长沙市长郡中学2019-2020学年高三第一次教学质量检测理科数学

合集下载

湖南省长郡中学2019届高三月考试卷(一)理科数学

湖南省长郡中学2019届高三月考试卷(一)理科数学

长郡中学2019届高三月考试卷(一)数学(理科)(考试时间:120分钟,满分150分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.1.设复数,则()A. B. C. D.【答案】D【解析】【分析】根据复数除法运算,分子分母同时乘以分母的共轭复数,化简即可。

【详解】所以所以选D【点睛】本题考查了复数的除法运算,复数模的定义,属于基础题。

2.2.已知集合,,,则()A. B. C. D.【答案】C【解析】集合,故,集合表示非负的偶数,故,故选C.3.3.若定义在上的偶函数满足且时,,则方程的零点个数是()A. 个B. 个C. 个D. 个【答案】C【解析】【分析】根据函数的周期性和奇偶性,画出函数图像,根据函数图像的交点个数确定零点个数即可。

【详解】因为数满足,所以周期当时,,且为偶函数,所以函数图像如下图所示学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...学。

科。

网...由图像可知,方程有四个零点所以选C【点睛】本题考查了函数的奇偶性和周期性,绝对值函数图像的画法和函数零点的概念,关键是根据函数解析式能够正确画出函数的图像,属于基础题。

4.4.计算的结果为()A. B. C. D.【答案】B【解析】【分析】根据诱导公式,化简三角函数值;再根据正弦的差角公式合并即可得到解。

2019-2020年高三数学第一次统一考试试题 理(含解析)

2019-2020年高三数学第一次统一考试试题 理(含解析)

