浅析BA系统中冷水机组群控策略
冷水机组群控系统方案

冷水机组群控系统方案随着现代工艺水平的提升,冷水机组在工业生产和建筑空调中得到了广泛应用。
然而,随着生产规模的不断扩大,单个冷水机组的容量和运行负荷也不断增加,机组间的协作和群控成为一大难点。
因此,冷水机组群控系统的设计和应用成为了必要的选择。
1.减少能耗冷水机组群控系统能够合理调度各个机组,在避免运行闲置的情况下,选择工作效率最优的机组进行运转。
同时,该系统能够自动控制冷水机组的运行状态,全面监控机组的运行状况,避免能耗浪费和机组负荷过大。
2.提高生产效率在需要大量制冷或者制热的生产线中,冷水机组往往是重要的工具之一。
但是,针对生产线中不同的工艺要求,需要选择不同的温度、压力等参数,且要按时保持恒定。
冷水机组群控系统能够根据不同的工艺要求精准调配机组,从而提高生产效率和产品质量。
冷水机组群控系统具有集中管理的功能,将多个冷水机组的数据进行汇总、分析、处理,进一步提高了管理效率。
通过该系统,管理员能够对不同机组的运行状态、故障信息等进行及时监控,并能够进行实时控制和远程操作。
1. 网络通信技术冷水机组群控系统需要对多个机组的数据进行汇总和分析,这就需要在各个机组之间建立一个良好的通信环境。
网络通信技术能够实现不同机组之间的数据传输,确保系统数据的实时准确性。
2. 控制策略针对冷水机组的运行状态、负荷等参数,需要制定相应的控制策略,以实现机组群控。
控制策略应在特定的时间段内,采取各种合理的方式,调整机组的压力、温度、流量等参数,达到最优的机组运行状态。
3. 数据采集技术在冷水机组群控系统中,需要采集多个机组的实时数据,如流量、压力、温度等。
数据采集技术能够实现对不同机组的运行数据进行即时采集和监控,从而确保冷水机组群控系统能够准确地掌握机组运行状态。
冷水机组群控系统方案需要考虑多种因素,如应用场景、技术设备、控制策略等,以下提供一个冷水机组群控系统实现方案:1. 技术设备方案冷水机组群控系统可以采用多种设备来实现,如传感器、采集卡、PLC等。
冷水机组群控系统方案

冷水机组群控系统方案随着科技的不断发展,冷水机组群控系统已经被广泛应用于各类商业建筑、办公楼、酒店等场所,为用户提供高效、可靠的制冷服务。
本文将针对冷水机组群控系统的方案进行详细介绍。
一、冷水机组群控系统的基本原理冷水机组群控系统是通过集中管理和控制多台冷水机组的运行状态,以达到节能、优化运行和提高制冷效果的目的。
其基本原理如下:1. 整体调度控制:通过中央控制系统实现对冷水机组的整体调度控制,根据建筑物的实际需求和运行情况,自动调整冷水机组的运行模式、机组数量和冷却水温度等参数,以实现最佳的节能效果和制冷效果。
2. 功能分区控制:根据建筑物的不同功能分区(如会议室、办公区、餐厅等),可以将冷水机组群控系统划分为多个独立的控制区域。
每个控制区域可根据自身需求独立调整运行模式,以满足不同区域的舒适度要求和节能要求。
3. 负荷平衡控制:冷水机组群控系统可以监控每个冷水机组的负荷情况,并根据负荷的变化自动调整机组的运行状态,以实现负荷平衡。
当某个冷水机组负荷过大时,系统可自动调整其他机组的运行状态,将负荷分摊到其他机组,以保证每个冷水机组都在最佳运行状态。
4. 故障监测和报警:冷水机组群控系统可以实时监测每个冷水机组的运行状态,并对故障进行监测和报警。
当某个冷水机组发生故障时,系统可自动切换至备用机组,以保证冷水供应的连续性和稳定性。
二、冷水机组群控系统的组成冷水机组群控系统主要由以下几个组成部分组成:1. 中央控制系统:负责整个冷水机组群控系统的运行管理和调度控制。
