材料科学基础复习重点.

合集下载

材料科学基础复习重点

材料科学基础复习重点

几种强化1、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。

强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力。

2、固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。

强化机制:晶格畸变,阻碍位错运动。

3、细晶强化:通过细化晶粒而使金属材料力学性能提高的方法,4、弥散强化:在材料中引入第二相后材料的强度提高的现象几种概念1、滑移系:一个滑移面和该面上一个滑移方向的组合。

2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。

3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带)原因:柯氏气团的存在、破坏和重新形成,位错的增殖。

4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高,这种现象就称为低碳钢的应变时效。

5、形变结构:各晶粒的某个相同的滑移系,在变形量较大时逐渐转向趋于与拉力轴平行,这种原来晶粒取向任意,现在由于外力的作用使晶粒转动,晶粒的取向趋于一致,形成了晶体的择优取向,我们称之为形变织构。

变形量越大,择优取向程度越大,表现出织构越强。

滑移和孪晶的区别滑移是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。

孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。

伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。

伪共晶区有如下规律:两组元有相近的熔点时,出现对称伪共晶区;两组元的熔点相差较大时,共晶点通常偏向低熔点组元一方,而伪共晶区则偏向高熔点组元一方。

材料科学基础复习知识点

材料科学基础复习知识点

1 简述刃型位错和螺型位错的区别答:不同点:1、柏氏矢量b垂直于位错线是刃型位错,b平行于位错线是螺型位错。

2、对刃型位错外加作用力F与外加切应力t一致,对螺型位错F与t垂直 3、刃型位错由于b 垂直于位错线,所以具有唯一的滑移面,而螺型位错的b平行于位错线,所以滑移面不是唯一的。

4、刃型位错的应力场既有正应力也有切应力,而螺位错的应力场只有切应力没有正应力。

5、刃型位错既能滑移又能攀移,螺位错只能滑移不能攀移。

6,刃型位错可以形成对称倾侧晶界螺型位错可形成扭转晶界。

相同点:1.都是已滑移与未滑移的交线。

2,当位错线沿滑移面滑过整个晶体时,就会在晶体表面沿柏氏矢量方向产生一个滑移台阶,其宽度等于柏氏矢量b。

常见晶体缺陷各举一例位错运动方式面心立方金属不全位错有哪些?位错线是什么?位错增殖机制:假定有一两端扎钉的位错线段AB,在t作用下AB受F=tb作用,所以AB发生滑移,但AB 固定所以AB发生弯曲当r=r(min) 位错线在t的作用下不断扩展,当位错线m,n点相遇时彼此抵消,原来整根位错线断成两部分外部是一个封闭的位错环里面是一段位错线AB,在t的作用下位错环不断向外拓展,AB不断重复上述过程,结果便放出大量位错环造成位错的增值。

扭折:位错交割生成的小曲折线段与原位错线在同一滑移面上。

割阶:位错交割生成的小曲折线段与原位错线不在同一滑移面上。

固熔体:是固态下一种组元熔解在另一种组元中形成的新相,其特点是固熔体具有熔剂组元的点阵类型。

相:是指在任一给定的物质系统中,具有同一化学成分,同一原子聚集状态和性质的均匀连续组成部分。

置换固熔体:熔质原子占据熔剂点阵的固熔体。

间隙固熔体:是由那些原子半径小于0.1mm的非金属元素熔入到熔剂金属晶体点阵的间隙中所形成的固熔体中间相:金属与金属,或金属与类金属之间所形成的化合物统称为金属间化合物。

