第一章_随机事件及其概率习题.doc

合集下载

随机事件及其概率习题

随机事件及其概率习题

第一章随机事件及其概率习题一 、填空题当A , B 互不相容时,P (A U B)=亠卩(AB )= 0_^ 当 B A 时,P(A+B = _;_RAB = 若 P(A) ,P(B) ,P(AB) , P(A B) 1P(A B)= 119 9.事件 A,B,C 两两独立,满足 ABC , P (A) P (B) P (C)-,且 P ( A+B+C )=—216则 P(A)=??10.已知随机事件 A 的概率P(A) 0.5,随机事件 B 的概率P(B) 0.6,及条件概率P(B | A) 0.8,则和事件 A B 的概率P(A B)1.设样本空间 {x|0x 2}, 事件A {x|l1x 1}, B {x|-4{x|0 x ^} U{x|-4 2x 2},- 1 AB{x|-4x 1} U{x|1 x 2.连续射击一目标,A i 表示第i 次射中,直到射中为止的试验样本空间,则=A ; A I A 2; L ; A 1 A 2 L A n 1A n ; L.3.—部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为 1、2、3、4概率为 — 124. 一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概 率是 c m c nm /c N5.某地铁车站,每5分钟有一趟列车到站, 乘客到达车站的时刻是任意的, 则乘客侯 车时间不超过3分钟的概率为 6•在区间(0, 1 )中随机地取两个数,则事件“两数之和小于 6”的概率为57. 已知 RA)= P(B)=(1) ;P(AB)12.假设一批产品中一、二、三等品各占60% 30% 10%从中随机取一件结果不是三等品,则取到一等品的概率为13. 已知 P(A) a,P (B|A) b,则卩(AB )14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率162 1 215.甲、乙、丙三人入学考试合格的概率分别是 -,1,-,三人中恰好有两人合格的概3 2 5率为2/5 .16. 一次试验中事件 A 发生的概率为 p ,现进行n 次独立试验,则A 至少发生一次的概率为 1 (1 p)n; A 至多发生一次的概率为17.甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为二、选择题3.如果事件A, B 有B A,则下述结论正确的是(C ).产品不全是合格品”,则下述结论正确的是(B ).5. 若二事件A 和B 同时出现的概率 P( AB )=0则(C ).(C ) AB 未必是不可能事件;(D ) P( A )=0或P( B )=0.a ab .(1 P)n np(1 p)n 11.以A 表示事件“甲种产品畅销,乙种产品滞销” 则其对立事件 A 为(D ).(A ) “甲种产品畅销,乙种产品滞销” (B ) “甲、乙两种产品均畅销” (C ) “甲种产品滞销”(D ) “甲种产品滞销或乙种产品畅销”2.对于任意二事件 A 和 B,与A BB 不等价的是(D ).(A) A B;(B) B A;(C) AB(D) AB(A ) A 与B 同时发生; (B) A 发生,B 必发生; (C) A 不发生B 必不发生; (D B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个(A) A B;(B) A C;(C) B C;(D) A B C.(A ) A 和B 不相容;(B ) AB 是不可能事件;6.对于任意二事件A和B有P(A B) (C ).(D) P(A) P (B) P(B) P(AB).8.设A , B 是任意两个概率不为 0的不相容的事件,则下列事件肯定正确的(D ).(A) A 与 B 不相容;(B) A 与 B 相容;(C) P( AB = P( A )P( B); (D) P( A-护P( A ). 9.当事件A B 同时发生时,事件C 必发生则(B ).(C) 事件A 和 B 互不独立;13 .设A, B 是任意二事件,且P(B) 0, P(A|B) 1 ,则必有(C ).(A) P(A B) P(A); (B) P(A B) P(B); (C) P(A B) P(A);(D)P(AB) P(B).14. 袋中有 5个球,其中2个白球和 3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D .(C ) P (A) P( AB); (A) P(C) P(A) P(B) 1;(C) P(C) P(AB);(B) P(C) P(A) P(B) 1; (D) P(C) P(A B).10.设A,B 为两随机事件,且 A ,则下列式子正确的是 (A ).(A ) P(A B) P(A);(B) P(AB) P(A); (C) P(B|A) P(B);(D)P(B A) P(B) P(A).11.设A 、B 、C 是二随机事件,且 P(C) 0,则下列等式成立的是 (B).(A) P(A|C) P(A|C) (C) P(A|C) P(A|C)1; 1;(B) P(AUB|C) P(A|C) P(B|C) P (AB|C); (D) P(AUB|C) P(A|C) P(B|C).12.设A, B 是任意两事件B,P(B) 0,则下列选项必然成立的是(B ).(A) P (A) P(A|B); (C) P(A) P(A|B);(B) P(A) P(A|B); (D) P(A) P(A| B). 1(A)1;(B) |;4(C) 1;(D) I515.设 0 P(A) 1, 0 P(B) 1, P(A|B) P(A|B) 1,则(D ).(A) 事件A 和 B 互不相容;(B)事件A 和B 互相对立;事件A 和B 相互独立.p (0 p 1),则此人第4 (D)16.某人向同一目标重复射击,每次射击命中目标的概率为次射击恰好第2次命中目标的概率为(C).三、解答题1.写出下列随机实验样本空间:(1)同时掷出三颗骰子,记录三只骰子总数之和;(2) 10只产品中有3次产品,每次从中取一只(取出后不放回) ,直到将3只次品都取 出,记录抽取的次数;⑶对某工厂出厂的产品进行检查,合格的盖上“正品” ,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