中央控制系统通常采用计算机或工控机作为控制主机,并通过PLC或DCS控制器与各个冷水机组进行通信。
2. 冷水机组:冷水机组是冷水机组群控系统的核心设备,负责制冷和冷却水的供应。
冷水机组通常由压缩机、冷凝器、蒸发器、循环泵等组成,并通过传感器监测运行状态和环境参数。
3. 传感器与执行器:传感器负责监测冷水机组和建筑物的运行状态和环境参数,如温度、湿度、压力等。
冷水机组群控系统方案

冷水机组群控系统方案随着现代工况需求的不断发展,冷水机组群控系统在各个领域的应用越来越广泛。
冷水机组群控系统是指将多个冷水机组通过一个中央控制器进行集中管理和控制的系统。
冷水机组群控系统方案首先需要考虑的是系统的硬件结构。
一般来说,系统包括多个冷水机组、中央控制器、传感器和执行器等四个主要硬件组成部分。
冷水机组是系统的核心设备,通过中央控制器实现对其运行状态的监测和控制。
传感器用于实时监测系统的温度、湿度、压力等关键参数,以及冷水机组的运行状态。
执行器用于根据中央控制器发送的指令,对冷水机组进行调节和控制。
冷水机组群控系统方案需要考虑的是软件控制系统。
软件控制系统主要包括监测、预警和控制三个功能模块。
监测模块通过传感器实时采集系统的各种参数,并将其传输到中央控制器进行处理。
预警模块通过对监测数据的分析和比对,发现系统异常情况并进行预警。
控制模块通过对冷水机组的控制器发送指令,实现对系统的自动控制和调节。
冷水机组群控系统方案中还需要考虑的一个重要问题是通信方式。
通信方式是冷水机组群控系统能否正常运行和稳定工作的关键因素之一。
常见的通信方式有有线通信和无线通信两种。
有线通信一般采用RS485通信协议,具有传输速率快、稳定可靠的特点。
无线通信一般采用无线网络或蓝牙通信技术,具有传输距离远、适用于复杂环境的特点。
根据实际需求,选择合适的通信方式对冷水机组群控系统的可靠性和稳定性都具有重要影响。
冷水机组群控系统方案需要考虑的是系统的监测和管理方式。
监测和管理方式主要包括本地监测和管理和远程监测和管理两种方式。
本地监测和管理方式一般通过中央控制器进行操作,可以实时查看冷水机组的运行状态和参数。
远程监测和管理方式一般通过互联网或远程控制终端进行操作,可以随时随地通过手机或电脑进行监测和管理。
冷水机组群控系统方案应该考虑系统的硬件结构、软件控制系统、通信方式以及监测和管理方式等关键因素。
只有在各个方面都做到科学合理,才能够实现冷水机组群控系统的高效运行和可靠性工作。
冷水机组群控系统方案

冷水机组群控系统方案冷水机组是制冷行业中比较常见的一种设备,其可广泛应用于制冷、空调、通风等领域。
在工业、商业以及家用建筑中,冷水机组都扮演着相当重要的角色,通过对空气进行冷却或加热,为建筑内的使用者提供一个更加舒适的生活环境。
此外,冷水机组也经常被应用到各大工厂、医院、商场等大型建筑的通风空调系统中。
为了更好的满足这些需要,现在的冷水机组越来越注重其自身的控制和管理,因此很多厂商都为其冷水机组搭载了各种控制系统,以便能更加准确地控制温度和湿度等相关参数,不断提升其能效和运行稳定性。
而冷水机组的群控系统,则是一种更加高端、更加智能化的冷水机组控制手段,能够通过网络将多个冷水机组连接起来,实现集中式管理,从而大大提升其整体运行效率和控制精度。
冷水机组群控系统的方案一般包含以下几个主要环节:1. 网络通讯模块:这是连接整个群控系统的关键。
并将多个冷水机组通过公共网络连接到同一控制中心,实现智能化集中控制。
2. 控制中心:通常由计算机组成,用于对冷水机组进行集中控制和监视。
该控制中心可实现对多个冷水机组的运行状态、能耗、故障等参数的实时监控和记录。