2019-2020年高三数学第一次统一考试试题 理(含解析)【试卷综析】试题在重视基础,突出能力,体现课改,着眼稳定,实现了新课标高考数学试题与老高考试题的尝试性对接.纵观新课标高考数学试题,体现数学本质,凸显数学思想,强化思维量,控制运算量,突出综合性,无论是在试卷的结构安排方面,还是试题背景的设计方面以全新的面貌来诠释新课改的理念.【题文】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】 l.集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为A.3 B .4 C .11 D .12【知识点】集合中元素的特征:确定性,互异性,无序性. A1 【答案】【解析】C 解析:{1,2,3,4,5,6,8,9,10,12,15}C =,故选C. 【思路点拨】利用已知求得集合C 即可.【题文】 2.已知i 为虚数单位,复数123,12z ai z i =-=+,若12z z 复平面内对应的点在第四象限,则实数a 的取值范围为 A. {}|6a a <- B . 3|62a a ⎧⎫-<<⎨⎬⎩⎭ C .3|2a a ⎧⎫<⎨⎬⎩⎭ D . 3|62a a a ⎧⎫<->⎨⎬⎩⎭或 【知识点】复数的运算;复数的几何意义. L4 【答案】【解析】B 解析:12z z ()()()()312332612121255ai i ai a a i i i i ----+===-++-,因为12zz 复平面内对应的点在第四象限,所以32036602a a a ->⎧⇒-<<⎨+>⎩,故选 B.【思路点拨】先把复数z 化为最简形式,在利用复数的几何意义求解.【题文】3.已知θ为第二象限角, sin ,cos θθ是关于x 的方程22x R)∈的两根,则 sin -cos θθ的等于 A .12+ B .12C ..【知识点】已知三角函数式的值,求另一个三角函数式的值. C7 【答案】【解析】A解析:由已知得1sin cos 2θθ+=2sin cos 2θθ⇒=-又θ为第二象限角,所以sin -cos θθ==12+,故选 A.【思路点拨】由已知得1sin cos 2θθ-+=2sin cos 2θθ⇒=-,又θ为第二象限角,所以sin -cos θθ==12+. 【题文】4.下面四个推导过程符合演绎推理三段论形式且推理正确的是A .大前提:无限不循环小数是无理数;小前提:π丌是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提: π是无限不循环小数;结论: π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论: π是无理数D.大前提: π是无限不循环小数;小前提: π是无理数;结论:无限不循环小数是无理数 【知识点】演绎推理的定义及特点. M1【答案】【解析】B 解析:A :小前提不正确;C 、D 都不是由一般性命题到特殊性命题的推理,所以A 、C 、D 都不正确,只有B 正确,故选 B.【思路点拨】演绎推理是由一般性命题到特殊性命题的推理,及其推理的一般模式---“三段论”,由三段论的含义得出正确选项.【题文】5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为 A .38 B . 82π- C . 43π D . 283π-【知识点】几何体的三视图;几何体的结构. G1 G2【答案】【解析】D 解析:由三视图可知此几何体是:棱长为2 的正方体挖去了一个圆锥而形成的新几何体,其体积为3212212833ππ-⨯⨯⨯=-,故选 D.【思路点拨】由几何体的三视图得此几何体的结构,从而求得此几何体的体积.【题文】6.已知 ()f x 是定义在R 上的偶函数,且()f x 在(],0-∞上单调递增,设333(sin )(cos ),(tan )555a fb fc f πππ===,则a,b,c 的大小关系是,A .a<b<cB .b<a<cC .c<a<bD .a<c<b【知识点】函数奇偶性,单调性的应用. B3 B4【答案】【解析】C 解析:∵()f x 是定义在R 上的偶函数,且()f x 在(],0-∞上单调递增, ∴()f x 在[)0,+∞上单调递减,且22coscos 55b f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭, 22tantan 55c f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,又∵2sin 5a f π⎛⎫=⎪⎝⎭,且2220cos sin tan 555πππ<<<,∴ c<a<b ,故选 C.【思路点拨】由已知得函数()f x 在[)0,+∞上单调递减,而2sin5a f π⎛⎫= ⎪⎝⎭, 22coscos 55b f f ππ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,22tan tan 55c f f ππ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,所以只需比较 222cos,sin ,tan555πππ的大小关系即可. 【题文】7.执行如图的程序,则输出的结果等于 A .9950 B .200101 C .14950 D . 15050【知识点】对程序框图描述意义的理解. L1【答案】【解析】A 解析:根据框图中的循环结构知,此程序是求下式的值:1111136104950T =+++++222222612209900=+++++1111212233499100⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭1111111212233499100⎛⎫=-+-+-++- ⎪⎝⎭1992110050⎛⎫=-=⎪⎝⎭,故选A. 【思路点拨】由程序框图得其描述的算法意义.【题文】 8.在△ABC 中,D 为AC 的中点,3BC BE =,BD 与 AE 交于点F ,若 AF AE λ=,则实数λ的值为 A .12 B . 23 C . 34 D . 45【知识点】平面向量的线性运算. F1 【答案】【解析】C 解析:作EFAC 交BD 于G ,因为13BE BC =,所以13EG DC =,因为 D 为AC 的中点,所以13EG AD =,所以1334EF AF AE FA =⇒=,故选C.【思路点拨】画出几何图形,利用平行线分线段成比例定理求得结论.【题文】9.