《概率论与数理统计》第01章习题解答

《概率论与数理统计》第01章习题解答

第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。

解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。

《概率论与数理统计》复习题

《概率论与数理统计》复习题

《概率论与数理统计》复习题第一章:随机事件及其概率1.某射手向一目标射击两次,Ai表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1AB.A1A2C.A1A2D.A1A22.设A,B为两个互不相容事件,则下列各式错误的是()..A.P(AB)=0C.P(AB)=P(A)P(B)B.P(A∪B)=P(A)+P(B)D.P(B-A)=P(B)13.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=()3A.1141B.C.D.1551534.已知P(A)=0.4,P(B)=0.5,且AB,则P(A|B)=()A.0B.0.4C.0.8D.15.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20B.0.30C.0.38D.0.573126.设A,B为两事件,已知P(A)=,P(A|B)=,P(B|A),则P (B)=()335A.1234B.C.D.55557.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=________.8.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(AB)=__________.9.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.10.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________11.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.12.一医生对某种疾病能正确确诊的概率为0.3,当诊断正确时,他能治愈的概率为0.8。

若未被确诊,病人能自然痊愈的概率为0.1。

①求病人能够痊愈的概率;②若某病人已经痊愈,问他是被医生确诊的概率是多少?第二章:随机变量及其分布1.下列函数中可作为某随机变量的概率密度的是()100,某100,A.某2某1000,10,某0,B.某0,某0131,某,D.222其他0,1,0某2,C.0,其他2.设随机变量某在[-1,2]上服从均匀分布,则随机变量某的概率密度f(某)为()1,1某2;A.f(某)30,其他.1,1某2;C.f(某)0,其他.3,1某2;B.f(某)0,其他.1,1某2;D.f(某)30,其他.13.设随机变量某~B3,,则P{某1}=()3A.181926B.C.D.272727274.设随机变量某在区间[2,4]上服从均匀分布,则P{2C.P{2.55.设离散型随机变量某的分布律如右,B.P{1.5某-101则常数C=_________.P2C0.4CA某2,0某1;6.设随机变量某的概率密度f(某)则常数A=_________.其他,0,某1;0,0.2,1某0;7.设离散型随机变量某的分布函数为F(某)=0.3,0某1;0.6,1某2;某2,1,8.设连续型随机变量某的分布函数为则P{某>1}=_________.0,某0,ππF(某)in某,0某,其概率密度为f(某),则f()=________.62π1,某,29.设随机变量某~N(2,22),则P{某≤0}=___________。

概率论与数理统计教程习题(第一章随机事件与概率)

概率论与数理统计教程习题(第一章随机事件与概率)

