《随机事件及其概率》教案(1)
《随机事件与概率》教案

《随机事件与概率》教案《《随机事件与概率》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【教学目标】1.掌握必然事件、不可能事件和随机事件的概念,能够判断某一事件属于哪一类事件;2.掌握概念的定义,理解概念的意义,能计算简单事件的概率,并知道不可能事件和必然事件的概率.【教学重、难点】重点:1.判断一个事件是必然事件、不可能事件还是随机事件;2.求简单事件的概率.难点:1.生活中概率的应用;2.根据题意设计方案.【教学过程】活动一.探究新知问题1.5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸盒,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:⑴抽到的数字有几种可能?⑵抽到的数字小于6吗?⑶抽到的数字会是0吗?⑷抽到的数字会是1吗?问题2.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面上,⑴可能出现哪些点数?⑵出现的点数大于0吗?⑶出现的点数会是7吗?⑷出现的点数会是4吗?问题3.请你将以上两个问题中出现的6个事件分类,并说出分类依据.归纳:的事件称为必然事件.的事件称为不可能事件.的事件称为随机事件.其中和统称为确定性事件.练习1.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(填序号)⑴通常加热到100℃时,水沸腾;⑵篮球队员在罚球线上投篮一次,未投中;⑶任意画一个三角形,其内角和是360°;⑷经过有交通信号灯的路口,遇到红灯;⑸射击运动员射击一次,命中靶心.⑹瓮中捉鳖;⑺拔苗助长;⑻守株待兔;⑼水中捞月.问题4.在问题1中,抽到的数字是2的可能性和抽到的数字小于3的可能性一样吗?抽到的数字是奇数的可能性和抽到的数字大于4的可能性一样吗?归纳:随机事件发生的可能性是.问题5.在问题1中每个数字被抽到的可能性相等,我们用表示每一个数字被抽到的可能性大小.在问题2中每种点数出现的可能性相等,我们用表示每种点数出现的可能性大小.归纳:1.以上两个问题有两个共同的特点:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.2.对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A).练习:⑴你能求出问题1中“抽到奇数”这个事件的概率吗?⑵你能求出问题1中“抽到的数大于4”这个事件的概率吗?⑶在思考上面两个问题时,分母、分子分别具有什么意义?归纳:一般地,如果在一次试验中,有种可能的结果,并且他们发生的可能性都相等,事件A包含其中的种结果,那么事件A发生的概率P(A).活动二.新知应用例1:掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:⑴点数为2;⑵点数为奇数;⑶点数大于2且小于5;⑷点数为0;⑸点数为1到6的自然数.追问:这五个事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.必然事件的概率为,不可能事件的概率为.归纳:练习:商场有一个可以自由转动的转盘,转盘分为7个大小相同的扇形:三块红色、两块绿色、两块黄色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交界时,当作指向右边的扇形).求下列事件的概率:⑴指针指向红色;⑵指针指向红色或黄色;⑶指针不指向红色.分析:⑴问题中可能出现的结果有种,三块红色如何来表示?⑵指针不指向红色就是.例2.在围棋盒中有颗黑色棋子和颗白色棋子,从盒中随机地取出一颗棋子,它是黑色棋子的概率是.⑴试用含的代数式表示;⑵若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求和的值例3.五一期间,某书城为了吸引读者,设计了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.⑴求转一次转盘获得45元购书券的概率.⑵转转盘和直接获得购书券,你认为哪种方式对读者较合算?请说明理由.活动二:归纳新知什么是随机事件?什么是必然事件?什么是不可能事件?如何求随机事件发生的概率?不可能事件和必然事件的概率是多少?活动三:课堂检测1.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.⑴通常温度降到0℃以下,纯净的水结冰;⑵随意翻开一本书的某页,这页的号码是奇数;⑶太阳从东方升起;⑷购买一张彩票,中奖;⑸从地面发射1枚导弹,未击中空中目标.2.(2015河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是.不透明袋子中有2个红球,3个绿球和4个蓝球,这些球出颜色外无其他差别.从袋子中随机取出一个球.⑴能够事先确定取出的球是哪种颜色吗?⑵取出每种颜色的球的概率会相等吗?⑶取出哪种颜色的球的概率最大?⑷如何改变各色球的数目,使取出每种颜色的球的概率都相等?4.(2014青岛)某商场为了吸引顾客,设立了可以自由转动的转盘,转盘被均匀分成20份,并规定:顾客每购买200元的商品,就可获得一次转转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购书券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.⑴求转一次转盘获得购物券的概率.⑵转转盘和直接获得购物券,你认为哪种方式对读者更合算?.【每日一题】只有一张电影票,小明和小刚想通过抽取扑克牌的方式来决定谁去看电影.现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案,你能设计出几种?《随机事件与概率》教案这篇文章共7208字。
高中数学随机事件及其概率 教案

