概率 随机事件及其概率章习题
随机事件及其概率习题

第一章随机事件及其概率习题一 、填空题当A , B 互不相容时,P (A U B)=亠卩(AB )= 0_^ 当 B A 时,P(A+B = _;_RAB = 若 P(A) ,P(B) ,P(AB) , P(A B) 1P(A B)= 119 9.事件 A,B,C 两两独立,满足 ABC , P (A) P (B) P (C)-,且 P ( A+B+C )=—216则 P(A)=??10.已知随机事件 A 的概率P(A) 0.5,随机事件 B 的概率P(B) 0.6,及条件概率P(B | A) 0.8,则和事件 A B 的概率P(A B)1.设样本空间 {x|0x 2}, 事件A {x|l1x 1}, B {x|-4{x|0 x ^} U{x|-4 2x 2},- 1 AB{x|-4x 1} U{x|1 x 2.连续射击一目标,A i 表示第i 次射中,直到射中为止的试验样本空间,则=A ; A I A 2; L ; A 1 A 2 L A n 1A n ; L.3.—部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为 1、2、3、4概率为 — 124. 一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概 率是 c m c nm /c N5.某地铁车站,每5分钟有一趟列车到站, 乘客到达车站的时刻是任意的, 则乘客侯 车时间不超过3分钟的概率为 6•在区间(0, 1 )中随机地取两个数,则事件“两数之和小于 6”的概率为57. 已知 RA)= P(B)=(1) ;P(AB)12.假设一批产品中一、二、三等品各占60% 30% 10%从中随机取一件结果不是三等品,则取到一等品的概率为13. 已知 P(A) a,P (B|A) b,则卩(AB )14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率162 1 215.甲、乙、丙三人入学考试合格的概率分别是 -,1,-,三人中恰好有两人合格的概3 2 5率为2/5 .16. 一次试验中事件 A 发生的概率为 p ,现进行n 次独立试验,则A 至少发生一次的概率为 1 (1 p)n; A 至多发生一次的概率为17.甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为二、选择题3.如果事件A, B 有B A,则下述结论正确的是(C ).产品不全是合格品”,则下述结论正确的是(B ).5. 若二事件A 和B 同时出现的概率 P( AB )=0则(C ).(C ) AB 未必是不可能事件;(D ) P( A )=0或P( B )=0.a ab .(1 P)n np(1 p)n 11.以A 表示事件“甲种产品畅销,乙种产品滞销” 则其对立事件 A 为(D ).(A ) “甲种产品畅销,乙种产品滞销” (B ) “甲、乙两种产品均畅销” (C ) “甲种产品滞销”(D ) “甲种产品滞销或乙种产品畅销”2.对于任意二事件 A 和 B,与A BB 不等价的是(D ).(A) A B;(B) B A;(C) AB(D) AB(A ) A 与B 同时发生; (B) A 发生,B 必发生; (C) A 不发生B 必不发生; (D B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个(A) A B;(B) A C;(C) B C;(D) A B C.(A ) A 和B 不相容;(B ) AB 是不可能事件;6.对于任意二事件A和B有P(A B) (C ).(D) P(A) P (B) P(B) P(AB).8.设A , B 是任意两个概率不为 0的不相容的事件,则下列事件肯定正确的(D ).(A) A 与 B 不相容;(B) A 与 B 相容;(C) P( AB = P( A )P( B); (D) P( A-护P( A ). 9.当事件A B 同时发生时,事件C 必发生则(B ).(C) 事件A 和 B 互不独立;13 .设A, B 是任意二事件,且P(B) 0, P(A|B) 1 ,则必有(C ).(A) P(A B) P(A); (B) P(A B) P(B); (C) P(A B) P(A);(D)P(AB) P(B).14. 袋中有 5个球,其中2个白球和 3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D .(C ) P (A) P( AB); (A) P(C) P(A) P(B) 1;(C) P(C) P(AB);(B) P(C) P(A) P(B) 1; (D) P(C) P(A B).10.设A,B 为两随机事件,且 A ,则下列式子正确的是 (A ).(A ) P(A B) P(A);(B) P(AB) P(A); (C) P(B|A) P(B);(D)P(B A) P(B) P(A).11.设A 、B 、C 是二随机事件,且 P(C) 0,则下列等式成立的是 (B).(A) P(A|C) P(A|C) (C) P(A|C) P(A|C)1; 1;(B) P(AUB|C) P(A|C) P(B|C) P (AB|C); (D) P(AUB|C) P(A|C) P(B|C).12.设A, B 是任意两事件B,P(B) 0,则下列选项必然成立的是(B ).