习题1(随机事件及其运算)一.填空题1. 设A ,B ,C 是三个随机事件,用字母表示下列事件:事件A 发生,事件B ,C 不都发生为 ;事件A ,B ,C 都不发生为 ;事件A ,B ,C 至少一个发生为 ;事件A ,B ,C 至多一个发生为 .2. 某人射击三次,用A i 表示“第i 次射击中靶”(i =1,2,3).下列事件的含义是:1A 表示 ;321A A A 表示 ;321321321A A A A A A A A A ++表示 ;321A A A 表示 .3. 在某学院的学生中任选一人,用A 表示“选到的是男生”,用B 表示“选到的是二年级的学生”,用C 表示“选到的是运动员”。

则式子ABC=C 成立的条件是 .二.选择题1. 在事件A ,B ,C 中,B 与C 互不相容,则下列式子中正确的是( ).① A BC A = ; ② A BC A = ;③ Φ=BC A ; ④ Ω=BC A .2. 用A 表示“甲产品畅销,乙产品滞销”,则A 表示( ).① “甲产品滞销,乙产品畅销”; ② “甲、乙产品都畅销”; ③ “甲产品滞销或乙产品畅销”; ④ “甲、乙产品都滞销”.3. 若概率0)(=AB P ,则必有( ).① Φ=AB ; ② 事件A 与B 互斥;③ 事件A 与B 对立; ④ )()()(B P A P B A P += .三.解答题1. 将一枚骰子掷两次,记录点数之和,写出样本空间Ω及事件=A {点数之和为偶数};=B {点数之和能被3整除}.2. 将一枚骰子掷两次,观察点数的分布,写出样本空间Ω及事件=A {点数之和为6};=B {点数之差为2}.3. 某城市发行日报和晚报两种报纸。

有15%的住户订日报,25%的住户订晚报,同时订两种报纸的住户有8%,求下列事件的概率:C ={至少订一种报};D ={恰订一种报};E ={不订任何报}.4. 若已知,2.0)(,0)()(,3.0)()()(======BC P AC P AB P C P B P A P 求概率)(ABC P ;)(C B A P ;).(C B A P习题2(概率的定义及性质)一.填空题1. 掷两枚质地均匀的骰子,则点数之和为8的概率P = .2. 在10把钥匙中,有3把能开门。

