习题1 随机事件及其概率
随机事件及其概率习题

第一章随机事件及其概率习题一 、填空题当A , B 互不相容时,P (A U B)=亠卩(AB )= 0_^ 当 B A 时,P(A+B = _;_RAB = 若 P(A) ,P(B) ,P(AB) , P(A B) 1P(A B)= 119 9.事件 A,B,C 两两独立,满足 ABC , P (A) P (B) P (C)-,且 P ( A+B+C )=—216则 P(A)=??10.已知随机事件 A 的概率P(A) 0.5,随机事件 B 的概率P(B) 0.6,及条件概率P(B | A) 0.8,则和事件 A B 的概率P(A B)1.设样本空间 {x|0x 2}, 事件A {x|l1x 1}, B {x|-4{x|0 x ^} U{x|-4 2x 2},- 1 AB{x|-4x 1} U{x|1 x 2.连续射击一目标,A i 表示第i 次射中,直到射中为止的试验样本空间,则=A ; A I A 2; L ; A 1 A 2 L A n 1A n ; L.3.—部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为 1、2、3、4概率为 — 124. 一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概 率是 c m c nm /c N5.某地铁车站,每5分钟有一趟列车到站, 乘客到达车站的时刻是任意的, 则乘客侯 车时间不超过3分钟的概率为 6•在区间(0, 1 )中随机地取两个数,则事件“两数之和小于 6”的概率为57. 已知 RA)= P(B)=(1) ;P(AB)12.假设一批产品中一、二、三等品各占60% 30% 10%从中随机取一件结果不是三等品,则取到一等品的概率为13. 已知 P(A) a,P (B|A) b,则卩(AB )14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率162 1 215.甲、乙、丙三人入学考试合格的概率分别是 -,1,-,三人中恰好有两人合格的概3 2 5率为2/5 .16. 一次试验中事件 A 发生的概率为 p ,现进行n 次独立试验,则A 至少发生一次的概率为 1 (1 p)n; A 至多发生一次的概率为17.甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为二、选择题3.如果事件A, B 有B A,则下述结论正确的是(C ).产品不全是合格品”,则下述结论正确的是(B ).5. 若二事件A 和B 同时出现的概率 P( AB )=0则(C ).(C ) AB 未必是不可能事件;(D ) P( A )=0或P( B )=0.a ab .(1 P)n np(1 p)n 11.以A 表示事件“甲种产品畅销,乙种产品滞销” 则其对立事件 A 为(D ).(A ) “甲种产品畅销,乙种产品滞销” (B ) “甲、乙两种产品均畅销” (C ) “甲种产品滞销”(D ) “甲种产品滞销或乙种产品畅销”2.对于任意二事件 A 和 B,与A BB 不等价的是(D ).(A) A B;(B) B A;(C) AB(D) AB(A ) A 与B 同时发生; (B) A 发生,B 必发生; (C) A 不发生B 必不发生; (D B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个(A) A B;(B) A C;(C) B C;(D) A B C.(A ) A 和B 不相容;(B ) AB 是不可能事件;6.对于任意二事件A和B有P(A B) (C ).(D) P(A) P (B) P(B) P(AB).8.设A , B 是任意两个概率不为 0的不相容的事件,则下列事件肯定正确的(D ).(A) A 与 B 不相容;(B) A 与 B 相容;(C) P( AB = P( A )P( B); (D) P( A-护P( A ). 9.当事件A B 同时发生时,事件C 必发生则(B ).(C) 事件A 和 B 互不独立;13 .设A, B 是任意二事件,且P(B) 0, P(A|B) 1 ,则必有(C ).(A) P(A B) P(A); (B) P(A B) P(B); (C) P(A B) P(A);(D)P(AB) P(B).14. 袋中有 5个球,其中2个白球和 3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D .(C ) P (A) P( AB); (A) P(C) P(A) P(B) 1;(C) P(C) P(AB);(B) P(C) P(A) P(B) 1; (D) P(C) P(A B).10.设A,B 为两随机事件,且 A ,则下列式子正确的是 (A ).(A ) P(A B) P(A);(B) P(AB) P(A); (C) P(B|A) P(B);(D)P(B A) P(B) P(A).11.设A 、B 、C 是二随机事件,且 P(C) 0,则下列等式成立的是 (B).