设 12,F F 分别为双曲线 221x y -=的左,右焦点,P 是双曲线上在x 轴上方的点, 1F PF ∠为直角,则 12sin PF F ∠的所有可能取值之和为A .83B .2C .D .2【知识点】双曲线的性质. H6【答案】【解析】D 解析:设P 是第一象限点,且12,PF m PF n ==,则222181m n m m n n ⎧-==⎧⎪⇒⎨⎨+==⎩⎪⎩,所以所求= 2m n c +==,故选 D. 【思路点拨】根据双曲线的定义及勾股定理,求得P 到两焦点的距离,这两距离和与焦距的比值为所求. 【题文】10.曲线 1(0)y x x=>在点 00(,)P x y 处的切线为 l .若直线l 与x ,y 轴的交点分别为A ,B ,则△OAB 的 周长的最小值为A. 4+5+ 【知识点】导数的几何意义;基本不等式求最值. B11 E6 【答案】【解析】A 解析:∵21y x '=-,∴00201:()l y y x x x -=--即20020x x y x +-=, 可得A(02x ,0),B(0,02x ),∴△OAB的周长00224l x x =+≥+当01x =时等号成立.故选 A.【思路点拨】由导数的几何意义得直线l 的方程,从而求得A 、B 的坐标,进而用0x 表示△OAB 的周长,再用基本不等式求得周长的最小值.【题文】11.若直线(31)(1)660x y λλλ++-+-= 与不等式组 70,310,350.x y x y x y +-<⎧⎪-+<⎨⎪-->⎩,表示的平 面区域有公共点,则实数λ的取值范围是 A . 13(,)(9,)7-∞-+∞ B . 13(,1)(9,)7-+∞ C .(1,9) D . 13(,)7-∞-【知识点】简单的线性规划. E5【答案】【解析】A 解析:画出可行域,求得可行域的三个顶点A(2,1),B(5,2),C(3,4) 而直线(31)(1)660x y λλλ++-+-=恒过定点P(0,-6),且斜率为311λλ+-,因为 7810,,253PA PB PC k k k ===,所以由8317512λλ+<<-得λ∈13(,)(9,)7-∞-+∞,故选A.【思路点拨】:画出可行域,求得可行域的三个顶点, 确定直线过定点P(0,-6),求得直线PA 、PB 、PC 的斜率,其中最小值85,最大值72,则由8317512λλ+<<-得λ的取值范围. 【题文】12.在平面直角坐标系中,点P 是直线 1:2l x =-上一动点,点 1(,0)2F ,点Q 为PF 的 中点,点M 满MQ ⊥PF ,且 ()MP OF R λλ=∈.过点M 作圆 22(3)2x y -+= 的切线,切点分别为S ,T ,则 ST 的最小值为A .. C . 72 D. 52【知识点】曲线与方程;距离最值问题. H9 【答案】【解析】A 解析:设M(x,y),1(,2)2P b -,则Q(0,b),由QM ⊥FP 得 (,)(1,2)02()0x y b b x b y b -⋅-=⇒-+-=.由()MP OF R λλ=∈得y=2b,所以点M 的轨迹方程为22y x =,M 到圆心距离=,易知当d 去最小ST 取最小值,此时MT ==,由三角形面积公式得:11222ST ST ==故选A. 【思路点拨】先求得点M 的轨迹方程22y x =,分析可知当M 到圆心距离最小时ST 最小,所以求M 到圆心距离d 得最小值,再用三角形面积公式求得ST 的最小值. 【题文】二、填空题:本大题共4小题,每小题5分,共20分. 【题文】13.设随机变量 2(,)N ξμσ,且 (1)(1),(2)0.3P P P ξξξ<-=>>=,则(20)P ξ-<<= _____________.【知识点】正态分布的意义. I3【答案】【解析】0.2 解析:因为(1)(1)P P ξξ<-=>,所以正态分布曲线关于y 轴对称, 又因为(2)0.3P ξ>=,所以(20)P ξ-<<=120.30.22-⨯=【思路点拨】根据正态分布的性质求解.【题文】14.若正四梭锥P- ABCD 的底面边长及高均为2,刚此四棱锥内切球的表面积为_______.【知识点】组合体的意义;几何体的结构. G1【答案】【解析】2(3π- 解析:根据题意得正四梭锥的底面面积为4,一个侧面面积为R ,则由等体积法得,()111442332R R =⨯⨯⇒=,所以球的表面积为2(3π.【思路点拨】由等体积法求得此四棱锥内切球的半径,再由球的表面积公式求得结论. 【题文】15.将函数 ()sin()223y sin x x ωωπ=+的图象向右平移3π个单位,所得图象关于y轴对称,则正数 ω的最小值为________.【知识点】sin()y A x ωϕ=+的图像与性质. C4 【答案】【解析】 1 解析:函数()sin()223y sin x x ωωπ=+=1sin()sin()cos()2222x x x ωωω⎛⎫+ ⎪ ⎪⎝⎭=21sin ()sin()cos()2222x x x ωωω+=11sin()264x πω-+,向右平移3π个单位后为: 1111sin[()]sin 23642364y x x πππωπωω⎡⎤⎛⎫=--+=-++ ⎪⎢⎥⎝⎭⎣⎦,这时图像关于y 轴对称,所以31362k k πωπππω+=+⇒=+,k Z ∈,所以正数 ω的最小值为1.【思路点拨】先利用两角和与差的三角函数,二倍角公式,把已知函数化为: y=11sin()264x πω-+,再由其平移后关于y 轴对称得31k ω=+,k Z ∈,所以正数 ω的最小值为1.【题文】 16.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b=l ,a= 2c ,则当C 取最大值时,△ABC 的面积为________.【知识点】余弦定理;三角形的面积公式. C8【答案】解析:当C 取最大值时,cosC 最小,由22223111cos 3244a b c c C c ab c c +-+⎛⎫===+≥⎪⎝⎭得,当且仅当c= 3时C 最大,且此时sinC=12,所以△ABC的面积为111sin 21222ab C c =⨯⨯⨯=【思路点拨】由余弦定理求得C 最大的条件,再由三角形面积公式求解.【题文】三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【题文】17.(本小题满分10分) 已知 {}{},n n a b 均为等差数列,前n 项和分别为 ,n n S T .(1)若平面内三个不共线向量 ,,OA OB OC 满足 315OC a OA a OB =+,且A ,B ,C 三点共线.是否存在正整数n ,使 n S 为定值?若存在,请求出此定值;若不存在,请说明理由。