3. 控制软件:该软件是组成冷水机组群控系统的核心组成部分,可用于整合多个冷水机组的控制系统,并将其功能统一。
通常含有以下主要功能:(1)温度控制:通过计算机控制器对冷水机组的制冷量进行调整,以控制建筑内部的温度。
(2)湿度控制:将湿度传感器和控制器连接到冷水机组中,以精确控制室内的湿度水平。
(3)能耗管理:通过网络搜集每个冷水机组的能耗情况,及时发现能源浪费问题,并制订相应的管理措施。
(4)远程控制:通过公共网络实现对冷水机组的远程控制,确保其始终保持最佳的运行状态。
总之,冷水机组群控系统可以帮助建筑管理者实现更加智能、高效的空调控制,提高其全年工作效率,降低能源消耗和运行成本,并提升建筑内部的空气质量,为用户提供更加舒适的生活环境。
冷水机组群控策略

BAS系统中冷水机组群控策略摘要:本文分析与比较了几种可能的群控模式, 如回水温度控制法,流量控制法,热量控制法,流量/热量控制法,压差控制法,压差/流量控制法,与冷冻机数据接口相结合的群控法及几种特殊的控制方法1、 冷水机组群控的意义1.1 节能:–根据系统负荷的大小,开启相应的机组,从而节能,并节省运行费用。
–停开相应水泵,或降低水泵电机转速,从而达到节能的目的。
1.2 长寿命运转:积极群控,有助于延长机组寿命,提高设备利用效率。
1.3 设备保护:合理群控,使系统更舒适,避免过冷,更容易达到设计要求2、几种可能的群控模式分析2.1 回水温度控制法1) 回水温度控制法原理:通过测量空调系统中冷冻水系统回水的温度,根据其值的大小,从而决定开启冷水机组的台数,达到控制冷水机组台数的目的。
2) 回水温度控制法控制流程图13) 回水温度控制法的分析♦ 回水温度适应性较差,尤其温差小时,误差大,对节能不利。
♦ 可用于冷冻机的低温保护和报警。
♦ 但装置简单,价格便宜。
♦ 判据不明确。
2.2 流量控制法1) 流量控制法控制原理:通过测量冷冻水流量获得流量信号,然后再把此流量值与冷水机组的额定流量进行比较,从而实现对冷水机组的台数控制。
2) 有关流量控制法的分析: 流量控制的原理是基于这样三个假定♦ 负荷与流量成正比♦ 冷冻水供回水温差恒定♦ 在设计工况之下运行但实际上,这三个假定一个也不能成立,更不可能同时成立。
流量控制法虽能保证系统流量,避免冷水机组蒸发器结冰,但并不能很好的适应系统负荷的变化。
因为盘管的传热量和流量并不是线性关系。
实验和研究表明,冷冻水流量和建筑物热负荷之间呈对数关系。
这种关系伴随着冷冻水入口温度、盘管尺寸结构和盘管表面积和盘管表面接触的空气温度以及气流速度的不同而变化,所以它不仅是非线性的,还是一个随着多种因素变动的曲线。
不能反映负荷的变化,因而不能有效节能。
2.3 热量控制法1) 热量控制法控制原理:通过测量冷冻水供回水温度和供(回)水流量获得温差和流量信号,然后将两个信号依据热力学公式计算实际的需冷量,再把此冷量值与冷水机组的产冷量进行比较,从而实现对冷水机组的台数控制。
冷水机组群控策略

冷水机组群控策略新办公室空调系统冷冻站群控说明一.空调水系统监控设备与监控内容详细监控内容如下:1.冷水机组开启台数控制1)根据供回水总管的温差,或回水总管回水温度,对冷水机组进行群控。
冷水机组加载控制――常规运行模式下(夏季运行模式),默认开启水冷螺杆式冷水机组CH-1。
采用回水温度控制法对冷水机组进行加载控制。
根据供水总管上的温度传感器监测回水温度,根据供水温度的变化,当供水温度>9℃时,开启一台风冷热泵机组;继续监测回水温度,如30min后供水温度仍然>9℃时,开启两台风冷热泵机组。
冷水机组卸载控制――常规运行模式下(夏季运行模式),当水冷螺杆式冷水机组CH-1与两台风冷热泵机组CH-2,3同时开启时,采用供水温度控制及供回水总管温差控制对冷水机组进行卸载控制。