(A) P(A|C) P(A|C) (C) P(A|C) P(A|C)1; 1;(B) P(AUB|C) P(A|C) P(B|C) P (AB|C); (D) P(AUB|C) P(A|C) P(B|C).12.设A, B 是任意两事件B,P(B) 0,则下列选项必然成立的是(B ).(A) P (A) P(A|B); (C) P(A) P(A|B);(B) P(A) P(A|B); (D) P(A) P(A| B). 1(A)1;(B) |;4(C) 1;(D) I515.设 0 P(A) 1, 0 P(B) 1, P(A|B) P(A|B) 1,则(D ).(A) 事件A 和 B 互不相容;(B)事件A 和B 互相对立;事件A 和B 相互独立.p (0 p 1),则此人第4 (D)16.某人向同一目标重复射击,每次射击命中目标的概率为次射击恰好第2次命中目标的概率为(C).三、解答题1.写出下列随机实验样本空间:(1)同时掷出三颗骰子,记录三只骰子总数之和;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回) ,直到将3只次品都取 出,记录抽取的次数;⑶对某工厂出厂的产品进行检查,合格的盖上“正品” ,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
第一章 随机事件及其概率课后习题参考答案

第一章 随机事件及其概率1. 1) {}01001,,,.nn n n Ω=L2) {}{}10,11,12,13,,10.n n Z n Ω==∈≥L3) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。
写下检查四个产品所有可能的结果S ,根据条件可得样本空间Ω。
,,,,,,,,,,,,,,,,,,,,,,,,.,,,,S ++--++-++++-+++++---+--++-+-+-++⎧⎫=⎨⎬-+---+-+-++--+++-------+--+---++⎩⎭++--++-++++-+++++--+-+-+-++⎧⎫Ω=⎨⎬-+---+-+-++--+++--⎩⎭4) {}22(,)1.x y x y Ω=+<2. 1) ()A B C ABC --=, 2) ()AB C ABC -=, 3) A B C A B C ++=U U , 4) ABC ,5) ()A B C ABC Ω-++=, 6) ()AB BC AC AB BC AC Ω-++=++, 7) ()ABC A B C Ω-=U U , 8) AB AC BC ++.3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。
(2)当()1P A B +=时,()P AB 取到最小值0.3。
4. 解:依题意所求为()P A B C ++,所以()()()()()()()()1111000(0()()0)44485.8P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==Q 5. 解:依题意,()()()()()()()()()()()()()()0.70.50.25.()()()0.70.60.5P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++==++=+=+---===+-+-Q6. 解:由条件概率公式得到111()1()()(),(),3412()2P AB P AB P A P B A P B P A B ==⨯=== 所以1111()()()().46123P A B P A P B P AB +=+-=+-= 7. 解:1) 2028281222101028()45C C P P A A C P ===,2) 202__________282121212210101()()(|)45C C P P A A P A P A A C P ====,3) 1122________82821212121222210101016()()()145C C P P P A A A A P A A P A A C P P =+==--=U ,4) 1120____________8228121212122101()()()5C C C C P A A A A P A A P A A C +=+==U . 8. 解:(1) 以A 表示第一次从甲袋中取得白球这一事件,B 表示后从乙袋中取 得白球这一事件,则所求为()P B ,由题意及全概率公式得1()()()()().11n N m NP B P A P B A P A P B A n m N M n m N M +=+=⨯+⨯++++++ (2) 以123,,A A A 分别表示从第一个盒子中取得的两个球为两个红球、一红球一白球和两个白球,B 表示“然后”从第二个盒子取得一个白球这一事件,则容易推知211255441232229995103(),(),(),181818C C C C P A P A P A C C C ====== 123567(|),(|),(|).111111P B A P B A P B A === 由全概率公式得31551063753()()(|).18111811181199i i i P B P A P B A ===⨯+⨯+⨯=∑ 9. 解:以A 表示随机挑选的人为色盲,B 表示随机挑选的人为男子。
