都有广泛的应用,例如刚体动力学、 量子力学、控制理论等。
经典示例:单摆运动
单摆运动是拉格朗日方程应用的经典示例之一,通过建立摆角和摆长的关系,可以得到描述摆动的拉格 朗日方程。
拉格朗日方程的优点
相较于牛顿方程,拉格朗日方程具有独特பைடு நூலகம்优点,如坐标自由度更广、描述力学系统更简洁等。
拉格朗日方程在其他领域的应 用
除了物理学和工程学领域外,拉格朗日方程还在经济学、生物学等领域中有 着广泛的应用,为解决复杂问题提供了新的视角。
理论力学-拉格朗日方程 PPT
欢迎大家来到这个关于理论力学的PPT。本次内容将深入探讨拉格朗日方程的 定义、与牛顿方程的关系、推导方法、应用、经典示例和其他领域的应用。
拉格朗日方程的定义
拉格朗日方程是解决运动的一种优雅方法,通过定义拉格朗日函数和广义坐 标来描述系统的动力学行为。
拉格朗日方程与牛顿方程的关系
动力学方程 拉格朗日方程

dt
dt
dt
s
1
V q
q
dV dt
dT dV 0 dt dt
T+V=E=恒量
这就是力学体系的能量积分。
可见拉格朗日方程具有能量积分的条件是:受稳定的理想约束的完整系 ,只受保守力而且T、V中不显含t,这时体系的能量守恒。
(3)对于完整的保守的力学体系,受不稳定约束而且T、V 中不显含t情况的分析。
d dt
n i 1
mi
ri
ri q
n i1
mi
ri
ri q
d dt
n i 1
q
1 2
mi
ri
2
n i 1
q
1 2
mi ri 2
令
T
n i 1
1 2
mi ri 2
显然 T 是体系的动能,则有
P
d dt
T
q
T q
即
d dt
T q
T q
Q ,
1, 2, , s
y
Fy
j'
rP
解 方法一:
o
从定义式计算。 将定义式用于极坐标,因 粒子数 n=1,则
Qr
F
r r
r
Q F
F
i'
Fx
x
又因 x= r cos,y=r sin
则
x cos , y sin
r
Qr
F
r r
r
Fx
x r
Fy
y r
y
Fy
j'
F
i'
r P Fx
o
Q= r F(是力矩)
F
r o
理论力学—拉格朗日方程PPT

a1
3(m1
m2 gsin2 m2 )-2m2cos2
ar
2gsin (m1 m2 ) 3(m1 m2 )-2m2cos2
15
§18-2 拉格朗日(Lagrange)方程
由n个质点所 组成的质点系
主动力 虚位移
广义坐标 第i个质 点的位矢
F (F1, F2,, Fn )
r (r1,r2,,rn )
O1
x1
l
l
rA
rB
xA l cos yA l sin
FIA
A B FIB
m1g l
rC l m1g
xB l cos
C
yB l sin
m2g
yC 2l sin
y1
2m1lsin2lcos 2m1glsin 2m2glsin 0
2 (m1 m2 )g
m1lcos
10
例题3 质量为m1的三棱柱ABC
FIA
A B FIB
m1g l
rC l m1g
根据几何关系,有
C
m2g
xA lsin yA lcos
xA l cos
yA l sin
y1
xB lsin
xB l cos
yB lcos
yB l sin
yC 2lcos
yC 2l sin
9
3、应用动力学普遍方程
FIA δxA FIB δxB m1g δyA m1g δyB m2 g δyC 0
其次,要确定系统的自由度,选择合适的广义坐标。 按照所选择的广义坐标,写出系统的动能、势能或广 义力。
将动能或拉格朗日函数、广义力代入拉格朗日方程。
23
机器人学_第九讲 动力学及仿真实践

机器人学第九讲动力学及仿真实践黄之峰副教授广东工业大学2019-07-03主要内容:1,正逆动力学的意义2,逆动力学分析•拉格朗日法•牛顿欧拉法3,正动力学仿真•单位矢量法23机器人动力学是研究机器人的运动和作用力之间的关系。
机器人动力学的用途:机器人的最优控制:优化性能指标和动态性能,调整伺服增益;设计机器人:算出实现预定运动所需的力/力矩;机器人的仿真:根据连杆质量、负载、传动特征的动态性能仿真机器人是一个具有多输入和多输出的复杂动力学系统,存在严重的非线性,需要非常系统的方法来处理。
θ2θ1l 1l 2m 1m 2•逆动力学:机器人设计关节动力源选型。
前馈控制实现更好的轨迹跟踪。
正动力学数值计算•正动力学动力学仿真,评价及优化控制增益5用拉格朗日法建立机器人动力学方程的步骤1.选取坐标系,选定完全独立的广义关节变量2.选定相应关节上的广义力:当为位移变量时,则为力;当是角度变量时,则为力矩。
3.求出机器人各个构件的动能和势能,构造拉格朗日函数。
4.代入拉格朗日方程求得机器人系统的动力学方程),,2,1(n i q i i F i q i F i q 9θ2θ1l 1l 2m 1m 2p 2222y xθ2θ1l 1l 2m 1m 2θ2θ1l 1l 2m 1m 2θ2θ1l 1l 2m 1m 2θ2θ1l 1l 2m 1m 2θ2θ1l 1l 2m 1m 2θ2θ1l 1l 2m 1m 2θ2θ1l 1l 2m 1m 2θ2θ1l 1l 2m 1m 2θ2θ1l 1l 2m 1m 2常用的简化策略:1.当杆件质量不很大,重量很轻时,动力学方程中的重力项可以忽略。
2.当关节速度不很大,机器人不是高速机器人时,含向心力项,哥式力项等可以省略。
3.当关节加速度不很大,也就是关节电机的加减速不是很突然时,含有的项有可能给予省略,但是会影响机器人的循环作业时间。