(A) P (A) P(A|B); (C) P(A) P(A|B);(B) P(A) P(A|B); (D) P(A) P(A| B). 1(A)1;(B) |;4(C) 1;(D) I515.设 0 P(A) 1, 0 P(B) 1, P(A|B) P(A|B) 1,则(D ).(A) 事件A 和 B 互不相容;(B)事件A 和B 互相对立;事件A 和B 相互独立.p (0 p 1),则此人第4 (D)16.某人向同一目标重复射击,每次射击命中目标的概率为次射击恰好第2次命中目标的概率为(C).三、解答题1.写出下列随机实验样本空间:(1)同时掷出三颗骰子,记录三只骰子总数之和;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回) ,直到将3只次品都取 出,记录抽取的次数;⑶对某工厂出厂的产品进行检查,合格的盖上“正品” ,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
第一章 随机事件及其概率课后习题参考答案

第一章 随机事件及其概率1. 1) {}01001,,,.nn n n Ω=L2) {}{}10,11,12,13,,10.n n Z n Ω==∈≥L3) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。
写下检查四个产品所有可能的结果S ,根据条件可得样本空间Ω。
,,,,,,,,,,,,,,,,,,,,,,,,.,,,,S ++--++-++++-+++++---+--++-+-+-++⎧⎫=⎨⎬-+---+-+-++--+++-------+--+---++⎩⎭++--++-++++-+++++--+-+-+-++⎧⎫Ω=⎨⎬-+---+-+-++--+++--⎩⎭4) {}22(,)1.x y x y Ω=+<2. 1) ()A B C ABC --=, 2) ()AB C ABC -=, 3) A B C A B C ++=U U , 4) ABC ,5) ()A B C ABC Ω-++=, 6) ()AB BC AC AB BC AC Ω-++=++, 7) ()ABC A B C Ω-=U U , 8) AB AC BC ++.3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。
(2)当()1P A B +=时,()P AB 取到最小值0.3。
4. 解:依题意所求为()P A B C ++,所以()()()()()()()()1111000(0()()0)44485.8P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==Q 5. 解:依题意,()()()()()()()()()()()()()()0.70.50.25.()()()0.70.60.5P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++==++=+=+---===+-+-Q6. 解:由条件概率公式得到111()1()()(),(),3412()2P AB P AB P A P B A P B P A B ==⨯=== 所以1111()()()().46123P A B P A P B P AB +=+-=+-= 7. 解:1) 2028281222101028()45C C P P A A C P ===,2) 202__________282121212210101()()(|)45C C P P A A P A P A A C P ====,3) 1122________82821212121222210101016()()()145C C P P P A A A A P A A P A A C P P =+==--=U ,4) 1120____________8228121212122101()()()5C C C C P A A A A P A A P A A C +=+==U . 8. 解:(1) 以A 表示第一次从甲袋中取得白球这一事件,B 表示后从乙袋中取 得白球这一事件,则所求为()P B ,由题意及全概率公式得1()()()()().11n N m NP B P A P B A P A P B A n m N M n m N M +=+=⨯+⨯++++++ (2) 以123,,A A A 分别表示从第一个盒子中取得的两个球为两个红球、一红球一白球和两个白球,B 表示“然后”从第二个盒子取得一个白球这一事件,则容易推知211255441232229995103(),(),(),181818C C C C P A P A P A C C C ====== 123567(|),(|),(|).111111P B A P B A P B A === 由全概率公式得31551063753()()(|).18111811181199i i i P B P A P B A ===⨯+⨯+⨯=∑ 9. 解:以A 表示随机挑选的人为色盲,B 表示随机挑选的人为男子。
概率练习题含答案

第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B ) (2)事件的对立与互不相容是等价的。
(B ) (3)若()0,P A = 则A =∅。