《概率论与数理统计》第01章习题解答

第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
概率练习题含答案

第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B ) (2)事件的对立与互不相容是等价的。
(B ) (3)若()0,P A = 则A =∅。
(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。
(B ) (7)若P(A)P(B)≤,则⊂A B 。
(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论与数理统计教程习题(第一章随机事件与概率)

习题1(随机事件及其运算)一.填空题1. 设A ,B ,C 是三个随机事件,用字母表示下列事件:事件A 发生,事件B ,C 不都发生为 ;事件A ,B ,C 都不发生为 ;事件A ,B ,C 至少一个发生为 ;事件A ,B ,C 至多一个发生为 .2. 某人射击三次,用A i 表示“第i 次射击中靶”(i =1,2,3).下列事件的含义是:1A 表示 ;321A A A 表示 ;321321321A A A A A A A A A ++表示 ;321A A A 表示 .3. 在某学院的学生中任选一人,用A 表示“选到的是男生”,用B 表示“选到的是二年级的学生”,用C 表示“选到的是运动员”。
则式子ABC=C 成立的条件是 .二.选择题1. 在事件A ,B ,C 中,B 与C 互不相容,则下列式子中正确的是( ).① A BC A = ; ② A BC A = ;③ Φ=BC A ; ④ Ω=BC A .2. 用A 表示“甲产品畅销,乙产品滞销”,则A 表示( ).① “甲产品滞销,乙产品畅销”; ② “甲、乙产品都畅销”; ③ “甲产品滞销或乙产品畅销”; ④ “甲、乙产品都滞销”.3. 若概率0)(=AB P ,则必有( ).① Φ=AB ; ② 事件A 与B 互斥;③ 事件A 与B 对立; ④ )()()(B P A P B A P += .三.解答题1. 将一枚骰子掷两次,记录点数之和,写出样本空间Ω及事件=A {点数之和为偶数};=B {点数之和能被3整除}.2. 将一枚骰子掷两次,观察点数的分布,写出样本空间Ω及事件=A {点数之和为6};=B {点数之差为2}.3. 某城市发行日报和晚报两种报纸。
有15%的住户订日报,25%的住户订晚报,同时订两种报纸的住户有8%,求下列事件的概率:C ={至少订一种报};D ={恰订一种报};E ={不订任何报}.4. 若已知,2.0)(,0)()(,3.0)()()(======BC P AC P AB P C P B P A P 求概率)(ABC P ;)(C B A P ;).(C B A P习题2(概率的定义及性质)一.填空题1. 掷两枚质地均匀的骰子,则点数之和为8的概率P = .2. 在10把钥匙中,有3把能开门。
随机事件及其概率习题

第一章 随机事件及其概率习题一一、填空题1.设样本空间}20|{≤≤=Ωx x ,事件}2341|{ },121|{<≤=≤<=x x B x x A ,则B A Y 13{|0}{|2}42x x x x =≤<≤≤U , B A 113{|}{|1}422x x x x =≤≤<<U . 2. 连续射击一目标,i A 表示第i 次射中,直到射中为止的试验样本空间Ω,则Ω={}112121 n n A A A A A A A -L L L ;;;;. 3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为 121 . 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 n N m n M n m M C C C /-- .5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于56 ”的概率为 . 7.已知P (A )=, P(B )=,(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= 0 .(2) 当B A 时, P(A+B )= ; P (AB )= ;8. 若γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ-;=)(B A P βγ-; )(B A P +=1αγ-+.9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=169, )(A P 则= . 10.已知随机事件A 的概率5.0)(=A P ,随机事件的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 23 . 13. 已知===)(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 61 . 15. 