随机事件及其概率

合集下载

概率论与数理统计第1章随机事件及其概率

概率论与数理统计第1章随机事件及其概率
骰子朝上的点数为 i ,第二颗骰子朝上的点数为 j . (3) (i) S1 {( 正品,次品 ),( 正品,正品 ),( 次品,正品 )} ;
(ii) S2 {( 正品,次品 ),( 正品,正品 )} .
若用“1 ”表示“正品”,“ 0 ”表示“次品”,这里的两个样本空
间又可表示为
(i) S1 {(1,0),(1,1),(0,1)} ;(ii) S2 {(1,0),(1,1)}. (4) (i) S1 {t t 0};(ii) S2 { 合格品, 不合格品} . 若用“1 ”表示“合格品”,“ 0 ”表示“不合格品”, S2 又可表示为 S2 {1,0} . (5) S5 {(x, y) x2 y2 100}.
字母 E T A O I N S R H
使用频率 0.126 8 0.097 8 0.078 8 0.077 6 0.070 7 0.070 6 0.063 4 0.059 4 0.057 3
字母 L D U C F M W Y G
使用频率 0.039 4 0.038 9 0.028 0 0.026 8 0.025 6 0.024 4 0.021 4 0.020 2 0.018 7
第1章 随机事件及其概率
§1.1 随机事件
1.1.1 随机现象
在自然界以及生产实践和科学实验中普遍存在着两类现象.一类是 在一定条件下,重复进行试验,某一结果必然发生或必然不发生,即是可 以事前预言的,称为确定性现象.
除去确定性现象,人们发现还存在另一类现象,它是事前不可预言 的,即在相同条件下重复进行试验,每次的结果不一定相同,这一类现象 我们称之为偶然性现象或随机现象.
在一定条件下,随机现象有多种可能的结果发生,事前不能预知 将出现哪种结果,但通过大量的重复观察,出现的结果会呈现出某种 规律,称为随机现象的统计规律性.

概率论第一章

概率论第一章
例如:在检查某些圆柱形产品时, 例如:在检查某些圆柱形产品时,如果规定只有它的长度及直径 都合格时才算产品合格,那么“产品合格” 直径合格” 都合格时才算产品合格,那么“产品合格”与“直径合格”、 长度合格”等事件有着密切联系。 “长度合格”等事件有着密切联系。
下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。

工程数学第四章 随机事件及其概率

工程数学第四章 随机事件及其概率
样本空间,记为 .如例 2 中的 {A, B,C}就是样本空间.于是任意一个事件
都可看成样本空间的一个子集.特别地,必然事件就是样本空间,不可能事件就是
空集 .
上页
下页
返回
结束
定义 2 事件发生是指该事件中的一个或多个基本事件发生,即如果某事件中 的一个或多个基本事件发生,则认为该事件发生.
到一个白球和一个红球”, D 表示“取到白球”,则 A, B,C, D 都为随机事件.
上页
下页
返回
结束
若令 表示“取到的两球不同色”, 表示“取到的两球同色”,这两个事件具 有确定性, 一定发生, 一定不发生.
实际上, 和 不是随机事件,但为了研究方便,我们仍将它们称之为特
殊的随机事件,即必然事件与不可能事件.所谓必然事件是指在试验中必然发生的
随机试验的每一个可能结果称为随机事件,简称事件.一般用 A, B,C,L 表示.
例 1 掷一枚硬币, A {正面朝上}, B {反面朝上},显然,对“掷一枚硬 币”的观察为随机试验, A ,B 为随机事件.
例 2 从一个装有红、白、黄球各一个的盒中任取两个球,若令 A 表示结果 “取到一个黄球和一个白球”,B 表示“取到一个黄球和一个红球”,C 表示“取
(4)若 B {A1, A2 ,L , An} ,则 A1, A2 ,L An 至少有一个发生的充要条件是 B 发
生.
上页
下页
返回
结束
三、事件的关系与运算
我们已经知道任一事件都是样本空间的一个子集,因此事件之间的关系与运 算与集合间的关系与运算相似.
1.包含与相等
定义 3 设 A 与 B 是试验 E 的两个事件,若 A 发生必然有 B 发生,则称 A 包 含于 B ,记为 A B .此时 A 的每一个样本点都包含在 B 中.若还有 B A ,则