湖南省长郡中学2019届高三下学期第一次模拟考试数学(理)试题(含答案)

湖南省长郡中学2019届高三下学期第一次模拟考试数学(理)试题(含答案)
#'!本小题满分!$分选修(*"不等式选讲 已知函数-!#") #*$ + ##*! !$)"! !!"当$)!时$求-!#"%#的解集0
, - !#"若-!#"% ##+! 的解集包含集合 !#$! $求实数$的取值范围!
数学 !理科"试题 !长郡版" 第"!页 !共"页"
长郡中学#$"%届高考模拟卷!一"
#!!本小题满分!#分 已知函数-!#")6*#+)#(#+(! !!"若 ))$$()!$求函数-!#"的最小值0 !#"若 )$$$($$$-!#"在,$$+;"的最小值为!$求() 的最大值!
!!请考生在###'两题中任选一题作答!注意只能做所选定的题目!如果多做则按所 做第一个题目计分! ##!本小题满分!$分选修(*(坐标系与参数方程
以平面直角坐标系的原点> 为极点$# 轴的正半轴为极轴建立极坐标系$已知点 5 的
! " 直角坐标为!!$$"$若直线.的极坐标方程为槡#784+( *!)$$曲线& 的参数方程
&是 #)()#$!) 为参数"! /)() !!"求直线.的直角坐标方程和曲线& 的普通方程0 !#"设直线.与曲线& 交于"$% 两点$求#5!"#+#5!%#!
!#"在!!"的条件下$文明办为此次参加问卷调查的市民制定如下奖励方案. !"得分不低于 的可以获赠#次随机话费$得分低于 的可以获赠!次随机话 费0

2020年湖南省长郡中学高三第1次月考 理科数学(含答案)

2020年湖南省长郡中学高三第1次月考 理科数学(含答案)
理科数学试题!长郡版"第!< 页!共"页"
!二"选考题#共!$分!请考生在##%#)题中任选一题作答&如果多做&则按所 做的第一题计分!
##!!本小题满分!$分"选修*(*#坐标系与参数方程 在平面直角 坐 标 系 #-& 中&曲 线 +! 的 参 数 方 程 为23#'#0槡#)=!=为 参 4&'!0! #= 数"!以坐标原点为极点&# 轴正半轴为极轴建立极坐标系&曲线+# 的极 坐标方程为'*647! !!"求曲线+! 的普通方程和+# 的直角坐标方程!#"已知点"!#&!"&曲线+! 与+# 的交点为.%1&求 ". 0 "1 的值!
!!!!! !*!已知等比数列''3(的前3 项和为03&且0)'<'!&则数列''3(的公比4 的
值为!!!!! !%!为 了 庆 祝 六 一 儿 童 节&某 食 品 厂 制 作 了 ) 种 不 同 的 精 美 卡 片&每 袋 食 品
随机装入一张卡片&集齐)种卡片可获奖&现购买该种食品%袋&能获奖 的概率为!!!!! !&!已知" 为双曲线+#'###(&*##'!!'-$&*-$"右支上一点&直线5是双曲线 + 的一条渐近线&" 在5 上的射影为$&,! 是双曲线的左焦点&若#",!# 0#"$#的最小值为)'&则双曲线+ 的离心率为!!!!! 三%解答题#本大题共<$分!解答应写出文字说明%证明过程或演算步骤!第 !<#!题为必考题&每个试题考生都必须作答!第##%#)题为选考题&考 生根据要求作答! !一"必考题#共&$分! (!<!!本小题满分!#分"