甲、乙、丙三人入学考试合格的概率分别是52 ,21 ,32,三人中恰好有两人合格的概率为 2/5 . 16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为11n p --();A 至多发生一次的概率为 11(1)n n p np p --+-() .17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为 .二、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为(D ).(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件不等价的是与和B B A B A =Y ,(D ).() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B A ,则下述结论正确的是(C ).(A ) A 与B 同时发生; (B )A 发生,B 必发生;(C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).() ; () ; () ; .A AB B AC C B CD A B C ====-() 5. 若二事件A 和B 同时出现的概率P(AB )=0则(C ).(A )A 和B 不相容; (B )AB 是不可能事件;(C )AB 未必是不可能事件; (D )P(A )=0或P(B )=0.6. 对于任意二事件A 和有=-)(B A P (C ).(A) )()(B P A P -; (B ))()()(AB P B P A P +-;(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ). (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A ).9. 当事件A 、B 同时发生时,事件C 必发生则(B ).(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10. 设B A ,为两随机事件,且A B ⊂ ,则下列式子正确的是 (A ).(A ))()(A P B A P =+; (B) )()(A P AB P =;(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B).() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+==U U 12. 设B A ,是任意两事件, 且0)(,>⊂B P B A , 则下列选项必然成立的是(B ). ()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有( C ).(A) ()()P A B P A +>; (B) ()()P A B P B +>;(C) ()()P A B P A +=; (D) ()()P A B P B +=.14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).1212() ; () ; () ; () .4455A B C D15. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P (D ).(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为(C ).222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
概率论与数理统计课后习题答案

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题5.习题6.习题7习题8习题9习题10习题11习题12习题13习题14习题15习题16习题17习题18习题19习题20习题21习题22习题23习题24习题25习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 351203612021120112 0习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为 F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布; (2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此 x-400060≈1.28, 即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.Y -101P 21513815习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数.