21, 20θ2θ1l 1l 2m 1m 2p 2θ2θ1l 1l 2m 1mx y 0ˆ思考:酉矩阵的性质?ˆˆ T绕原点转思考1:匀速运动物体的角动量是否恒定?对于连续刚体则有:R刚体的运动分为相对于自身质心的转动以及质心的平动,这里指的标准姿态下的转动惯量是指相对于质心来计算的。
理论力学经典课件-第九章拉格朗日方程

9-2-2
拉氏方程基本形式
d T T = FQ j dt qj qj
故
j = 1,2,...k
为拉式第二类方程基本形式,以t为自变量, qj
为未知函数的二阶常微分方程组,2k个积分常量,
需2k个初始条件 q j 0 ,q j 0 。 关于 FQ 的计算
j
由 WF j FQ q j (见下述例题中) j (仅δqi≠0时,计算所有主动力虚功)
第九章 拉格朗日方程
9-2-1 两个经典微分关系
n个质点,s个完整约束,k=3n-s,
ri = ri q1 ,q2 ,...qk ,t ( i 1,2,...,n ) ri ri 1) “同时消点” qj qj
证明: 因 ri ri (t , q1 , , qk ), 对时间t求导数, 得
第九章 拉格朗日方程
运用矢量力学分析约束动力系统,未知约束力多, 方程数目多,求解烦琐。能否建立不含未知约束力 的动力学方程? 将达朗贝尔原理与虚位移原理相结合,建立动
力虚功方程,广义坐标化,能量化,化为拉氏第二
类方程,实现用最少数目方程,描述动力系统。
9-1 动力学普遍方程
9-1-1 方程的建立 9-1-2 典型问题
9-1-1 方程的建立
1. 一般形式
n个质点。对 m有 i
Fi FNi mi ai 0 则有 i 1, 2n
给 ri
i 1,2,...,n ,则有
Fi FNi m ai ri 0
而双面理想约束 故有
i Ii
F
i
Ni
ri 0
(9-1)
ri ri qj j 1 q j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V1 m1 gl1 sin 1
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介
质量m2的位置表示为: 速度分量为:
x2 l1 cos1 l2 cos(1 2 ) y2 l1 sin 1 l2 sin(1 2 )
L Ek E p
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介
例3:对例2所示两杆平面机器人用拉格朗日方 法建立动力学方程。 解: 1、动能和势能 连杆1的动能为: 1 T1 m1 (l1 1 ) 2 设Y0=0为零势面,则连杆1的 势能为:
l sin ( )( ) 2 l1sin1 x 1 2 1 2 1 2 l cos( )( ) l cos y
2 1 1 1 2 1 2 1 2
则质量M2的速度平方为:
1 1 1 2
2 2 2 l sin ( )( )) 2 2 x y (l1sin1 1 2 1 2 1 2 2 l cos( )( )) (l cos 1 2 1 2
d L 2 m l 2 m l l cos m l l sin m l 2 2 1 2 2 2 2 1 2 2 1 2 1 2 2 1 2 dt 2
广义坐标为 1和 2 对应的广义外力为作 用于的关节上的驱动力距 1和 2 。
d L L Qi dt qi qi
i 1, 2,...n
式中: n
Qi ——作用在第i个广义坐标上的广义
力或广义力矩 L—系统的动能 Ek 和位能 E p之差,称为拉格朗日 函数,即:
qi i ——第i个广义速度 q
——系统的广义坐标数 ——第i个广义坐标
i T dr i j ri vi q dt q j 1 j
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介 求出速度的平方:
v2 v v
T Trace v v
i T i Trace qj q j j 1
n 1 n I a i qi2 mi g T Ti ri 2 i 1 i 1
q q j k
L Ek E p
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介
5、代入拉格朗日方程
d L dt qi
n i Ti L TiT Trace Hi q p qi i p k 1 qk n i i
比较例2与例3可知,用牛顿-欧拉法与拉格朗 日法得到的结果是相同的。
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介 步骤总结: 1、机械臂上一点速度 设杆件i上一点ri,它在基坐标系中的位 置为:
r Ti ri
其中,Ti是{i}坐标系相对基础坐标系的齐次变 换矩阵。 那么,该点的速度为:
d L 2 2 [m l 2 m l l cos ] [( m m ) l m l 2 m l l cos ] 1 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 dt 1 m l l sin 2 2m l l sin
2 1 2 2 1 2 2 1 2 2 2
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介