2020届高三毕业班第一次综合质量检测数学(理)试题—附答案

2020届高三毕业班第一次综合质量检测数学(理)试题—附答案

5.
已知函数
f
(
x)
1
x x
2
sin x ,则函数 y
f (x) 的图像大致为
A.
B.
C.
D.
6.从区间 0,1随机抽取 2n 个数 x1, x2 ,, xn , y1, y2 ,, yn ,组成坐标平面上的 n 个点
(x1, y1 ) ,(x2 , y2 ) ,… (xn , yn ) ,其中到原点距离小于1的点有 m 个,用随机模拟的
A.20100
B.20200
C.40200
D.40400
12.在棱长为 4 的正方体 ABCD A1B1C1D1 中, E, F 分别为 AA1, BC 的中点,点 M 在
棱 B1C1 上, B1M
1 4
B1C1
,若平面
FEM

A1B1 于点 N
,四棱锥 N
BDD1B1 的五
个顶点都在球 O 的球面上,则球 O 半径为
A(3, 0, 0) , B(0, 3, 0) , S(0, 3 , 3 3 ) , C(1,0,0) , 22
上.
(1)求曲线 C 的普通方程及直线 l 的直角坐标方程. (2)求△PAB 面积的最大值.
23.(本小题满分 10 分)选修 4-5:不等式选讲
已知函数 f (x) | 2x t | ,若 f (x) 1的解集为 (1,0) . (1)求 t 并解不等式 f (x) x 2 ; (2)已知: a,b R ,若 f (x) 2a b | 2x 2 | ,对一切实数 x 都成立, 求证: a 2b 1 .
3
2
根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用

湖南省长沙市长郡中学2019届高三下学期第一次适应性考试(一模)数学(理)试题含详解

湖南省长沙市长郡中学2019届高三下学期第一次适应性考试(一模)数学(理)试题含详解

2019年4月长郡中学2019届第一次适应性考试数学(理科)试题第I卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设为虚数单位.若复数是纯虚数,则复数在复面上对应的点的坐标为()A. B. C. D.【答案】D【分析】利用复数是纯虚数求出,化简为,问题得解。

【详解】因为复数是纯虚数,所以,解得:,所以复数可化为,所以复数在复面上对应的点的坐标为.故选:D【点睛】本题主要考查了复数的有关概念及复数对应点的知识,属于基础题。

2.已知集合若,则实数的取值范围为()A. B. C. D.【答案】B【分析】分别求出集合A,B,利用列不等式即可求解。

【详解】由得:或.所以集合.由得:.又,所以(舍去)或.故选:B【点睛】本题主要考查了集合的包含关系及对数函数的性质,考查计算能力,属于基础题。

3.美国总统伽菲尔德利用如图给出了种直观、简捷、易懂、明了的证明勾股定理的方法,该图利用三个直角三角形拼成了个直角梯形,后人把此证法称为“总统证法”.现已知,,若从该直角梯形中随机取一点,则该点也在的内切圆内部的概率为()A. B.C. D.【答案】C【分析】根据勾股定理,求得CE、DE的长,再求得等腰直角三角形CED的内切圆半径,根据几何概型概率求法求得点在△CDE内部的概率即可。

【详解】由勾股定理可得CE=ED=5因为CE⊥ED,所以等腰直角三角形CED的内切圆半径所以等腰直角三角形CED的内切圆面积为直角梯形的面积为所以从该直角梯形中随机取一点,则该点也在的内切圆内部的概率为所以选C【点睛】本题考查了几何概型概率的求法,直角三角形内切圆半径及面积求法,属于基础题。

4.已知为锐角,则的值为()A. B. C. D.【答案】D【分析】因为,再根据同角三角函数关系及正弦的和角公式,展开即可求值。

【详解】因为为锐角因为所以大于90°由同角三角函数关系,可得所以=所以选D【点睛】本题考查了三角函数式的变形,和角公式的应用,注意判断的符号,属于中档题。

【精品解析】湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模)数学(理)试题(附解析)