随机事件及其概率二、教学重点: 事件的分类与概率的统计定义.三、教学难点:概率统计定义的理解.四、教学方法:合作探究,启发式,发现法五、教学手段:多媒体课件六、教学过程:一)问题情境:1.在足球比赛前,主裁判以抛硬币的方式确定比赛场地,这公平吗?2.我们去购买福利彩票时,早去晚去对中奖的可能性有没有影响呢?3.在座的100多人中至少有两个人生日相同的概率又有多大呢?由此引出课题(板书课题)。
二)学生活动思考、讨论以上问题,学生活动贯穿于课堂教学中。
三)数学理论1.事件的含义幻灯片展示现象(1)~(4)图片:(1)木柴燃烧,产生热量;(2)明天,地球仍会转动;(3)实心铁块丢入水中,铁块浮起;(4)在标准大气压00C以下,雪融化。
引出概念:确定性现象——在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象。
幻灯片展示现象(5)、(6)图片:(5)转动转盘后,指针指向黄色区域(6)两人各买1张彩票,均中奖引出概念:随机现象——在一定条件下,某种现象可能发生也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象。
对于某个现象,如果能让其条件实现一次,就是进行了一次试验。
而试验的每一种可能的结果,都是一个事件。
2.事件的分类给出先前展示的六个现象对应的各个事件,判断它们发生的可能性。
由这些事件发生的可能性情况,引导学生归纳出必然事件、不可能事件和随机事件的定义。
必然事件:在一定条件下必然要发生的事件叫必然事件。
不可能事件:在一定条件下不可能发生的事件叫不可能事件。
随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。
由上述几个事件:(1)木柴燃烧,产生热量;(2)实心铁块丢入水中,铁块浮起;(3)两人各买1张彩票,均中奖,说明事件的条件和结果。
请学生讨论,举日常生活中这三种事件各一例。
3.事件的表示:我们用A、B、C等大写字母表示随机事件,简称事件。
注:对于必然事件和不可能事件也可以这样表示。
随机事件与概率大学的教案

一、教学目标1. 知识与技能:(1)理解随机事件的概念,掌握必然事件、不可能事件、随机事件的分类;(2)理解概率的定义,掌握概率的基本性质;(3)学会运用概率知识解决实际问题。
2. 过程与方法:(1)通过实例引导学生理解随机事件与概率的关系;(2)通过小组讨论、合作学习,提高学生的探究能力和团队协作能力。
3. 情感态度与价值观:(1)培养学生对概率论的兴趣,激发学生的学习热情;(2)使学生认识到概率论在现实生活中的应用价值。
二、教学重点与难点1. 教学重点:(1)随机事件的概念及分类;(2)概率的定义及基本性质。
2. 教学难点:(1)概率的定义及基本性质的运用;(2)概率在实际问题中的应用。
三、教学过程(一)导入新课1. 展示生活中常见的随机事件,如掷骰子、抛硬币、抽奖等,引导学生思考这些事件的特点;2. 引入随机事件的概念,解释必然事件、不可能事件、随机事件的区别。
(二)新课讲授1. 随机事件的概念及分类:(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,不可能发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件。
2. 概率的定义及基本性质:(1)概率的定义:在一定条件下,某个事件发生的可能性大小;(2)概率的基本性质:① 非负性:任何事件的概率不小于0;② 稳定性:当试验次数足够多时,某个事件发生的频率将趋近于其概率;③ 稳定性:对于任意两个事件A和B,有0≤P(A)≤1,0≤P(B)≤1;④ 加法公式:对于任意两个互斥事件A和B,有P(A∪B) = P(A) + P(B);⑤ 对立事件概率之和为1:对于任意两个对立事件A和B,有P(A) + P(B) = 1。
(三)巩固练习1. 完成课本上的例题,巩固所学知识;2. 小组讨论,互相解答问题。
(四)课堂小结1. 回顾本节课所学内容,强调重点和难点;2. 引导学生思考概率论在现实生活中的应用。
(五)布置作业1. 完成课后习题,巩固所学知识;2. 收集生活中与概率相关的事例,下节课分享。
随机事件及其概率教案(精)

<随机事件及其概率>教案(一)教学目标:1、知识目标:使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象2、能力目标:通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。
3、德育目标:1.培养学生的辩证唯物主义观点.2.增强学生的科学意识(二)教学重点与难点:重点:理解概率统计定义。
难点:认识频率与概率之间的联系与区别。
(三)教学过程:一、引入新课:试验1:扔钥匙,钥匙下落。
试验2:掷色子,数字几朝上。
讨论:下列事件能否发生?(1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下落”---------------必然发生(3)“在常温下,铁熔化” -------------不可能发生(4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考:1、“结果”是否发生与“一定条件”有无直接关系?2、按事件发生的结果,事件可以如何来分类?二、新授:(一)随机事件:定义1、在一定条件下必然要发生的事件叫必然事件。
定义2、在一定条件下不可能发生的事件叫不可能事件。
定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。
例1、指出下列事件是必然事件,不可能事件,还是随机事件:(1)扬中明年1月1日刮西北风;x(2)当x是实数时,20(3)手电筒的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%。
(5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。
讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组)1.你的结果和其他同学一致吗?为什么会出现这样的情况?2.重复试验10次并记录结果(正面朝上的次数)。
随机事件及其概率教学设计(精心整理、精品、好用)

《3.1.1随机事件及其概率》教学设计