随机事件及其概率习题

随机事件及其概率习题

第一章 随机事件及其概率习题一一、填空题1.设样本空间}20|{≤≤=Ωx x ,事件}2341|{ },121|{<≤=≤<=x x B x x A ,则B A Y 13{|0}{|2}42x x x x =≤<≤≤U , B A 113{|}{|1}422x x x x =≤≤<<U . 2. 连续射击一目标,i A 表示第i 次射中,直到射中为止的试验样本空间Ω,则Ω={}112121 n n A A A A A A A -L L L ;;;;. 3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、2、3、4概率为 121 . 4.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 n N m n M n m M C C C /-- .5.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .6.在区间(0, 1)中随机地取两个数,则事件“两数之和小于56 ”的概率为 . 7.已知P (A )=, P(B )=,(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= 0 .(2) 当B A 时, P(A+B )= ; P (AB )= ;8. 若γ=β=α=)(,)(,)(AB P B P A P ,=+)(B A P 1γ-;=)(B A P βγ-; )(B A P +=1αγ-+.9. 事件C B A ,,两两独立, 满足21)()()(<===C P B P A P ABC ,φ,且P (A+B+C )=169, )(A P 则= . 10.已知随机事件A 的概率5.0)(=A P ,随机事件的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 23 . 13. 已知===)(则B A P b A B P a A P ,)|(,)( ab a - . 14. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 61 . 15. 甲、乙、丙三人入学考试合格的概率分别是52 ,21 ,32,三人中恰好有两人合格的概率为 2/5 . 16. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为11n p --();A 至多发生一次的概率为 11(1)n n p np p --+-() .17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为 .二、选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为(D ).(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件不等价的是与和B B A B A =Y ,(D ).() ; () ; () ; () .A A B B B A C AB D AB ⊂⊂=Φ=Φ3. 如果事件A ,B 有B A ,则下述结论正确的是(C ).(A ) A 与B 同时发生; (B )A 发生,B 必发生;(C ) A 不发生B 必不发生; (D )B 不发生A 必不发生.4. A 表示“五个产品全是合格品”,B 表示“五个产品恰有一个废品”,C 表示“五个产品不全是合格品”,则下述结论正确的是(B ).() ; () ; () ; .A AB B AC C B CD A B C ====-() 5. 若二事件A 和B 同时出现的概率P(AB )=0则(C ).(A )A 和B 不相容; (B )AB 是不可能事件;(C )AB 未必是不可能事件; (D )P(A )=0或P(B )=0.6. 对于任意二事件A 和有=-)(B A P (C ).(A) )()(B P A P -; (B ))()()(AB P B P A P +-;(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.8. 设A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D ). (A) B A 与不相容; (B)B A 与相容; (C) P(AB )=P(A )P(B ); (D) P(A −B )=P(A ).9. 当事件A 、B 同时发生时,事件C 必发生则(B ).(A)()()()1;(B)()()()1;(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+ 10. 设B A ,为两随机事件,且A B ⊂ ,则下列式子正确的是 (A ).(A ))()(A P B A P =+; (B) )()(A P AB P =;(C) )()|(B P A B P =; (D) )()()(A P B P A B P -=-.11. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( B).() (|)(|)1; () (|)(|)(|)(|);() (|)(|)1; () (|)(|)(|).A P A C P A CB P A BC P A C P B C P AB C C P A C P A CD P A B C P A C P B C +==+-+==U U 12. 设B A ,是任意两事件, 且0)(,>⊂B P B A , 则下列选项必然成立的是(B ). ()()(|); ()()(|);()()(|); ()()(|).A P A P AB B P A P A BC P A P A BD P A P A B <≤>≥ 13.设B A ,是任意二事件,且()0P B >,(|)1P A B =,则必有( C ).(A) ()()P A B P A +>; (B) ()()P A B P B +>;(C) ()()P A B P A +=; (D) ()()P A B P B +=.14. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D ).1212() ; () ; () ; () .4455A B C D15. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P (D ).(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.16. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为(C ).222222(A)3(1); (B)6(1);(C)3(1); (D)6(1).p p p p p p p p ----三、解答题1.写出下列随机实验样本空间:(1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(3) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

第一章:随机事件与概率(练习一)

第一章:随机事件与概率(练习一)

第一章:随机事件与概率(练习一)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B )B.P (AB )=P (A )P (B )C.P 1)(=ABD.P (A ∪B )=12.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件B .A 与A 互不相容C .Ω=⋃A AD .A A =3.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0 B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )4.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( )A .P (AB )=l B .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=15.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( )A .P (AB )=0B .P (A -B )=P (A )P (B )C .P (A )+P (B )=1D .P (A |B )=06.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则P (A |B )=( )A .1B .P (A )C .P (B )D .P (AB )7.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( )A .10150 B .10151 C .10050 D .10051 8.设事件A 、B 满足P (A B )=0.2,P (B )=0.6,则P (AB )=( )A .0.12B .0.4C .0.6D .0.89.设每次试验成功的概率为p(0<p<1),则在3次独立重复试验中至少成功一次的概率为( )A .1-(1-p )3B .p(1-p)2C .213)1(p p C -D .p+p 2+P 310.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为( )A .0.002B .0.04C .0.08D .0.10411.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.512.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61B .41 C .31 D .21 13.设随机事件A 与B 互不相容,P (A )=0.2,P(B)=0.4,则P (B|A )=( )A .0B .0.2C .0.4D .114.设事件A ,B 互不相容,已知P (A )=0.4,P(B)=0.5,则P(A B )=( )A .0.1B .0.4C .0.9D .115.设A 、B 为任意两个事件,则有( )A.(A ∪B )-B=AB.(A-B)∪B=AC.(A ∪B)-B ⊂AD.(A-B)∪B ⊂A16.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( ) A .151 B .51 C .154 D .31 17.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )18.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( )A .0B .0.4C .0.8D .119.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .0.20B .0.30C .0.38D .0.5720.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53)A |B (P =,则P (B )=( ) A.51 B. 52 C. 53 D. 54。