概率论-第一章-随机事件与概率

概率论-第一章-随机事件与概率

第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。

这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。

这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。

随机现象所呈现出的这种规律性,称为随机现象的统计规律性。

概率论与数理统计就是研究随机现象统计规律性的一门数学学科。

§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。

举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。

随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。

随机试验£的所有可能结果的集合称为£的样本空间,记作0。

样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。

上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。

二、随机事件试验£样本空间。

应用数理统计 -随机事件及其概率

应用数理统计 -随机事件及其概率
11
五、事件的独立性
• 设A、B、C为三个事件,若
P(AB)=P(A)P(B) P(AC)=P(A)P(C) P(BC)=P(B)P(C) P(ABC)=P(A)P(B) P(C)
则称A、B 、C为相互独立事件。
12
五、事件的独立性
• 设有n个事件A1, A2 ,… , An , 如果对任意 正整数m(m=2,3,…,n), 都有 P( Ak1 Ak2 Akm ) P( Ak1 )P( Ak2 )P( Akm ) (1 k1 k2 km m) 则称事件A1, A2 ,… , An 相互独立。
i 1
i 1
(3)单调性: 若AB ,则 P(B) P(A)
(4) P(A)1
(5) P( A )=1 -P(A)
(6)加法公式
P(AB) =P(A) +P(B) -P(AB)
5
5.概率的性质
P(AB C) =P(A) +P(B) +P(C) -P(AB) -P(AC) -P(BC) +P(ABC)
n
n
P( Ai ) P(Ai )
P( Ai Aj )
P( Ai Aj Ak )
i 1
i 1
1i jn
1i jkn
(1)n1 P( A1A2 An )
6
四、条件概率
1.条件概率 若P(B)>0,则称
P( A B) P( AB) P(B)
为在事件B发生的条件下事件A发生的 条件概率。
且B1B2 … Bn = ,则对任何事件A 有
n
P( A) P(Bk )P( A Bk ) k 1
9
四、条件概率
4.贝叶斯公式
设B1,B2 , …, Bn是两两互不相容的事件, P(Bk)>0,且B1B2 … Bn = ,则对任何 概率大于0的事件A有

随机事件及其概率(知识点总结)

随机事件及其概率(知识点总结)

随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n=为事件A 出现的频率.对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件B 相等,记作A B =.3、并事件如果某事件发生当且仅当事件A 或事件B 发生,则我们称该事件为事件A 与事件 B 的并事件(或和事件),记作A B ⋃(或A B +).如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P A 有困难时,可以转化为先求其对立事件B 的概率()P B ,再运用公式()1()P A P B =-即可求出所要求的事件A 的概率()P A .4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。

概率论与数理统计01-随机事件及其概率

概率论与数理统计01-随机事件及其概率
6.接连进行n次射击,记录命中次数.若是记 录n次射击中命中的总环数呢?
7.观察某条交通干线中某天交通事故的次 数。
二、事件的出现(或发生)
称在一次试验中事件A出现(发生)当且仅当 此次试验出现了A中的样本点.
注意:
1.在一次试验中,某个事件可能出现也可能不出现; 2.在一次试验中,有且仅有一个基本事件出现.
集合运算的一些性质
AU , AI , AI A, AU A
AI B A
AB A
AI (B UC) (AI B) U(AI C) A(B C) AB AC
AU(AI B) A
A AB A
AUB AI B
AB AB
AI B AUB
解:设A = { 取 到 的 两 个 都 是 次 品},B={取到的两个中 正、次品各一个}, C={取到的两个中至少有一个正品}.
(1)基本事件总数为62,事件A的基本事件数为22, 所以 P(A)=4/36=1/9
(2)事件B的基本事件数为4×2+2×4=16, 所以 P(B)=16/36=4/9
随机事件及其概率
随机事件及其概率
1. 概率论的历史 2. 分析赌博实例
掷骰子
所有可能的结果(1,2,3,4,5,6) 每一次可能的结果
游戏规则
点数为6; 点数大于3; 点数为偶数
3. 应用数学工具解决问题 集合论
一、基本概念
1.随机试验(E)——对随机现象进行的实验与观察. 它具有三个特点:重复性, 明确性, 随机性.
nk nnL n
三.组合
从n个不同的元素中,每次取出k(k<n)个不同的元素,
与元素的顺序无关组成一组叫作组合,其组合数用