由于它们常处在相图的中间位置上,故又称中间相。

间隙相:当非金属原子半径与过渡金属原子半径之比(Rx/RM)<0.59时化合物具有比较简单的结构称为简单间隙化合物,又称间隙相。

材料科学基础总复习3

材料科学基础总复习3

材料科学基础总复习3判断题:1、合金相可分为固溶体和中间相两大类。

2、体心立方结构不是密堆结构。

3、高分子链的远程结构是指高分子的大小与形状。

4、液-固界面微观结构中,所谓“光滑界面”具有微观不平整宏观平整的特点,故又称之为“非小平面界面”。

5、晶胞中四面体间隙由于均由6个原子所构成,故任何晶系中四面体间隙的半径均相同,而仅仅是其间隙中心位置不同。

6、均匀形核的临界晶核半径与过冷度的平方成反比,所以大幅度降低结晶温度将能有效提高形核率。

7、位错可以终止于晶体内部。

8、液态金属只要过冷到其熔点以下就会发生结晶。

9、所谓临界晶核,就是体系自由能的减少完全抵偿表面自由能的增加时的晶胚大小。

10、非均匀形核总是比均匀形核容易,因为非均匀形核一般是以外加固体杂质作为现成晶核,不需要形核功。

11、在液态金属中,凡是涌现出小于临界晶核半径的晶胚都不能成核,但是只要有足够的能量起伏提供形核功,还是可以成核的。

12、若在过冷液体中,外加10000颗形核剂,则结晶后可以形成10000颗晶粒。

选择题:1、凝固的热力学条件为:()(A)形核率(B)系统自由能增加(C)能量守衡(D)过冷度2、固溶体的特点是:()(A)具有较高的强度,同时具有较高的硬度(B)具有较高的强度,同时具有较高的塑性(C)具有较高的强度、硬度,同时具有较高的塑性(D)以上都不对。

3、金属的电阻率随温度的升高而()。

(A)降低(B)不变(C)升高(D)不确定4、组元之间形成无限固溶体的必要条件是:a、原子半径相近,b、电子浓度极限相近,c、晶体结构类型相同。

5、根据原子在相界面上排列的特点,可以把相界面分为:()(A)共格界面(B)半共格界面(C)大晶角界面(D)非共格界面6、渗碳体属于:a、电子化合物,b、间隙固溶体,c、间隙化合物。

7、晶面指数越大,则晶面间距:a、越大,b、越小,c、无变化。

8、柏氏回路的方向可用加以确定:a、直角右手法则,b、右手螺旋法则,c、左手螺旋法则。

材料科学基础复习资料

材料科学基础复习资料

1、鲍林规则:鲍林根据已测定的晶体结构数据和晶格能公式所反映的关系,提出的判断离子化合物结构稳定性的规则,共包含五条规则。

2、晶体:质点在三维空间作有序排列的固体晶胞:是晶体结构中的最小单元。

3、晶子学说:玻璃结构是一种不连续的原子集合体,即无数“微晶”分散在无定形介质中。

无规则网络学说:玻璃的结构与相应的晶体结构相似,同样形成连续的三维空间网络结构。

但玻璃的网络与晶体的网络不同,玻璃的网络是不规则的、非周期性的4、扩散型相变:在相变时,依靠原子或离子的扩散来进行的相变。

非扩散型相变:相变过程不存在原子离子的扩散,或虽存在扩散但不是相变所必须的或不是主要过程的相变。

5、热缺陷:也称本征缺陷,指由热起伏的原因所产生的空位和间隙质点。

杂质缺陷:也称组成缺陷,是由外加杂质的引入所产生的缺陷。

6、点缺陷:亦称为零维缺陷,缺陷尺寸为原子大小数量级,包括空位、间隙原子、杂质原子和色心等。

线缺陷:亦称一维缺陷或位错,是指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,包括棱位错和螺形位错;7、烧结:一种或多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这个过程叫烧结。

固相反应:固体直接参与反应并起化学变化,同时至少在固体内部或外部的一个过程中起控制作用。

8、肖特基缺陷:质点由表面位置迁移到新的表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位,其特征是正负离子空位成比例出现。

弗伦克尔缺陷:质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。

9、硼反常现象:当数量不多的碱金属氧化物同氧化硼一起熔融时,碱金属所提供的氧不象熔融玻璃中作为非桥氧出现在结构中,而是使硼氧三角体转变为桥氧组成的硼氧四面体,致使玻璃从原来两度空间的层状结构转变为三度空间的架状结构,从而加强了网络结构,并使玻璃的各种物理性能变好。

这与相同条件下的硅酸盐玻璃相比,其性能随碱金属或碱土金属加入量的变化规律相反,所以称之为硼反常现象10、均匀成核:晶核从均匀的单相熔体中产生的几率处处相同的成核过程。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料
导论
材料科学是研究材料的结构、性质和应用的科学,是现代工程技术领域的基础学科。