一、教学目标:
1、知识与技能:
了解实际生活中的随机现象;了解必然事件,不可能事件,随机事件的概念;理解并能区分随机事件的频率和概率。
2、过程与方法:
(1)创设情境,引出课题,激发学生的学习兴趣和求知欲;
(2)通过做实验的过程,让学生感受在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解频率和概率的关系;
(3)明确频率与概率的区别和联系,理解利用频率估计概率的思想方法。
3、情感态度价值观:
(1)通过学生自己动手和亲身试验来理解知识,体会数学知识与现实世界的联系;
(2)增强学生的科学意识,通过数学史实渗透,培育学生刻苦严谨的科学精神。
二、教学重点与难点:
重点:概率的统计定义及概率的基本性质。
难点:频率与概率的联系和区别。
三、教学方法:
指导学生通过实验,发现随机事件随机性中的规律性,更深刻的理解事件的分类,能区分频率和概率。
四、教学教用:
硬币数数十枚,表格,课件,多媒体教学设备。
五、教学过程
六、板书设计:。
人教版九年级数学上册《随机事件与概率(第1课时)》示范教学设计

随机事件与概率(第1课时)教学目标1.掌握必然事件、不可能事件、随机事件的概念.2.掌握判断事件类型的方法与依据.3.知道事件发生的可能性是有大小的.教学重点掌握判断事件类型的方法与依据.教学难点掌握必然事件、不可能事件、随机事件的概念.教学准备不透明的袋子、4个黑球、2个白球.教学过程新课导入同学们都听说过“天有不测风云”这句话吧!它的原意是指刮风、下雨、阴天、晴天这些天气状况,人们事先很难准确预料.后来泛指世界上很多事情具有偶然性,人们无法事先预料这些事情是否会发生.在现实世界中,我们经常会遇到无法预料事情发生结果的情况.例如,虽然天气预报说明天有雨,但是我们无法确定明天是否一定会下雨.今天蓝天白云明天风雨交加该事情的发生给我们不确定的印象.下面我们再来看三个问题.新知探究一、探究学习【问题1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?【师生活动】小组交流并派代表汇报交流结果.【答案】(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【问题2】小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?【师生活动】学生独立思考,然后回答问题.【答案】(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次骰子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4,也可能不是4,事先无法确定.【追问】试着归纳出这些事件的特点.【新知】在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.相反地,有些事件必然不会发生.例如,问题1中“抽到的数字是0”,问题2中“出现的点数是7”,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,问题1中“抽到的数字是1”,问题2中“出现的点数是4”,这两个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.【设计意图】通过问题1与问题2,引出不可能事件、随机事件、必然事件的概念.【师生活动】观察下面的动图,巩固对不可能事件、随机事件、必然事件概念的理解.【设计意图】通过动图,生动地展现了不可能事件、随机事件、必然事件的概念.【问题3】袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?【师生活动】师生共同完成下面的任务:每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.【答案】(1)在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.(2)在上面的摸球活动中,由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.【新知】一般地,随机事件发生的可能性是有大小的.【设计意图】通过问题3,归纳得出随机事件发生的可能性是有大小的.【思考】能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?【答案】可以增加2个白球,也可以减少2个黑球,只要使袋子中两种颜色的球的个数相同即可.【设计意图】比较这两种方法,容易发现某种颜色的球被摸到的可能性的大小与其相对多少有关,而与其绝对多少无关,这为下节课用个数比值而不是绝对个数刻画可能性的大小进行了铺垫.二、典例精讲【例1】指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件.(1)掷一枚硬币,正面朝上;(2)买一张彩票,中奖;(3)掷一次骰子,向上一面的点数小于7;(4)任意买一张电影票,座位号是双号;(5)向空中抛一枚硬币,硬币不掉落在地面上.【师生活动】学生独立完成,然后全班交流.【答案】(1)随机事件(2)随机事件(3)必然事件(4)随机事件(5)不可能事件【归纳】判断事件类型的方法与依据判断方法:判断事件类型,先要判断该事件的发生是不是确定的.若是确定的,则再判断其是必然发生的,还是必然不会发生的;若是不确定的,则该事件是随机事件.判断依据:客观事实,生产、生活中的常识经验,大自然的客观规律及自己的学习经验等.【设计意图】通过例1,让学生掌握判断事件类型的方法与依据.【例2】投掷一枚质地均匀的骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2.这些事件发生的可能性由大到小排列为____________.【师生活动】学生独立思考,然后回答问题.【答案】④③②①【解析】根据题意可得,投掷一枚质地均匀的骰子,共有6种情况.①“掷得的点数是6”包含1种情况;②“掷得的点数是奇数”包含3种情况;③“掷得的点数不大于4”包含4种情况;④“掷得的点数不小于2”包含5种情况,故这些事件发生的可能性由大到小的顺序,即每个事件包含情况的数目由多到少排列为④③②①.【归纳】比较随机事件发生的可能性的大小的方法比较随机事件发生的可能性的大小时,可在条件相同和总数一定的情况下,通过可能出现的结果数进行比较,结果数越多,这个事件发生的可能性越大.【设计意图】通过例2,让学生掌握比较随机事件发生的可能性的大小的方法.课堂小结板书设计一、必然事件与不可能事件二、随机事件课后任务完成教材第128页练习题,第129页练习第1~3题.。