第一章随机事件及其概率总结

第一章随机事件及其概率总结

第一章随机事件及其概率总结随机事件是指在一定条件下,可能发生也可能不发生的现象或结果。

在任何随机事件中,我们都可以通过概率来描述它发生的可能性。

概率是一个在0到1之间的数字,表示一些随机事件发生的可能性大小。

以下是关于随机事件及其概率的总结。

1.随机事件的分类随机事件可以分为两类:简单事件和复合事件。

简单事件是指只有一个结果的随机事件,而复合事件是指有多个结果的随机事件。

例如,抛一枚硬币的结果可以是正面或反面,这就是一个简单事件;而抛两枚硬币的结果可以是两个正面、两个反面或一个正面一个反面,这就是一个复合事件。

2.样本空间样本空间是指一些随机事件所有可能结果的集合。

通过样本空间,我们可以计算概率。

例如,抛一枚硬币的样本空间为{正面,反面},抛两枚硬币的样本空间为{正正,正反,反正,反反}。

3.事件的概率事件的概率是指一些事件发生的可能性大小。

概率可以通过以下公式计算:概率=事件的可能数/样本空间的总数。

例如,抛一枚硬币出现正面的概率为1/2,即0.5;抛两枚硬币出现两个正面的概率为1/4,即0.254.组合事件的概率组合事件是指由两个或多个简单事件组成的事件。

组合事件的概率可以通过以下公式计算:概率=简单事件1的概率×简单事件2的概率×……×简单事件n的概率。

例如,从一副扑克牌中抽出一张红心和一张方块的概率为(26/52)×(13/51)=1/85.互斥事件和对立事件互斥事件是指两个事件不能同时发生的事件。

对立事件是指一个事件的发生排除了另一个事件的发生。

互斥事件的概率可以通过简单事件的概率之和计算;对立事件的概率可以通过1减去事件的概率计算。

6.大数定律大数定律是指随着试验次数的增加,事件的相对频率趋近于事件的概率。

也就是说,如果一个事件的概率为p,那么在进行n次独立的重复试验后,事件发生的频率将会接近于np。

例如,抛1000次硬币,正面出现的频率将会接近于500次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件及其概率(无答案)
一、知识要点
1.基本事件空间:
不可能事件
必然事件
随机事件
基本事件空间
2.频率与概率
3.概率的加法公式
互斥事件与对立事件
概率的一般加法公式:如果事件A 、B 不互斥,那么事件 A 、B 有一个发生的概率为:
()()()()P A B P A P B P A B =+- A B A B =
中基本事件数+中基本事件数-中基本事件数试验的基本事件总数
二、典型例题
例1. 指出下列事件哪些是不可能事件,哪些是必然事件,哪些 是随机事件?
(1)导体导电时发热;
(2)抛一块石头,下落;
(3)在标准大气压下且温度低于0℃时冰融化;
(4)某人射击一次中靶;
(5)掷一枚硬币,正面向上;
(6)摸彩票中头奖
例2. 将骰子先后抛掷2次.
(1)写出这个试验的基本事件和基本事件空间
(2)其中事件:向上的点数之和为5包括多少个基本事件?
(3)向上点数之和是5的概率是多少?
(4)向上点数之差的绝对值为2的概率是多少?
(5)向上的点数较大的为3的概率是多少?
(6)向上的点数之和为偶数的概率是多少?
例3. 在1,2,3,…,10这10个数字中,任取3个数字,那么 “这三个数字的和大于6”这一事件是( )
A.必然事件
B.不可能事件
C.随机事件
D.以上选项均不正确
例4. 随机事件A 的频率n
m 满足( ) A.n m =0 B.n m =1 C.0<n m <1 D.0≤n
m ≤1
例5. 下面事件是必然事件的有( )
①如果a 、b ∈R ,那么a ·b =b ·a
② 3+5>10
③()()a b c a b c ⋅⋅=⋅⋅
A.①
B.②
C.③
D.①②
例6. 甲、乙2人下棋,下成和棋的概率是
2
1,乙获胜的概率是 31,则甲不胜的概率是( ) A.
21 B.65 C.61 D.3
2 例7. 从装有两个红球和两个黑球的口袋内任取两个球,那么互 斥而不对立的两个事件是( )
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“至少有一个红球”
C.“恰有一个黑球”与“恰有两个黑球”
D.“至少有一个黑球”与“都是红球”
例8. 两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.
例9.(1)从1,2,3,4,5中任取三个数组成一个没有重复
数字的三位数,求:所得数为偶数的概率.
(2)从0,1,2,3,4中任取三个数组成一个没有重复
数字的三位数,求:所得数为偶数的概率.。

相关文档
最新文档