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案第一章随机事件及其概率1.解决方案:(1)s??2,3,4,5,67? (2) s??2,3,4,?? (3) s??h、 th,tth,??(4)s??hh,ht,t1,t2,t3,t4,t5,t6?2.解:?p(a)?14,p(b)?12,p(ab)?1814? 12? 18? 58? p(a?b)?p(a)?p(b)?p(ab)?p(ab)?p(b)?p(ab)=?p(ab)?1?p(ab)?1?1812??7818?38p[(a?b)(ab)]?p[(a?b)?(ab)]p(ab)p(ab)(abab)5818123.解决方案:使用a表示事件“获得的三位数不包含数字1”P(a)?C8C9C990011?8.9? 9900? 一千八百二十五4、解:用a表示事件“取到的三位数是奇数”,用b表示事件“取到的三位数大于330”(1)p(a)?c3c4c4ca121525111?3?4?45?5?41=0.482) p(b)?c2a5?c2c4c5a5121?2.5.4.1.2.45? 5.4=0.485、解:用a表示事件“4只中恰有2只白球,1只红球,1只黑球”,用b表示事件“4只中至少有2只红球”,用c表示事件“4只中没有只白球”(1)p(a)?c5c4c3c12132114=1204954=833(2) p(b)?1.c4c8?c8c412=202195?67165或p(b)?c4c8?c4c8?c4c41222314?67165一(3)p(c)?c7c4412?35495?7996.解决方案:使用a表示事件“在特定销售点获得的K提单”P(a)?cn(m?1)mnkn?K7、解:用a表示事件“3只球至少有1只配对”,用b表示事件“没有配对”(1)p(a)?(2)p(b)?3?13?2?12?1?13?2?1??2313或p(a)?1?2.1.13? 2.1.238、解p(a)?0.5,p(b)?0.3,p(ab)?0.1p(ab)p(b)p(ab)p(a)(1)p(ab)??0.10.30.10.5? 1315,p(ba)p(a?b)?p(a)?p(b)?p(ab)?0.5? 0.3? 0.1? 零点七p[a(a?b)]p(a?b)p(a?ab)p(a?b)p(ab)p(a?b)p(aa?b)p(ab)p(a?b)0.10.717?0.50.7?57 p(aba?b)?p[(ab)(a?b)]p(a?b)p(ab)p(ab)p(aab)?p[a(ab)]p(ab)??1(2)设定人工智能??第一次拿到白球?我1,2,3,4则p(a1a2a3a4)?p(a1)p(a2a1)p(a3a1a2)p(a4a1a2a3)?611?712?513?412?84020592?0.04089.解决方案:用a表示“两个球中至少有一个红球”,用B表示“两个都是红球”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章随机事件及其概率习题一一、填空题1.设样本空间{ x| 0 x 2} ,事件A { x | 1 x 1}, B { x | 1 x 3},则A B2 4 2{ x |0 x 1 3 1x1 3 } U { x | x 2} , AB { x | } U { x |1 x } .4 2 4 2 22. 连续射击一目标,A i表示第i次射中,直到射中为止的试验样本空间,则= A1; A1 A2; L ; A1 A2 L A n 1 A n;L .3.一部四卷的文集,按任意次序放在书架上,各卷自左向右,或自右向左顺序恰好为1、 2、 3、4 概率为 1 .124.一批 ( N个 ) 产品中有M个次品、从这批产品中任取n 个,其中恰有个 m 个次品的概率是 C M m C n n M m / C N n .5.某地铁车站 , 每 5 分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过 3 分钟的概率为.6.在区间( 0, 1 )中随机地取两个数,则事件“两数之和小于 6 ”的概率为.57.已知P( A)=, P(B)=,(1) 当 A, B互不相容时, P( A∪B)= ; P( AB)= 0 .(2) 当B A时, P(A+B)= ; P( AB)= ;8. 若 P(A) , P(B) , P( AB) , P(A B) 1 ; P( AB) ;P(A B) = 1 .9. 事件 A, B,C 两两独立 , 满足 ABC ,P( A) P( B) P (C) 1 , 且P( A+B+C)= 9 ,2 16 则 P(A)=.10.已知随机事件 A 的概率P( A) 0.5 ,随机事件B的概率 P( B) 0.6 ,及条件概率P(B | A) 0.8 ,则和事件A B的概率P(A B).12.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三2等品,则取到一等品的概率为.313. 已知 P( A) a, P(B | A) b, 则 P ( AB )a ab .14. 一批产品共 10 个正品 ,2 个次品 , 任取两次 , 每次取一件 ( 取后不放回 ), 则第 2 次抽取为次品的概率1 .615. 甲、乙、丙三人入学考试合格的概率分别是2 , 1 , 2,三人中恰好有两人合格的概3 2 5率为 2/5 .16.一次试验中事件 A 发生的概率为 p , 现进行 n 次独立试验 , 则 A 至少发生一次的概率为1 (1 n; A 至多发生一次的概率为 (1 nn 1.p ) p ) np(1 p)17. 甲、乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被击中,则它是甲中的概率为.二、选择题1.以 A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为( D ) .( A )“甲种产品畅销,乙种产品滞销”; ( B )“甲、乙两种产品均畅销” ;( C )“甲种产品滞销” ;(D )“甲种产品滞销或乙种产品畅销”.2. 对于任意二事件A 和 B, 与AB B 不等价的是 ( D ).(A) A B; (B) B A; (C) AB ; (D) AB .3. 如果事件 A , B 有 B A ,则下述结论正确的是( C ) .(A ) A 与 B 同时发生 ;( B )A 发生, B 必发生;( C ) A 不发生 B 必不发生;( D ) B 不发生 A 必不发生 .4. A 表示“五个产品全是合格品” , B 表示“五个产品恰有一个废品” , C 表示“五个产品不全是合格品” ,则下述结论正确的是(B ).(A) A B;(B) A C; (C) B C; (D )A B C.5.若二事件 A 和 B 同时出现的概率 P( AB )=0 则( C ) .( A ) A 和 B 不相容;( B ) AB 是不可能事件;( C ) AB 未必是不可能事件;( D )P( A )=0 或 P( B )=0.6.对于任意二事件 A 和 B 有 P( A B)(C ).(A) P( A) P(B) ;(B)P( A)P(B) P( AB) ;(C) P( A) P(AB) ;(D)P( A)P(B) P(B)P( AB) .8.设 A , B 是任意两个概率不为0的不相容的事件,则下列事件肯定正确的(D).(A) A与 B 不相容 ; (B) A与 B 相容 ; (C) P(AB)=P( A)P( B); (D) P(A- B)=P( A).9.当事件 A、 B 同时发生时,事件 C必发生则(B).(A) P(C) P( A) P(B) 1; (B) P(C) P( A) P( B)1;(C) P(C ) P( AB);(D) P(C) P(A B).10.设A, B为两随机事件,且B A,则下列式子正确的是(A ).(A) P( A B) P(A) ; (B)P( AB)P( A) ;(C)P(B | A) P(B) ;(D)P(B A) P( B)P( A) .11.设A、B、C是三随机事件,且P(C) 0,则下列等式成立的是( B).(A) P(A|C) P(A| C) 1;(B) P(AUB|C) P(A|C) P(B| C) P(AB| C);(C) P(A |C) P( A|C) 1;( D) P( AU B |C) P( A|C)P(B |C).12.设A, B是任意两事件,且A B, P( B) 0 ,则下列选项必然成立的是(B) .( A) P(A) P( A | B);( B) P( A) P(A | B);(C) P(A) P(A|B);( D) P(A) P(A|B).13.设 A,B 是任意二事件,且 P(B) 0, P(A |B) 1,则必有(C).(A)P( A B) P(A) ;(B)P(A B) P(B) ;(C)P( A B) P(A) ;(D)P(A B) P(B) .14.袋中有5个球,其中2个白球和 3 个黑球,又有 5 个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为(D) .1;(B)2;(C)1;(D)2.(A)445 515.设0P(A) 1, 0 P(B) 1, P(A|B) P(A |B) 1,则(D).(A)事件 A和B 互不相容;(B)事件A和B互相对立;(C)事件 A和B 互不独立;(D)事件A和B相互独立.16.某人向同一目标重复射击,每次射击命中目标的概率为p (0 p 1) ,则此人第 4(A) 3p(1 p) 2 ; (B) 6p(1 p)2 ;(C) 3p2 (1 p)2 ; (D) 6 p2 (1 p) 2.三、解答题1.写出下列随机实验样本空间:(1)同时掷出三颗骰子,记录三只骰子总数之和;(2) 10 只产品中有 3 次产品,每次从中取一只(取出后不放回),直到将 3 只次品都取出,记录抽取的次数;(3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品” ,如连续查出二个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。