(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。
(B ) (7)若P(A)P(B)≤,则⊂A B 。
(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论习题

第_章随机事件及其概率第一节随机事件第1题设A,B,C为三个随机事件,试用A,B,C的运算关系表示下列事件;⑴D= “A,B,C至少有一个发生”;(2) E= 发生,而B,C都不发生”;⑶F= “A,B,C中恰有一个发生”;(4) G= “A,B,C中恰有两个发生”;(5) H= “A,B,C中至少有两个不发生”;第2题设A={xl<x<5} ,B={x3<x<7},C={xx<]},都是/?={x|-oo<x<+oo冲的集合,试求下列各集合。
(AUB)riC第3题化简(ABUC)(AC)第4题证明:(AHB)-B=A-AB=AB=A-B第5题设A,B,C为3个随机事件,与A互斥的事件是(D)o(A) ABUAC(B) A(BUC)(C) ABC(D)AUMJC第6题对于任意2事件A和B,与AUB=B,不等价的是(D)。
(A)A U B,(B)P U A,(C)AP=0,(Q)BA=0第二节随机事件的概率第7题设随机事件A、B、C互不相容,且P(A)=0・2,P(B)=0・3,P(C)=0・4, 则円(AU®-C]等于()。
第8题对于随机事件A和B,有P(A-B) 等于(C).(A)P(A)-P(B); (B).P(A)-P(B)+P(AB) (C).P(A)-P(AB)(D).P(A)+P(B)+P(AB)第9题设A、B、C是三个随机事件, 且P(A)=0・3, P(B)=0.4, P(C)=0.6,P(AC)=P(BC)=P(AB)=0.25,P(ABC)=0.2,试求下列各事件的概率:(1)“三个事件中至少有一个发生”记为D1;(2)“三个事件中至少有两个发生”记为D2;第10题设A,B,C为三个事件,已知P(A)=0.3,P(B)=0. & P(C)=0.6, P(AB)=0・2, P(AC)=0, P(BC)=0.6,试求:(1) P(AU^) ;(2) P(AB) ;(C) P(AU5UQ第行题设A和B为随机事件,A和B 至少有一个发生的概率为1/4, A生且B不发生的概率为1/12,求P(B).第12题已知P(A)=P(B)=P(C)=1,P(AC)=P(BC)=^,P(AB)=O,求事件A,BC全不发生的概率。
随机事件及其概率习题

第一章 随机事件及其概率习题一一、填空题1.设样本空间}20|{≤≤=Ωx x ,事件}2341|{ },121|{<≤=≤<=x x B x x A ,则B A Y 13{|0}{|2}42x x x x =≤<≤≤U , B A 113{|}{|1}422x x x x =≤≤<<U . 2. 连续射击一目标,i A 表示第i 次射中,直到射中为止的试验样本空间Ω,则Ω={}112121 n n A A A A A A A -L L L ;;;;. 3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为 121 . 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 n N m n M n m M C C C /-- .5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于56 ”的概率为 . 7.已知P (A )=, P(B )=,(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= 0 .(2) 当B A 时, P(A+B )= ; P (AB )= ;8. 若γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ-;=)(B A P βγ-; )(B A P +=1αγ-+.9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=169, )(A P 则= . 10.已知随机事件A 的概率5.0)(=A P ,随机事件的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 23 . 13. 已知===)(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 61 . 15. 甲、乙、丙三人入学考试合格的概率分别是52 ,21 ,32,三人中恰好有两人合格的概率为 2/5 . 16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为11n p --();A 至多发生一次的概率为 11(1)n n p np p --+-() .17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为 .二、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为(D ).(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件不等价的是与和B B A B A =Y ,(D ).() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B A ,则下述结论正确的是(C ).(A ) A 与B 同时发生; (B )A 发生,B 必发生;(C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).() ; () ; () ; .A AB B AC C B CD A B C ====-() 5. 若二事件A 和B 同时出现的概率P(AB )=0则(C ).(A )A 和B 不相容; (B )AB 是不可能事件;(C )AB 未必是不可能事件; (D )P(A )=0或P(B )=0.6. 对于任意二事件A 和有=-)(B A P (C ).(A) )()(B P A P -; (B ))()()(AB P B P A P +-;(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ). (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A ).9. 当事件A 、B 同时发生时,事件C 必发生则(B ).(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10. 设B A ,为两随机事件,且A B ⊂ ,则下列式子正确的是 (A ).(A ))()(A P B A P =+; (B) )()(A P AB P =;(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B).() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+==U U 12. 设B A ,是任意两事件, 且0)(,>⊂B P B A , 则下列选项必然成立的是(B ). ()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有( C ).(A) ()()P A B P A +>; (B) ()()P A B P B +>;(C) ()()P A B P A +=; (D) ()()P A B P B +=.14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).1212() ; () ; () ; () .4455A B C D15. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P (D ).(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为(C ).222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
概率 随机事件及其概率章习题

第一章随机事件及其概率典型例题分析例1填空题(1)若事件A,B互斥,且,则____________。
(2)若事件A,B相互独立,且,则_____________。
(3)一个工人生产了3个零件,以事件表示他生产的第i个零件是合格品i=1, 2, 3,试用,i=1, 2, 3来表示下列事件:只有第1个零件是合格品_____________;3个零件中只有1个合格品_______________;3个零件中最多只有2个合格品______________;3个零件都是次品________________;第1个是合格品,但后两个零件中至少有1个次品_________________;3个零件中最多有1个次品________________________________________________。
(4)设,则___________;_________________;_______________________________。
(5)设A,B为两事件,且,,则___________。
解(1) 0.6。
因为A与B互斥,有。
(2) 0.125。
因为A与B独立时,有。
(3) ;;法一:考虑逆事件为“3个均为合格品”,故为,法二:直接考虑“3个零件中至少有1件次品”为;;;。
(4) ;;。
因为所以;。
而,所以。
(5) 。
由于,又且,故。
例2单选题(1) 已知且,则正确的是( )A.B.C.D.(2) 已知以及,则= ( )A. ;B. ;C. ;D.(3) 甲乙两人独立的同时对同一目标射击一次,其命中率分别为0.6和0.5,现在已知目标被命中,则它是甲射中的概率是( )A. 0.8;B. 0.65;C. 0.75;D. 0.25(4) 如果事件A与B同时发生的概率为0,即,则下列情况成立的是( )A. A与B互斥;B. AB为不可能事件;C. 或;D. AB未必为不可能事件。
解(1) B。
因为;而,故B为正确答案。
概率论第一章随机事件及其概率答案

概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )A B (D )A B4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A ](A )C A Y C B ; (B )C AB ;(C )C AB Y C B A Y BC A ; (D )A Y B Y C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互斥或互不相容 。