根据供、回水总管上的温度传感器监测供回水温度,根据二者的变化,当供水温度<7℃,且供回水温差<1℃时,卸载一台风冷热泵机组;继续监测供、回水温度,如30min后回水温度仍然<8℃,且供回水温差仍然<1℃时,卸载两台风冷热泵机组。
冬夏季模式转换为人工手动转换。
(注:冬夏季模式转换需能达到以下要求;①需设置权限,仅操作管理人员具有该权限;②需设置物理保护,以防止错误操作,如任一冷冻泵开启,即表明系统在供冷模式下运行,此时,即使手动进行冬夏季模式转换都不能实现。
) 2)冷水系统运行时间控制。
工作日情况下,早上7:50开启水冷螺杆式冷水机组CH-1,下午5:15,所有冷水机组停止运行,冷冻水泵延时15分钟停止。
低温冷水机组为手动控制。
●机组启动后通过彩色图形显示,显示不同的状态和报警,显示每个参数的值,通过鼠标任意修改设定值,以达到最佳的工况;●机组的每一点都有趋势显示图,报警显示;●设备发生故障时,自动切换;●程序控制冷冻水系统,目的是达到最低的能耗,最低的主机折旧;●根据程序或办公室的日程安排自动开关冷冻机组。
冷水机组群控系统方案

冷水机组群控系统方案冷水机组群控系统是指控制多台冷水机组同时运行、停止、调节参数和故障报警等功能的系统。
随着制冷技术的发展和应用需求的不断提高,冷水机组群控系统越来越受到工程设计和用户的重视。
本文将就冷水机组群控系统的方案进行详细的介绍,从系统组成、工作原理、控制策略、应用优势等方面进行论述。
一、系统组成冷水机组群控系统由主控制器、冷水机组控制器、监控显示器、传感器和执行器等部分组成。
主控制器负责整个系统的调度和协调,冷水机组控制器负责单台冷水机组的控制和运行,监控显示器用于实时显示系统运行状态,传感器和执行器用于检测和执行系统的各种操作。
二、工作原理三、控制策略冷水机组群控系统的控制策略一般包括负荷分配、轮换运行和故障自动切换等。
负荷分配是根据系统负荷需求,动态调整各个冷水机组的运行状态,保证系统在部分负荷和全负荷时的运行效果。
轮换运行是指在系统负荷需求较小时,通过轮换运行各个冷水机组,延长设备寿命和提高效能。
故障自动切换则是在某个冷水机组出现故障时,系统能够自动切换到其他正常运行的冷水机组,保证系统的连续运行。
四、应用优势冷水机组群控系统相比单台冷水机组的控制具有以下优势:1. 提高运行效率:通过对多台冷水机组的协同控制和轮换运行,提高了系统的运行效率,降低了能耗和运行成本。
2. 提高稳定性:系统可以根据系统的负荷需求和运行状态,动态调整各个冷水机组的运行状态,保证系统的稳定运行。
3. 提高可靠性:系统故障自动切换功能可以在某个冷水机组出现故障时,自动切换到其他正常运行的冷水机组,保证系统连续运行。
5. 减少维护成本:通过对冷水机组的协同控制和轮换运行,延长了各个设备的使用寿命,降低了设备的维护成本。
冷水机组群控系统在大型制冷系统中的应用前景广阔,可以提高能源利用率、减少运行成本、提高系统稳定性和可靠性,是制冷技术领域的一项重要技术创新。
通过不断改进和完善系统方案,将能够更好地满足用户的实际需求,推动制冷技术的发展和应用。
冷水机组群控系统方案

冷水机组群控系统方案随着现代化程度的不断提高,人们对于工厂、医院、大型商场等场所的空调需求越来越高。
为了满足这些需求,冷水机组已经成为空调系统的重要组成部分,在空调领域中得到了广泛应用。
冷水机组南北配合,实现热源与冷源的互换,调节室内的温度、湿度、洁净度及新鲜度,满足人们各种各样的需求。
在此背景下,群控系统方案的出现也变得日益重要。
1.工作原理群控系统方案是指将多台冷水机组打造成一个整体,通过集中控制的方式,实现对多个冷水机组的远程监测和控制。