解答: fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y 在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265, (查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2,P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值; (2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴ {1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx =(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即 K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002, P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\123Y1 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732. (4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为故(1)在Y=1条件下,X的条件分布律为。
随机事件及其概率习题及解答

随机事件及其概率习题及解答第一章随机事件及其概率习题及解答习题1.个人随机地围一圆桌而坐,求甲、乙两人相邻而坐的概率.n 2.从一付扑克牌(52张)中任意抽取两张,求下列各事件的概率(1)恰好两张同一花色;(2)恰好两张都是红色牌;(3)其中恰好有一张A;(4)其中至少有一张A.3.甲、乙两人掷均匀硬币,其中甲掷1n +次,乙掷次,求甲掷出正面的次数大于乙掷出正面次数的概率.n 4. 袋中装有号的球各一只,采用(1)有放回;(2)无放回式摸球,试求在第k 次摸球时首次摸到1号球的概率。
N ,,2,1 5.有两个形状相同的罐,第一个中有球2白1黑,第二个中有球2白2黑,某人从任一罐中任取1个球,已知取出的是白球,求是从第一个中取出的概率。
6.假设每个人的生日在任何月份内是等可能的。
已知某单位中至少有一个人的生日在一月份的概率不小于0.96,问该单位有多少人?7.某人从甲地到乙地,乘火车、轮船、飞机的概率分别为0.2,0.4,0.4,乘火车迟到的概率为0.5,乘轮船迟到的概率为0.2,乘飞机不会迟到。
问这个人迟到的概率是多少?如果他迟到了,问他乘轮船的概率是多少?8.10个零件中有3个次品,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得合格品的概率。
9.某人投篮,命中率为0.8,现独立投五次,求最多命中两次的概率。
10.某班有个学生,上体育课时老师发给每人一根绳子进行跳绳练习,跳了10分钟后把绳子放在一堆,进行别的练习,后来每人又随机拿了一根绳子进行练习,问至少有一个学生拿到自己原先使用的绳子的概率.N 11.设一枚深水炸弹击沉一潜水艇的概率为13,击伤的概率为12,击不中的概率为16.并设击伤两次也会导致潜水艇下沉.求施放4枚深水炸弹能击沉潜水艇的概率.12.甲、乙两人进行乒乓球比赛,每局甲胜的概率为.问对甲而言,采用三局二胜制有利,还是采用五局三胜制有利.设各局胜负相互独立.,1/p p ≥2习题解答1.解令A ={甲、乙两人相邻而坐},设想圆桌周围有1,这个位置,由于该问题属于圆排列问题,所以不妨认为甲坐1号位置,那么2,,n n A 发生当且仅当乙坐2号或号位置,从而n1,2,()2,21n P A n n =??=?>. 2.解(1)235.025221314=C C C (2)245.0252226=C C (3)145.025214814=C C C (4)149.01252248=?C C 3.解令A ={甲掷出正面的次数大于乙掷出正面次数},B ={甲掷出反面的次数大于乙掷出反面次数},由硬币的均匀性知,,容易看出,()()P A P B =,A B S AB ==?∪,由此可知1()2P A =. 4.解:设}1{号球次摸到第i A i =(1))|()|()|()()(1212211121121=k k k k k k A A A A P A A A A P A A P A P A A A A PNN N N N N N N N N k 1111111=?????=? (2))|()|()|()()(1212211121121=k k k k k k A A A A P A A A AP A A P A P A A A A PNk N k N k N N N N N 1)1(1)2()1(121== 5.设=“取到第i 个罐中的球”,i A 2,1=i ,B =“取到白球”,则21)()(21==A P A P ,32)|(1=A B P ,2142)|(2==A B P 则全概率公式)|()()|()()(2211A B P A P A B P A P B P = 12721213221=×+×= 由bayes 公式有741273221)()|()()|(111=×==B P A B P A P B A P 6.解:设该单位有个人,=“第个人生日在一月份”,则n i A i ),,2,1(n i =121)(=i A P ),,2,1(n i =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一 随机事件及其概率一、填空题1.设随机试验E 对应的样本空间S ,与其任何事件不相容的事件为φ,而与其任何事件相互独立的事件为φP (A|B )=1, 则A 、B 两事件的关系为 A=B ;设E 为等可能型试验,且S 包含 10 个样本点,则按古典概率的定义其任一基本事件发生的概率为 0.1 。