概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章随机事件及其概率典型例题分析例1填空题(1)若事件A,B互斥,且,则____________。
(2)若事件A,B相互独立,且,则_____________。
(3)一个工人生产了3个零件,以事件表示他生产的第i个零件是合格品i=1, 2, 3,试用,i=1, 2, 3来表示下列事件:只有第1个零件是合格品_____________;3个零件中只有1个合格品_______________;3个零件中最多只有2个合格品______________;3个零件都是次品________________;第1个是合格品,但后两个零件中至少有1个次品_________________;3个零件中最多有1个次品________________________________________________。
(4)设,则___________;_________________;_______________________________。
(5)设A,B为两事件,且,,则___________。
解(1) 0.6。
因为A与B互斥,有。
(2) 0.125。
因为A与B独立时,有。
(3) ;;法一:考虑逆事件为“3个均为合格品”,故为,法二:直接考虑“3个零件中至少有1件次品”为;;;。
(4) ;;。
因为所以;。
而,所以。
(5) 。
由于,又且,故。
例2单选题(1) 已知且,则正确的是( )A.B.C.D.(2) 已知以及,则= ( )A. ;B. ;C. ;D.(3) 甲乙两人独立的同时对同一目标射击一次,其命中率分别为0.6和0.5,现在已知目标被命中,则它是甲射中的概率是( )A. 0.8;B. 0.65;C. 0.75;D. 0.25(4) 如果事件A与B同时发生的概率为0,即,则下列情况成立的是( )A. A与B互斥;B. AB为不可能事件;C. 或;D. AB未必为不可能事件。
解(1) B。
因为;而,故B为正确答案。
(2) D。
由,而知,故。
(3) C。
设A=“甲命中”,B=“乙命中”,则A+B=“目标被命中”,所求为(4) D。
因为不可能事件的概率为0,但概率为0的事件未必为不可能事件,所以A,B不对。
特别容易混淆的是A,互斥要求。
又由也推不出或。
故选D。
以下几个例题为古典概型的概率计算古典概型的概率计算,既有问题的多样性,又有方法与技巧的灵活性,在概率论的长期发展与实践中,人们发现实际中许多具体问题可以大致归纳为三类,这三类问题是:1)摸球问题例3袋中装有A个白球B个黑球。
(1) 从袋中任取a+b个球,试求所取的球恰有a个白球和b个黑球的概率();(2) 从袋中任意的接连取出k+1 ()个球,如果每球被取出后不放回,试求最后取出的球是白球的概率。
解(1) 从A+B个球中取a+b个球,总共有种取法。
设={恰好取中a个白球,b黑球},故中所含样本点数为。
从而。
(2) 从A+B个球中接连不放回的取出k+1个球,由于注意了次序,所以应考虑排列。
因此总共有种取法。
设={最后取出的球是白球},则中所含样本点可以通过乘法原理来计算:即先从A个白球中任取一个(即第k+1个球为白球),有A种取法;而其余的k个在余下的个中任取k个,有种取法(同样要考虑排列)。
因而中包含的样本点共有个。
故。
[注] (1) 摸球问题通常要注意区分是有放回抽样,还是不放回抽样;摸球时是考虑了顺序,还是不考虑顺序;(2) 从该例题知,在计算样本点总数以及有利事件所含样本点的数目时,必须在同一确定的样本空间中考虑;(3) 如果我们将“白球”、“黑球”换成“合格品”、“次品”等,就得到各种各样的摸球问题,这就是摸球问题的典型意义所在。
2)分房问题例4将个人等可能的分配到N个房间中的任意一个去住,求下列事件的概率:A={某指定的n间房中各有一人};B={恰有n间房,其中各有一人};C={某指定的房中恰有个人}。
解:把个人等可能的分配到N个房间中去,由于并没有限定每一间房中的人数,故是一可重复的排列问题,这样的分法共有种。
对于事件A,只要考虑n个人的全排列,对应放入指定的n个房间中即可,故。
对于事件B,分两步:第一选出n个房间,第二按照事件A的方法分配人,故。
对于事件C,首先选出m人,有种方法,而其余个人可任意的分配到其余的间房中,共有种方法,故。
[注] 可归入“分房问题”来处理的古典概型的实际问题非常多,例如:(1) 生日问题:n个人的生日的可能情形,这时天();(2) 乘客下车问题:一客车上有n名乘客,它在N个站上都停,乘客下车的各种情形;(3) 印刷错误问题:n个印刷错误在一本有N页的书中的一切可能的分布(n不超过每一页的字符数);(4) 放球问题:将n个球放入N个盒子的可能情形。
值得注意的是,在处理这类问题时,要分清什么是“人”,什么是“房”,不能颠倒。
3)匹配问题例5从5双不同号码的鞋子中任取4只,求4只鞋子中至少有2只配成一双的概率。
解从5双10只鞋子中任取4只,共有种取法。
设A={4只鞋子中至少有2只配成一双},则={4只鞋子不成双}。
易知中的基本事件数为(其中表示从5双中任取4双,表示从每双中任取一只),故。
[注] 注意问题中含有“至多或至少”字样时,可以考虑该事件的逆事件。
例6四张彩票,其中三张空门,一张中奖。
四个人先后摸取彩票,求每个人中奖的概率。