具体来说,群控系统方案由一个中央控制器和多个从控制器组成,中央控制器作为群控系统的核心,负责群控系统的整体管理,从控制器则负责与各个冷水机组进行通信,实现对冷水机组的远程控制。
通过该群控系统,用户可以随时随地对多个冷水机组进行远程控制,大大提高了工作的效率和便利性。
2.系统组成群控系统方案主要由如下组成部分:(1)中央控制器:中央控制器是群控系统的核心,可以实现对所有从控制器进行管理和控制。
中央控制器可以通过局域网、互联网等方式接入到计算机或其他设备中,提供各种查询、监测和控制服务的功能。
(2)从控制器:从控制器是连接冷水机组和中央控制器之间的桥梁,可以实现对单个或多个冷水机组的远程监测和控制。
从控制器通过自己的独立网络与中央控制器进行通信。
(3)冷水机组:冷水机组是群控系统的最终执行对象,是实现空调需求的核心设备。
冷水机组包括冷却水泵、制冷机组、冷却塔、阀组等零部件,是将室外的冷热源与室内的风机盘管结合在一起的关键设备。
(4)传感器:传感器可以实现对空调系统的各种参数进行监测和反馈,例如温度、湿度、压力等。
传感器将这些参数的变化转化为电信号,传输到中央控制器中,帮助用户更精准地了解冷水机组的工作状态。
3.方案优点(1)集中管理:群控系统方案可以将多个冷水机组集中在一个中央控制器下管理,实现对冷水机组的一次性配置和控制,确保系统运行的标准化和统一性。
(2)远程控制:群控系统方案可以实现对冷水机组的远程监测和控制,用户不必亲自前往现场进行操作,大大提高了操作的便利性和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析BA系统中冷水机组群控策略
目前随着中央空调系统的广泛应用,系统节能已经成为最终用户所关注的焦点。
对于空调系统中能耗最大的冷水机组系统,它的高效节能成为空调系统节能的关键问题。
实现冷水机组节能高效稳定运行的一个非常有效的技术手段就是采用冷水机组群控。
冷水机组群控是利用自动控制技术对制冷站内部的相关设备(冷水机组、水泵、冷却塔、阀门)进行自动化的监控,使制冷站内的设备达到最高效率的运行状态。
1、冷水机组群控的目的
(1)节能:根据系统负荷的大小,准确控制制冷机组的运行数量和每台制冷机组的运行工况,从而达到节能并降低运行费用的目的。
(2)延长机组使用寿命:通过机组轮换、故障保护、负荷调节等控制程序,确保冷水机组的安全,延长机组的使用寿命,提高设备利用效率。
(3)设备保护:合理群控,使系统更舒适,避免过冷,更容易达到设计要求。
2、几种常见的群控模式分析
第一种:每30分钟把计算出的实际冷负荷与当前运行机组的额定冷量比较,当实际冷负荷小于当前机组的额定总负荷一定量时,减少相应的机组运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组运行。
这种控制策略的采用其结果是可悲的,因为空调冷负荷的实测量不可能大于目前正在运行的冷机所提供的冷
量。
打个比方:有一台电扇(在常规的环境和标准的供电下,其出厂的标注是)最大转速25转/秒,但你说在同样的环境、条件下,通过某种“科学”手段实测出的转速是30转/秒,大于25转/秒。
这显然是不符的,有点本末倒置。
实际运行中发现,机组根本无法实现根据实际冷负荷调整冷水机组的台数控制。
例如,实际情况开启冷水机组的冷量负荷远不能满足空调末端需要,此时,冷冻水温由于制冷负荷的不足而水温升高,冷水机组出水温度超过设定值,冷水与盘管内空气的热交换效率不断下降,供回水温差减小,供水流量未发生变化,而计算出的冷负荷却减小。
这显然非真实所需的冷负荷。