L ( ) m gl cos( ) m2 gl1l2 sin 2 1 1 2 2 2 1 2 2 L 2 ) m l l cos m l ( 2 2 1 2 2 1 2 2 1 2
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介
2、拉格朗日函数
L T1 V1 T2 V2 1 1 2 2 2 ) 2 m l l cos ( 2 (m1 m2 )l1 1 m2l2 (1 2 2 1 2 2 1 1 2) 2 2 (m1 m2 ) gl1 sin 1 m2 gl2 sin(1 2 )
山东大学机械工程学院机电工程研究所2010/09/02
牛顿—欧拉方程实例
整理得:
[m l 2 m l l cos ] 1 [( m1 m2 )l12 m2l22 2m2l1l2 cos 2 ] 1 2 2 2 1 2 2 2 m l l sin 2 2m2l1l2 sin 2 1 2 2 1 2 2 2 m2 gl2 cos(1 2 ) (m1 m2)gl1 cos1
3、动力学方程
L 2 2 ) m l l cos (2 ) ( m m ) l m l ( 1 2 1 1 2 2 1 2 2 1 2 2 1 2 1 L (m1 m2 ) gl1 cos1 m2 gl2 cos(1 2 ) 1
, ) 是离心力、科 称 M ()为惯量阵, V ( G() 为重力部分。 氏力等相关部分, , ) 中仅有速度和位形,上 因为 V ( 述方程也称状态空间方程。 特点: 多变量、时变、非线性、强耦合。
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介
2 m l 2 m l l sin 2 2 (m2l2 m l l cos ) 1 2 1 2 2 1 2 2 2 2 1 2 2 1 m2 gl2 cos(1 2 )
山东大学机械工程学院机电工程研究所2010/09/02
d L L 1 dt 1 1 d L L 2 dt 2 2
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介
代入:
[m l 2 m l l cos ] 1 [( m1 m2 )l12 m2l22 2m2l1l2 cos 2 ] 1 2 2 212 2 2 2m l l sin m l l sin 2
q Ia p qp k q q j k
2Ti TiT Trace Hi q p i p j 1 k 1 q j qk Ti mi g ri q p i p
n T
山东大学机械工程学院机电工程研究所2010/09/02
2 l 2 ( 2 2 2 2 l12 1 2 1 1 2 2 ) 2l1l 2 cos( 1 1 2)
所以,M2动能为:
T2
势能为: V2 m2 gl1 sin 1 m2 gl2 sin(1 2 )
1 2 l 2 ( 2 2 2 ) 2l l cos ( 2 m2 [l12 1 2 1 1 2 2 1 2 2 1 1 2 )] 2
4.3 机器人拉格朗日动力学方程简介
• 2、求系统动能
T i i Ti Ti 1 Ek Eki Trace Hi q j qk 2 i 1 q i 1 qk j 1 k 1 j n n
Ti TiT 1 n i i Trace Hi 2 i 1 j 1 k 1 qk q j
牛顿—欧拉方程实例
例2:如图所示为两杆平面机器人,为 了简单起见,我们假设每个杆件的质量集 中于杆件的前尾部,其大小为m1和m2。 解:每个杆件的质量中心 矢量为:
ˆ , P l X ˆ Pc1 l1 X 1 c2 2 2
由于点质量假设, 每个杆件相对质心的惯 性张量为零,即:
I c1 0, I c 2 0
牛顿—欧拉方程实例
惯性力
惯性力矩
2杆件:
山东大学机械工程学院机电工程研究所2010/09/02
牛顿—欧拉方程实例
山东大学机械工程学院机电工程研究所2010/09/02
牛顿—欧拉方程实例
向后递推: 2杆件:
1杆件:
山东大学机械工程学院机电工程研究所2010/09/02
牛顿—欧拉方程实例
取力矩的Z分量,得到关节力矩:
山东大学机械工程学院机电工程研究所2010/09/02
牛顿—欧拉方程实例
末端执行器上无作用力,所以: 基座静止,因此: 0 0 0 0, 考虑到引力,我们使用:
山东大学机械工程学院机电工程研究所2010/09/02
牛顿—欧拉方程实例
应用递推公式有: 向前:1杆件:
山东Байду номын сангаас学机械工程学院机电工程研究所2010/09/02
qq j k
3、求系统位能
EP E p i mi gT Ti ri
i 1 i 1 n n
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介
4、计算拉格朗日函数
L Ekt E p Ti TiT 1 n i i Trace Hi 2 i 1 j 1 k 1 qk q j
拉格朗日方程是基于能量项(动能 T、势能V)对系统变量及时间的微分 而建立的。 对于简单系统拉格朗日方程法相较 于牛顿—欧拉方程法更显复杂,然而随 着系统复杂程度的增加,拉格朗日方程 法建立系统运动微分方程变得相对简单。
山东大学机械工程学院机电工程研究所2010/09/02
4.3 机器人拉格朗日动力学方程简介 系统拉格朗日方程为:
212 2 1 2 212 2 2