解设={第i个人中奖},。
则,,,。
由常识知,抽签具有公平对等性,每个人抽到中奖彩票的机会相等,故抽签不必争先恐后。
这里我们用概率知识证明了这种公平对等性。
这也是用概率论知识解决实际问题的一个很好的例子。
例7用一支步枪射击飞机,击中的概率,问用250支步枪彼此独立的同时射击同一飞机,击中飞机的概率是多少?解设={第i支步枪击中飞机},,A={250支步枪至少有一支击中飞机}。
则由题意,相互独立。
故。
此题利用了n个事件相互独立的性质。
一般的要求,首先考虑是否两两互斥,如果是,则利用有限可加性;否则考虑是否相互独立,如果是,则先求逆事件的概率,结合德.摩根律转变为乘积的概率,利用独立性求解。
否则可考虑用n 个事件的加法公式求得。
全概率公式和贝叶斯公式是概率计算的重要公式,其方法与思想值得大家重点掌握。
例8某种仪器上装有大、中、小三个不同功率的灯泡,已知当三个灯泡完好时,仪器发生故障的概率仅为1%,当烧坏一个灯泡时,仪器发生故障的概率为25%,当烧坏两个灯泡及三个灯泡时,仪器发生故障的概率分别为65%和90%,设每个灯泡被烧坏与否互不影响,并且它们被烧坏的概率分别为0.1,0.2,0.3,求仪器发生故障的概率。
解由题意,仪器发生故障与否和三个灯泡的完好情况有密切关系,将三个灯泡被烧坏的数量视为导致仪器发生故障的重要因素来考虑。
设事件表示“三个灯泡中有i个灯泡被烧坏”,,B表示仪器发生故障。
显然,是一个完备事件组,并且有由于各灯泡寿命相互独立,有由全概率公式有。
由此例可以看到,计算一个较复杂事件的概率时,仅仅应用乘法公式或概率的加法公式有时是不能解决的。
全概率公式是乘法公式与加法公式的综合结果。
应用全概率公式计算概率时,关键是要正确的确定出对于事件B的发生有直接影响的完备事件组。
例9玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客开箱随机的查看4只,若无次品,则买下该箱玻璃杯,否则退回。
试求(1) 顾客买下该箱的概率;(2) 在顾客买下的一箱中,确实没有次品的概率。
思路:由于玻璃杯箱总共三类,分别含0,1,2只次品。
而售货员取的那一箱可以是这三类中的任一箱,顾客是在售货员取的一箱中检查的,顾客是否买下这一箱是与售货员取的是哪一类的箱子有关,这类问题的概率计算一般可用全概率公式解决,第二问是条件概率问题。
解引入下列事件:A={顾客买下所查看的一箱};={售货员取的箱中恰好有i件次品},。
显然,是一个完备事件组,且(1) 由全概率公式,有。
(2) 由贝叶斯公式,得。
本题是考查全概率公式与贝叶斯公式的典型试题。
一般来说,全概率公式是由因索果,而贝叶斯公式实际上是在已知结果发生的条件下,来找各“原因”发生的概率大小的。
例10设有白球与黑球各4只,从中任取4只放入甲盒,余下的4只放入乙盒,然后分别在两盒子中各任取一只,颜色正好相同,试问放入甲盒的4只球中有几只白球的概率最大。
解设A={从甲、乙两盒中各取一球,颜色相同},={甲盒中有i只白球},。
显然,是一个完备事件组。
又由题设知。
且从而,由全概率公式得。
再由贝叶斯公式得即放入甲盒的4只球中有两只白球的概率最大,最大值为。
例11由射手对飞机进行4次独立射击,每次射击命中的概率为0.3,一次命中时飞机被击落的概率为0.6,至少两次命中时飞机必被击落,求飞机被击落的概率。
思路:由于飞机是否被击落是与飞机被命中几次有关,因此,这个问题首先是一个利用全概率公式计算概率的问题,而飞机被命中的次数又是一个伯努利概型的问题,故本题是一个全概率公式与伯努利公式的综合应用题。
解设A={飞机被击落},={飞机被命中i次},。
显然的概率可由4重伯努利概型问题来计算,即。
又由题设知。
因此由全概率公式可得故。
例12设,试证:。
思路:通常用逆推法来考虑这类不等式的证明。
若不等式成立,则有即,即。
证明由于,即,从而由乘法公式知因而有。
由于,因此得。
三、自我检测题1. 填空题(1) 已知,则_____________。
(2) 设A、B互不相容,且则(3) 设A、B、C表示三个随机事件,试以A、B、C的运算来表示下列事件:A、B、C 恰有一个发生表示为________________________A、B、C不多于一个发生表示为________________________.(4) 两个相互独立的事件,A,B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则______________。
(5) 袋中有50个小球,其中黄球20个,白球30个。
今有两人依次随机的从袋中各取一球,取后不放回,则第二人取得黄球的概率是___________。
2. 选择题(1) 设A,B为两随机事件,且,则下列式子正确的是( )A. B.C. D.(2) 设A,B是两个随机事件,且,则一定有( )A. B.C. D.(3) 一个班级中有8名男生和7名女生,今要选出3名学生参加比赛,则选出的学生中,男生数多于女生数的概率为( )A. ;B. ;C. ;D.(4) 在某一问卷调查中,有50%的被访者会立刻答完并上交问卷表,在没有立刻上交问卷表的被访者中,有40%的人会在调查人员的电话提醒下送回问卷表。
如果只有4人参加这样的问卷调查,则至少有3人没有任何回音的概率为( )A. B.C. D.3. 有一个问题,甲先回答,答对的概率为0.4,如果答错,由乙答,答对的概率为0.5,求问题由乙解答出的概率。