实际运行中发现,分水器的水温达16℃,集水器的水温为16.3℃,而冷却量计算的负荷却很小,不需增加冷水机组的台数。
第二种:测量每个环路进/回水温度差及水流量,计算各个环路之负荷。
当负荷大于一台机组的80%(可根据实际情况修改),则第二台机组运行。
以此类推。
我们假设有如下工况(这种情况也是常见的):由于冷却水回路冷却效果不佳,使这台冷机的制冷量被限制在70%的最大制冷量。
如果按这种控制策略,可能永远只能开一台冷机了。
这样看起来以上两种策略都不能作为冷机群控的控制策略,这是为什么呢?这是因为从冷冻水处实测的冷负荷应小于或近似等于运行冷机提供的冷量(如果忽略管路中的损耗),也即冷机的负荷。
换句话说,测冷负荷实际上只是测知了目前运行冷机的负荷。
如果只知道目前冷机的负荷又怎么能判断冷机应该加载还是卸载呢?这正是
以上控制策略难以实用的原因。
那么,合理的冷机群控策略是什么
呢?这里需要引入测量冷冻水供水或回水温度这个判断依据。
因为多数冷机生产厂商其冷机负荷(制冷量)的控制是根据冷冻水的供水或回水温度。
当供水或回水温度大于(远离)本机设定温度时,其冷机压缩机做功就加大,使冷机负荷(制冷量)增大,直至100%。
当供水或回水温度降低接近于本机设定温度时,其冷机压缩机做功就维持不变,使冷机负荷(制冷量)不变。
当供水或回水温度小于本机设定温度时,其冷机压缩机做功就减小,使冷机负荷(制冷量)减小。
所以有一种冷机群控策略说明如下:
✧判断冷机是否要加载时,应根据冷冻水总管的供水或回水温度。
A.当供水或回水温度接近或等于设定温度时,冷机不应加载。
而该设定温度应等于单台冷机的本体控制设定值(温度),并且参与群控的所有冷机的本体控制设定温度应该一致。
B.当供水或回水温度远离(高于)设定温度时,冷机应加载。
当然还应受其它一些条件的约束,如:加载延时判断时间,冷源系统运行时间段,是否有待命的可加载冷机等。
✧判断冷机是否要卸载时,应根据冷冻水总管的供水或回水温度及
目前冷机的负荷。
A.当供水或回水温度远离(高于)设定温度时,冷机不应卸载。
B.当供水或回水温度低于或接近于设定温度时,表明已运行的冷机已提供了足够的冷量来满足建筑物的需求。
但能否卸载一台冷机还必须检查当前冷机的负荷(制冷量)。
例如:有3台1000冷吨的冷机运行的负荷都是70%,那么,即使冷冻水供水或回水温度已接近于
设定温度,但仍不能卸载。
因为如果只运行2台冷机,其最大的制冷量只有2000冷吨。
如果这3台冷机的运行负荷都是65%,那么就可以卸载一台冷机。
以上控制策略中是测量供水温度还是回水温度应跟随单台冷机的本体控制逻辑。
如冷机本体的控制逻辑是比较冷冻水的供水温度与设定温度来控制压缩机的做功,那么冷机群控策略中应根据冷冻水总管的供水温度;反之,应根据冷冻水总管的回水温度。
以上讨论的这种冷机群控策略仅是可行的,但是否是节能的,还需考察COP值。
空调暖通设计单位根据建筑物当地的常用负荷段来对冷水机组选型。
如某个地区的某个建筑80%满负荷运行时段是大多数的情况,那么冷机的选型应使在80%满负荷运行时的COP值最大。
这样的话,就可能出现开5台运行在80%负荷的冷机比开4台运行在100%负荷的冷机更节能的情况。
这就会造成在已满足建筑物冷量需求的情况下还需加载冷机,整个冷机群控的策略将会变得更加复杂。
幸运的是有些冷机生产厂商其冷机性能在75%~100%负荷时的COP值是相差不大的(在同样的冷却条件下),这就不必考虑不同负荷段的节能效果了。
合理的冷机群控策略可能有多种,但必须经得起实践的检验,本文中提出的根据冷冻水温度及冷机负荷来进行群控的策略是科学的,已在多个工程中得以应用效果非常理想。