(4) 将一尺之棰折成三段,观察各段的长度.解1( 1) { 3,4,5, ,18} ;( 2) {3,4,5,,10} ;( 3)查出合格品记为“1”,查出次品记为“0”,{00 , 100, 0100, 0101,1010 , 0110, 1100, 0111, 1011, 1101, 1110,1111}; ( 4) {( x, y, z) | x 0, y 0, z 0, x y z 1} 其中 x, y, z 分别表示三段之长 .2.设 A, B, C 为三事件,用 A, B, C 运算关系表示下列事件:(1)A发生, B和C不发生;(2)A与B都发生,而C不发生;( 3) A, B, C 均发生;(4)A, B, C至少一个不发生;( 5) A, B, C 都不发生;(6)A, B, C最多一个发生;( 7) A, B, C 中不多于二个发生;(8)A, B, C中至少二个发生.解( 1) ABC 或A- ( AB+AC)或A- ( B+C) ;( 2)ABC或AB-ABC或AB-C;( 3) ABC ;(4)A B C;(5)ABC或A B C;(6) ABC ABC ABC ABC ;( 7) ABC ;( 8) AB AC BC . 3.下面各式说明什么包含关系(1) AB A ; (2) A B A;(3) A B C A解(1)A B;(2) A B;(3)A B C4. 设{1,2,3,4,5,6,7,8,9,10}, A { 2,3,4}, B { 3,4,5}, C { 5,6,7} 具体写出下列各事件:(1) AB, (2)A B, (3) A B ,(4) ABC , (5) A(B C) .(4) {1,5,6,7,8,9,10};(5) {1,2,5,6,7,8,9,10}.5.从数字 1,2,3 ,, 10 中任意取 3 个数字,( 1)求最小的数字为 5 的概率 ;记“最小的数字为5”为事件 A∵ 10 个数字中任选 3 个为一组:选法有C103种,且每种选法等可能 .又事件 A 相当于:有一个数字为5,其余 2 个数字大于 5。