2.若A 表示某甲得100分的事件,B 表示某乙得100分的事件,则(1)A 表示 甲未得100分的事件;(2)A B ⋃表示 甲乙至少有一人得100分的事件;(3)AB 表示 甲乙都得100的事件;(4)AB 表示 甲得100分,但乙未得100分的事件;(5)AB 表示 甲乙都没得100分的事件;(6)AB 表示 甲乙不都得100分的事件;3.若事件,,A B C 相互独立,则()P A B C ⋃⋃= ()()()()()()()()()()P A P B P C P A P B P A P C P B P C P A PB PC ++---+。
4.若事件,A B 相互独立,且()0.5,()0.25,P A P B ==则 ()P A B ⋃=0.625。
5.设111()()(),()()(),(),4816P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ⋃⋃=167;()P ABC =169;(,,)P A B C =至多发生一个43;(,,P A B C =恰好发生一个)163;(|)P A A B C ⋃⋃=74。
6.袋中有 50 个乒乓球,其中 20 个是黄球,30 个白球,今有两人依次随机地从袋中各取1球,取后不放回,则第二个人取得黄球的概率是 0.4 。
7.将 C ,C ,E ,E ,I,N,S 七个字母随机地排成一行,则恰好排成英文单词 SCIENCE 的概率为11260。
8.10 件产品有 4 件次品,现逐个进行检查,则不连续出现 2 个次品的概率为 。
9.在[-1,1]上任取一点,则该点到原点距离不超过13的概率是0.33。
10.在区间(0,1)上随机地取出两个,u v ,则关于x 的一元二次方程220x vx u -+=有实根的概率是0.33。
11.若有n 个人随机地站成一列,其中有甲、乙两个,则夹在甲和乙之间恰 有r 个人的概率为)1()1(2---n n r n 。
12.对二事件,A B 已知()0.6P A =,()0.7P B =,那么()P AB 可能取到的最大值是 0.6 ;可能取到的最小值是 0.3 ;()P A B ⋃可能取到的最大值是 1 ;可能取到的最小值是 0.7 。
13.由装有 3 个白球 2 个黑球的箱中,随机地取出 2 个球,然后放到装有 4个白球和4个黑球的箱子中,试计算最后从第二个箱子中取出一球,此球为白球的概率为 0.52。
二、选择题1.以下命题正确的是 (ABCD ) A.()()AB AB A ⋃=; B.若A B ⊂,则AB A =;C.若A B ⊂,则B A ⊂;D.若A B ⊂,则A B B ⋃=.2.某学生做了三道题,以A 表示“第i 题做对了的事件”(1,2,3)i =,则该生至少做对了两道题的事件可表示为 ( B D ) A. 212313123A A A A A A A A A ⋃⋃; B. 122313AA A A A A ⋃⋃; C. 122313A A A A A A ⋃⋃ ; D. 212313123123A A A A A A A A A A A A ⋃⋃⋃.3. 若事件A 与B 相容,则有 ( B )A.()()()P A B P A P B ⋃=+;B. ()()()()P A B P A P B P AB ⋃=+-;C. ()1()()P A B P A P B ⋃=--;D. ()1()()P A B P A P B ⋃=-.4 .事件A 与B 互相对立的充要条件是 ( C )A.()()()P AB P A P B =;B.()0P AB =且()1P A B ⋃=;C.AB =∅且A B S ⋃=;D.AB =∅.5.已知()0P B >且12A A =∅,则( ABC )成立.A.1(|)0P A B ≥;B.1212(()|)(|)(|)P A A B P A B P A B ⋃=+;C.12(|)0P A A B =;D. 12(|)1P A A B =.6.若()0,()0P A P B >>且(|)()P A B P A =,则( AB )成立.A. (|)()P B A P B =;B.(|)()P A B P A =;C.,A B 相容;D.,A B 不相容.7.对于事件A 与B ,以下命题正确的是( ).A.若A 、B 互不相容,则A 、B 也互不相容;B.若A 、B 相容,则A 、B 也相容;C.若A 、B 独立,则A 、B 也独立;D.若A 、B 对立,则A 、B 也对立.8.若事件A 与B 独立,且()0,()0P A P B >>, 则( AB )成立.A. (|)()P B A P B =;B.(|)()P A B P A =;C.,A B 相容;D.,A B 不相容.三、解答题1. 用集合的形式写出下列随机试验的样本空间S 与随机事件A :(1)掷一颗骰子,观察向上一面的点数;事件A 表示“出现奇数点”;(2)对一个目标进行射击,一旦击中便停止射击,观察射击的次数;事件A 表示“射击不超过3次”;(3)把单位长度的一根细棒折成三段,观察各段的长度;事件A 表示“三段 细棒能构成一个三角形”。