随机事件与概率教案1(九年级数学)

2 是 是25.1 随机事件与概率25.1.1 随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力 ,了解影响随机事件 发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作 定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10 分钟)自学:阅读教材 P 127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不 可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的 事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5 分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是 100℃;(3)a +b 2=-1(其中 a ,b 都是实数); (4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程 x 2+2x +3=0 无实数解.解:(1)(4)(6)必然发生的;(2)(3)(5)不可能发生的. 2.在一个不透明的箱子里放有除颜色外,其余都相同的 4 个小球,其中红 球 3 个、白球 1 个.搅匀后,从中随机摸出 1 个小球,请你写出这个摸球活动中 的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共 52 张),洗匀后,摸到红桃的可能性__>__ 摸到 J ,Q ,K 的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D )A .抽出一张红桃B .抽出一张红桃 KC .抽出一张梅花 JD .抽出一张不是 Q 的牌5.某学校的七年级(1)班,有男生 23 人,女生 23 人.其中男生有 18 人住宿, 女生有 20 人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住 宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( A )A .cabB .acbC .bcaD .cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生; ;不4.20 张卡片分别写着 1,2,3,…,20,从中任意抽出一张,号码是 2 的 倍数与号码是 3 的倍数的可能性哪个大?解:号码是 2 的倍数的可能性大.5.指出下列事件中 ,哪些是必然事件 ,哪些是不可能事件 ,哪些是随机事 件.(1)两直线平行,内错角相等;(2)刘翔再次打破 110 米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是 3 点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有 3 个球的布袋里摸出 4 个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5) 随机事件:(2)(3)(4)(6)(8)(9)可能事件:(7). 6.已知地球表面陆地面积与海洋面积的比值为 3∶7.如果宇宙中飞来一块陨 石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2 分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析.3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10 分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.m 2.理解 P(A)= n (在一次试验中有 n 种可能的结果 ,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.m 难点:对 P(A)= n (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10 分钟)自学:阅读教材第 130 至 132 页.归纳:1.当 A 是必然事件时,P(A)=__1__;当 A 是不可能事件时,P(A)=__0__; 任一事件 A 的概率 P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.m 3.一般地,在一次试验中,如果事件A发生的可能性大小为__n__,那么m这个常数n就叫做事件A的概率,记作__P(A)__.m4.在上面的定义中,m,n各代表什么含义?n的范围如何?为什么?点拨精讲:(1)刻画事件A发生的可能性大小的数值称为事件A的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1 1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__6__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,1当你抬头看信号灯恰是黄灯亮的概率为__12__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球1的概率为__5__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.111解:(1)6;(2)2;(3)3.