【精品解析】湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模)数学(理)试题(附解析)

长郡中学2019届第一次适应性考试数学(理科)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设为虚数单位.若复数是纯虚数,则复数在复面上对应的点的坐标为()A. B. C. D.【答案】D【解析】【分析】利用复数是纯虚数求出,化简为,问题得解。

【详解】因为复数是纯虚数,所以,解得:,所以复数可化为,所以复数在复面上对应的点的坐标为.故选:D【点睛】本题主要考查了复数的有关概念及复数对应点的知识,属于基础题。

2.已知集合若,则实数的取值范围为()A. B. C. D.【答案】B【解析】【分析】分别求出集合A,B,利用列不等式即可求解。

【详解】由得:或.所以集合.由得:.又,所以(舍去)或.故选:B【点睛】本题主要考查了集合的包含关系及对数函数的性质,考查计算能力,属于基础题。

3.美国总统伽菲尔德利用如图给出了种直观、简捷、易懂、明了的证明勾股定理的方法,该图利用三个直角三角形拼成了个直角梯形,后人把此证法称为“总统证法”.现已知,,若从该直角梯形中随机取一点,则该点也在的内切圆内部的概率为()A. B.C. D.【答案】C【解析】【分析】根据勾股定理,求得CE、DE的长,再求得等腰直角三角形CED的内切圆半径,根据几何概型概率求法求得点在△CDE内部的概率即可。

【详解】由勾股定理可得CE=ED=5因为CE⊥ED,所以等腰直角三角形CED的内切圆半径所以等腰直角三角形CED的内切圆面积为直角梯形的面积为所以从该直角梯形中随机取一点,则该点也在的内切圆内部的概率为所以选C【点睛】本题考查了几何概型概率的求法,直角三角形内切圆半径及面积求法,属于基础题。