这种组合的种数有 1 C52∴1 C52 1. P(A)312C10( 2)求最大的数字为 5 的概率。

记“最大的数字为 5”为事件 B,同上10 个数字中任选 3 个,选法有C103 种,且每种选法等可能,又事件 B 相当于:有一个数字为5,其余 2 数字小于 5,选法有1 C42 种P(B) 1 C42 1 .C103 206. 从 5 双不同鞋子中任取 4 只, 4 只鞋子中至少有 2 只配成一双的概率是多少记 A 表“ 4 只全中至少有两支配成一对”则 A 表“4只人不配对”∵从 10 只中任取 4 只,取法有104种,每种取法等可能。

要 4 只都不配对,可在 5 双中任取 4 双,再在 4 双中的每一双里任取一只。

取法有 5 2 44 C54 24 8P( A) C104 21P(A) 1 P( A)8 13 1 .21 217. 试证 P( AB AB) P( A) P( B) 2P( AB).。

8.已知 10 只晶体管中有2 只次品,在其中取二次,每次随机取一只,作不放回抽样,求下列事件的概率。

( 1)两只都是正品 ;( 2)两只都是次品 ;( 3)一只是正品,一只是次品; ( 4)至少一只是正品。

解 ( 1) p 1C 82 28 ;(2) C 22 1C 10245 p 245C 102(3) p 3C 81 C 21 16 ; (4) p 4 1 p 211 44 .C 1024545 459. 把 10 本书任意放在书架上,求其中指定的 5 本书放在一起的概率。

相关文档
最新文档