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟)1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?121解:摸到黑球的概率大.摸到黑球的可能性为13,摸到白球的可能性为13,12113>13,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都m相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=__n__且__0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2概率(2)1.进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.m2.运用P(A)=n解决一些实际问题.m重点:运用P(A)=n解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟).自学:阅读教材P133二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?1解:5种;5.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?1解:6种;6.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.131解:(1)4;(2)4;(3)2.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发m生的可能性相等.因此,它可以运用“P(A)=n”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A区域(划线部分),A区域外的部分记为B区域,数字3表示在A区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A区域还是B区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A.两枚硬币全部正面朝上;B.两枚硬币全部反面朝上;C.一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是(D)1535A.16B.16C.8D.82.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是(D)531517A.36B.8C.36D.363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为3__4__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.111解:(1)6;(2)2;(3)3.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)。
《概率论与数理统计》第一章 随机事件与及其概率教案

第一章随机事件与及其概率§1.1随机事件及其运算教学目的要求:掌握几个基本概念,为后面的学习打下基础,并对本书内容体系有一个大致的了解.教材分析:1.概括分析:概率论是数理统计的理论基础,本节是概率论中的最基本的与最基础的内容之一.学习本节,要求学生掌握随机事件、样本空间、事件域、布尔代数等基本概念,了解事件之间的关系和事件之间的一些运算.2.教学重点:随机事件、样本空间、事件域、布尔代数等基本概念,事件之间的关系和事件之间的一些运算.3.教学难点:事件之间的关系和事件之间的一些运算的证明.教学过程:1.1.1随机现象必然现象(确定性现象):只有一个结果的现象。
例如“在一个标准大气压下,纯水加热到100C 时必然沸腾。
”“同性电荷相吸。
”随机现象(偶然现象):是在一定条件下,并不总是出现相同的结果的现象。
特点:1、结果不只一个;2、哪一种结果出现,人们事先又不知道。
例1.1.1随机现象的例子(1)抛一枚质地均匀的硬币,可能是正面朝上,也可能是反面朝上;(2)掷一颗骰子,出现的点数‘(3)一天内进入某超市的顾客数;(4)某种型号电视机的寿命;(5)测量某物理量(长度、直径等)的误差。
概率论与数理统计是一门处理随机现象的学科。
概率论是从数量侧面研究随机现象及其统计规律性的数学学科,它的理论严谨,应用广泛,并且有独特的概念和方法,同时与其它数学分支有着密切的联系它是近代数学的重要组成部分;数理统计是对随机现象统计规律归纳的研究,就是利用概率论的结果,深入研究统计资料,观察这些随机现象并发现其内在的规律性,进而作出一定精确程度的判断,将这些研究结果加以归纳整理,形成一定的数学模型。
虽然概率论与数理统计在方法上如此不同,但做为一门学科,它们却相互渗透,互相联系。
随机试验:对在相同条件下可以重复的随机现象的观察、记录、试验。
1.1.2样本空间在一个试验中,不论可能的结果有多少,总可以从中找出一组基本结果,满足:1)每进行一次试验,必然出现且只能出现其中的一个基本结果;2)任何结果,都是由其中的一些基本结果所组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件及其概率
教学目标:
(1)通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念。
(2)根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键;
(3)理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法, 理解频率和概率的区别和联系;
(4)通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.
教学重点:
根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 理解频率和概率的区别和联系.
教学难点:
理解随机事件的频率和概率定义及计算方法, 理解频率和概率的区别和联系.
教学过程:
一、问题情境
1、观察下列现象发生与否,各有什么特点?