4.已知为锐角,则的值为()A. B. C. D.【答案】D【解析】【分析】因为,再根据同角三角函数关系及正弦的和角公式,展开即可求值。

【详解】因为为锐角因为所以大于90°由同角三角函数关系,可得所以=所以选D【点睛】本题考查了三角函数式的变形,和角公式的应用,注意判断的符号,属于中档题。

湖南省长郡中学2019届高三上学期第一次月考(开学考试)数学(理)试题 含答案

湖南省长郡中学2019届高三上学期第一次月考(开学考试)数学(理)试题 含答案

长郡中学2019届高三月考试卷(一)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数121iz i i+=+-,则z =( ) A .0 B .1 C .2 D .3 2.已知集合{}240A x x x =-+≥,1{327}18x B x=<<,{}2,C x x n n N ==∈,则()A B C =( )A .{}2,4B .{}0,2C .{}0,2,4D .{}2,x x n n N =∈3.若定义在R 上的偶函数()f x 满足()()2f x f x +=且[]0,1x ∈时,()f x x =,则方程()3log f x x =的零点个数是( )A .2个B .3个C .4个D .5个 4.计算sin133cos197cos47cos73︒︒+︒︒的结果为( ) A .12 B .12- C. 22 D .325.已知A 、B 、P 是双曲线22221x y a b-=上不同的三点,且A 、B 连线经过坐标原点,若直线PA 、PB 的斜率乘积3PA PB k k ⋅=,则该双曲线的离心率为( )A 2B 3 C.2 D .36.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y (单位:千瓦·时)与气温x (单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了以下对照表:x (单位:℃)17 14 10 1- y (单位:千瓦·时) 24 343864由表中数据得线性回归方程:ˆˆ2yx a =-+,则由此估计:当某天气温为2℃时,当天用电量约为( )A .56千瓦·时B .62千瓦·时 C. 64千瓦·时 D .68千瓦·时7.某空间几何体的三视图如图所示,则该几何体的外接球的体积为( )A .5003π B .23 C.1253π D .12523 8.知平面向量a ,b 满足()3a a b ⋅=,且2a =,1b =,则向量a 与b 夹角的正弦值为( )A .12-B .312D 39.设,a b R ∈,则“()20a b a -⋅<”是“a b <”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件10.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112 B .114 C. 115 D .11811.过抛物线24y x =焦点的直线l 与抛物线交于A 、B 两点,与圆()2221x y r -+=交于C 、D 两点,若有三条直线满足AC BD =,则r 的取值范围为( )A .3(,)2+∞B .(2,)+∞ C. 3(1,)2D .3(,2)212.设函数()()1x f x e x =-,函数()(),0g x mx m m =->,若对任意的[]12,2x ∈-,总存在[]22,2x ∈-,使得()()12f x g x =,则实数m 的取值范围是( )A .213,3e -⎡⎤-⎢⎥⎣⎦ B .21,3e ⎡⎤⎢⎥⎣⎦C.1,3⎡⎫+∞⎪⎢⎣⎭D .2,e ⎡⎤+∞⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设,x y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则y z x =的最大值为 .14.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙市长郡中学2019-2020学年高三第一次教学质量检测
数学试题(理科)
(考试时间:120分钟 满分:150分)
注意事项
1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.
3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题元效.
第I 卷(满分60分)
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的. 1.设θ∈R ,则“ππ
||1212θ-
<
”是“1sin 2
θ<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 2.设函数()31,1
,2,1
x
x x f x x -<⎧=⎨
≥⎩则满足()()()2f a f f a =的a 取值范围是( )
A.2
,13⎡⎤⎢⎥⎣⎦
B.[]0,1
C.2,3
⎡⎫
+∞⎪⎢
⎣⎭
D.[)1,+∞ 3.若2x =-是函数21
()(1)x f x x ax e -=+-的极值点,则
()f x 的极小值为()
A.1-
B.32e --
C.35e -
D.1 4.若tan 2tan 5
πα=,则
3cos()
10sin()
5
παπ
α-
=-( )
A 、1
B 、2
C 、3
D 、4
5.在ABC △中,π4
B =,B
C 边上的高等于13
BC ,则cos A =( )
C.-
D.-
6.已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13
.若n ⊥(t m +n ),则实数t 的值为()
A.4
B.–4
C.9
4
D.–94
7.设变量,x y 满足约束条件20,
220,
0,3,
x y x y x y +≥⎧⎪+-≥⎪⎨
≤⎪⎪≤⎩则目标函数z x y =+的最大值为( ) A.23 B.1 C.32
D3 8.已知为坐标原点,
是椭圆:
的左焦点,
分别为的左,右顶点.为上一点,且
轴.过点的直线与线段

于点
,与轴交于
点.若直线经过
的中点,则的离心率为( )
A.
B. C.
D.
9.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1
与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )
A .16
B .14
C .12
D .10 10.已知当
时,函数
的图象与
的图象有且只有一个交点,
则正实数的取值范围是( ) A. B. C.
D.
11.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中
心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为( )
A .16
B .
C .12
D .10 12.
设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成
等比数列,则1a 的值为( )
A .16
B .14
C .1
2
D .10
第Ⅱ卷(非选择题 共90分)
本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.
13.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 .
14.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 .
15.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭
圆22
1123
x y +=有公共焦点,则C 的方程为 . 16.设函数33,()2,x x x a
f x x x a
⎧-≤=⎨->⎩.
①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.
三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)设函数
,其中
.已知
.
(Ⅰ)求; (Ⅱ)将函数
的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),
再将得到的图象向左平移个单位,得到函数
的图象,求


的最小值.
18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得到如下频数分布表:
(1)作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
19.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,
5,6AB AC ==,点,E F 分别在,AD CD 上,5
4
AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '=
(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.
20.(本小题满分12分)设椭圆(
)的右焦点为
,右顶点
为,已知
,其中为原点,为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与
交于点
,与轴交于点
,若
,且
,求直线
的斜率的取值范围.
21.(本小题满分12分)已知函数

,其中
是自然对数的底数.
(Ⅰ)求曲线在点()(),f ππ处的切线方程;
(Ⅱ)令,讨论
的单调性并判断有无极值,有极值时求
出极值.
请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑.
22.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪

x =3+12
t ,
y =3
2t
(t 为参数).以
原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin
θ.
(1)写出⊙C 的直角坐标方程;
(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 23.(本小题满分10分)选修4-5:不等式选讲
设a >0,b >0,且a +b =1a +1b
.
证明:(1)a +b ≥2;
(2)a 2+a <2与b 2+b <2不可能同时成立.。

相关文档
最新文档