解: (1) }{11,2,3,4,5,6S =,A 1=}{1,3,5;(2) }{21,2,S = , A 2=}{1,2,3;(3) 设折得三段长度分别为x,y 和1-x-y ,()}{3,01,0,1S x y x y x y =<+<<<, .3111{(,)|0,0,1}222A x y x y x y =<<<<<+< 2. 化简下列各式 (1)AB AB ⋃ (2)()()A B A B ⋃⋃⋃ (3)()()A B A B ⋃⋂-解:(1) AB AB ⋃=A (B B ⋃)=AS =A(2) ()()A B A B ⋃⋃⋃=()()()()A B A A B B ⋃⋃⋃⋃⋃=Ω⋃Ω=Ω(3) ()()A B A B ⋃⋂-=()()()()A B AB ABAB AABB AA BB φ⋃⋂====3.一工人生产了四件产品,以i A 表示他生产的第i 件产品是正品(1,2,3,4)i =,试用i A 表示(i =1,2,3,4)下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。
解:(1) 1234A A A A ; (2) 1234A A A A (1234A A A A ⋃⋃⋃); (3) 1234123412341234A A A A A A A A A A A A A A A A +++;(4) ()()()()()()121314232434A A A A A A A A A A A A ⋃⋃⋃⋃⋃4.掷两颗骰子,试求出现的点数之和大于9的概率。
解:用,x y 表示两颗骰子掷出的点数,则1,6,x y ≤≤每一点对(),x y 表示每次掷两颗骰子的结果即为一基本事件,则样本空间}{(,),1,2,,6S x y x y == ,A 表示掷两颗骰子出现的点数之和大于9的事件。
则A=}{(4,6)(5,5)(5,6)(6,4)(6,5)(6,6),而样本空间中包含的样本点总数为36,由古典概型计算公式,61()366P A ==。
5. 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件,试求:(1) n 件中恰有k 件不合格品的概率;(2) n 件中至少有一件不合格品的概率。
解:从N 件产品中抽取n 件产品的每一取法构成一基本事件,共有n N C 种不同取法.(1)设A 表示抽取n 件产品中恰有k 件不合格品的事件,则A 中包含样本点数为kn k M N M C C --,由古典概型计算公式,()k n k M N M n NC C P A C --=。
(2) 设B 表示抽取n 件产品中至少有一件不合格品的事件,则B 表示n 件产品全为合格品的事件,包含nN M C -个样本点。
则()1()1n N M n NC P B P B C -=-=-。
6. 一个口袋里装有10只球,分别编上号码1,…,10,随机地从口袋里取3只球。
试求:(1) 最小号码是5的概率;(2) 最大号码是5的概率。
解:从10只球中任取3只的每一种取法构成一基本事件,则样本点总数为310C 。
(1)设A 表示“3只球中最小号码是5的取法”,共有25C 种取法,因此121)(31025==C C A P (2)设B 表示“3只球中最大号码是5的取法”,共有24C 种取法,因此201)(31024==C C A P 7. 一份试卷上有6道题。
某位学生在解答时由于粗心随机地犯了4处不同的 错误。
试求,(1) 这4处错误发生在最后一道题上的概率;(2) 这4处错误发生在不同题上的概率;(3) 至少有3道题全对的概率。
解:4个错误发生在6道题中的可能结果共有64=1296种,即样本点总数为1296。
(1) 设A 表示“4处错误发生在最后一道题上”,只有1种情形,因此12961)(=A P ; (2) 设B 表示“4处错误发生在不同题上”,即4处错误不重复出现在6道题上,共有46P 种方式,因此有6360345=⨯⨯⨯种可能,故.1851296360)(==B P (3) 设C 表示“至少有3道题全对”相当于“至少有2个错误发生在同一题上”,而C 表示“4处错误发生在不同题上”,B C =,1813)(1)(=-=B P C P .8. 在单位圆内随机地取一点Q ,试求以Q 为中点的弦长超过1的概率。
解:在单位内任取一点Q ,坐标为),(y x ,样本空间S=}{,1),(22<+y x y x 记事件A为“以Q 为中点的弦长超过1”,A=⎩⎨⎧⎭⎬⎫<+⎩⎨⎧=⎭⎬⎫>+-43),(,)21()(1),(22222y x y x y x y x 。
由几何概型公式得75.0143)(=⋅⋅=ππA P . 9. 在长度为T 的时间段内,有两个长短不等的信号随机地进入接收机。
长信号持续时间为1()t T ≤,短信号持续时间为2()t T ≤。