(1)在标准大气压下,把水加热到100℃,沸腾;
(2)导体通电,发热;
(3)同性电荷,互相吸引;
(4)实心铁块丢入水中,铁块浮起;
(5)买一张福利彩票,中奖;
(6)掷一枚硬币,正面朝上。
注:显然(1)、(2)两种现象必然发生的,(3)、(4)两种现象不可能发生,从而它们都是确定性现象。
(5)、(6)两种现象可能发生,也可能不发生(是随机现象)。
2、实验1:奥地利遗传学家(G.Mendel)用豌豆进行杂交试验,下表为试验结果(其中F1 为第一子代,为F2第二子代):
性状F1的表现F2的表现
种子的形状全部圆粒圆粒5474 皱粒1850 圆粒︰皱粒≈2.96︰1
茎的高度全部高茎高茎787 矮茎277 高茎︰矮茎≈2.84︰1
子叶的颜色全部黄色黄色6022 绿色2001 黄色︰绿色≈3.01︰1
豆荚的形状全部饱满饱满882 不饱满299 饱满︰不饱满≈2.95︰1
孟德尔发现第一子代对于一种性状为必然事件,其可能性为100%,另一种性状的可能性为0,而第二子代对于前一种性状的可能性约为75%,后一种性状的可能性约为25%,通过进一步研究某种性状发生的频率作出估计,他发现了生物遗传的基本规律。
实验2
A B
1 模拟次数10 正面向上的频率0.3
2 模拟次数100 正面向上的频率0.53
3 模拟次数1000 正面向上的频率0.52
4 模拟次数5000 正面向上的频率0.4996
5 模拟次数10000 正面向上的频率0.506
6 模拟次数50000 正面向上的频率0.50118
7 模拟次数100000 正面向上的频率0.49904
8 模拟次数500000 正面向上的频率0.50019
由图看到,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动。
实验3:鞋厂某种成品鞋质量检验结果:
抽取产品数20 50 100 200 500 1000
优等品数18 48 96 193 473 952
优等品频率0.9 0.96 0.96 0.965 0.946 0.952
从表可以看出,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动。
由以上大量重复实验随机事件尽管是随机的,却有什么规律呢?
二、建构数学
(1)几个概念
1.确定性现象:在一定条件下,事先就能断定发生或不发生某种结果的现象;
2.随机现象:在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果的现象。
3.事件的定义:对于某个现象,如果能让其条件实现一次,就是进行了一次试验。
而试验的每一种可能的结果,都是一个事件。
必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件。
随机事件:在一定条件下可能发生也可能不发生的事件;我们用A,B,C等大写英文字母表示随机事件,简称为事件。
说明:三种事件都是在“一定条件下”发生,当条件改变,事件的类型也可能发生变化。
例1 、试判断下列事件是随机事件、必然事件、还是不可能事件
(1) 我国东南沿海某地明年将3次受到热带气旋的侵袭;(2)若a为实数,则|a|>0;
(3) 某人开车通过10个路口都将遇到绿灯;(4)抛一石块,石块下落;
(5) 一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12。
()()
,24;
解由题意知、是必然事件()5;
是不可能事件()()
13.
、是随机事件
(2)随机事件的概率:
1、概率一般地,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可
以将发生的频率m
n作为事件A发生的概率的近似值,即
()m
P A
n
≈
2、概率的性质:
①随机事件的概率为
1
)
(
0≤
≤A
P.
②必然事件和不可能事件看作随机事件的两个特例,分别用Ω和Φ表示,必然事件的概率为1,不可能事件的概率为0. 3、(1)频率的稳定性.即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率; (2)“频率”和“概率”这两个概念的区别是: ① 频率具有随机性,② 概率是一个客观常数. 三、数学应用
例2 、某市统计近几年新生儿出生数及其中男婴数(单位:人)如下: 时间 1999年 2000年 2001年 2002年 出生婴儿数 21840 23070 20094 19982 出生男婴数
11453
12031
10297
10242
(1)试计算男婴各年出生的频率(精确到0.001); (2)该市男婴出生的概率是多少?
()11453
119990.524.21840≈解
年男婴出生的频率为
2000200120020.521,0.512,0.512;同理可求得年、年和年男婴出生的频率分别为
()20.51~0.53,0.52.各年男婴出生的频率在之间故该市男婴出生的概率为
例3、(1)某厂一批产品的次品率为10%.任意抽取其中10件产品是否一定会发现一件次品?为什么?(2)10件产品中次品率为0.1 ,问这10件产品中必有一件次品的说法是否正确?为什么?
四、课堂练习
(1)课本第88页练习1、2、3课本第91页练习第1、2、3.
投篮次数 8 10 15 20 30 40 50 进球次数 6 8 12 17 25 32 38 进球频率
(2)这位运动员投篮一次,进球概率约是多少?概率约是0.8
五.回顾小结
1、理解确定性现象、随机现象、事件、随机事件、必然事件、不可能事件的概念并会判断给定事件的类型。
2、理解概率的定义和两个性质,理解频率和概率的区别和联系。
六.课外作业。