它对于工程师和科学家在材料选择、设计和开发方面至关重要。

本篇文档将以复习资料的形式,对材料科学的基础知识进行系统梳理和总结。

第一章材料的结构与组成
1.1 原子结构与元素周期表
- 原子的组成:质子、中子和电子
- 元素周期表的基本结构和主要特征
- 元素周期表的分类:金属、非金属和半金属
1.2 结晶与非晶结构
- 结晶的概念和特征
- 结晶的晶体结构:离子晶体、共价晶体和金属晶体
- 非晶态材料的特点和应用
1.3 晶体缺陷
- 点缺陷:空位、间隙、杂质点等
- 线缺陷:位错、脆性断裂和塑性变形
- 面缺陷:晶界、孪晶和堆垛层错
第二章材料的物理性质
2.1 密度与晶体的结构密度
- 密度的概念和计算方法
- 晶格常数与密度的关系
2.2 热膨胀与晶体的结构变化
- 热膨胀的定义和计算方法
- 晶体结构变化对热膨胀的影响
2.3 热导率与导热机制
- 热导率的定义和计算方法
- 材料的导热机制:电子传导、晶格振动传导和辐射传导。

材料科学基础复习资料

材料科学基础复习资料

1..晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象2.科垂尔气团:溶质原子在刃型位错周围的聚集的现象,这种气团可以阻碍位错运动,产生固溶强化效应等结果3.反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散,如从金属表面向内部渗入金属时,渗入元素浓度超过溶解度出现新相4.变形织构:经过塑性变形后原来多晶体中位向不同的晶粒变成取向基本一致,形成晶粒的择优取向,择优取向后的晶体结构为织构,若织构是在塑性变形中产生的,称为变形织构5.割阶和扭折:位错运动过程中与其它位错交截后形成一定的位错交截折线,若交截后的位错折线在原来位错的滑移面上,此位错折线称为扭折,若交截后的位错折线垂直于原来位错的滑移面,此位错折线称为割阶6.冷加工与热加工:通常根据金属材料的再结晶温度来加以区分,在再结晶温度以上的加工称为热加工,低于再结晶温度又是室温下的加工称为冷加工7.面角位错:在位错反应中,fcc晶体中不同滑移面上的全位错分解为不全位错后,领先不全位错反应生成新的不可动位错,导致出现的三个不全位错之间夹杂两个层错的不可动位错组态;8.变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构;9.再结晶织构是具有变形织构的金属经过再结晶退火后出现的织构,位向于原变形织构可能相同或不同,但常与原织构有一定位向关系。

10.再结晶全图:表示冷变形程度、退火温度与再结晶后晶粒大小的关系(保温时间一定)的图。

11.带状组织:多相合金中的各个相在热加工中可能沿着变形方向形成的交替排列称为带状组织;12.加工流线:金属内部的少量夹杂物在热加工中顺着金属流动的方向伸长和分布,形成一道一道的细线;13.动态再结晶:低层错能金属由于开展位错宽,位错难于运动而通过动态回复软化,金属在热加工中由温度和外力联合作用发生的再结晶称为动态再结晶。

材料科学基础复习

材料科学基础复习

第一章、晶体结构基础1、晶体的基本概念晶体的本质:质点在三维空间成周期性重复排列晶体的基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性2、对称的概念物体中的相同部分作有规律的重复对称要素:对称面、对称中心、对称轴(对称轴的类型和特点)(L1、L2、L3、L4、L6、C 、P )4次倒转轴不能被其他的对称要素及其组合取代对称操作:借助对称要素,使晶体的相同部分完全重复的操作对称要素的组合必须满足晶体的整体对称要求,不是无限的。

3、对称型(点群):宏观晶体中只存在32种对称型对称型的概念(所具有的宏观对称要素以一定的顺序组合起来)4、晶体的分类 、晶族分类的依据5、晶面的取向关系 、晶面指数的含义和计算(举例)6、空间点阵的概念、 14种布拉维格子( P (R) 、I 、F 、C 格子)7、晶胞的概念 、晶胞参数(计算)8、微观对称要素的特征、空间群的概念(只存在230种空间群)在微观对称操作中都包含有平移动作9、球体紧密堆积原理 (六方密堆、立方密堆)10、鲍林规则(离子晶体)11、决定晶体结构的因素:化学组成、质点相对大小、极化性质12、同质多晶、类质同晶13、典型的晶体结构(晶体结构的描述方法)CaF2结构、金刚石结构、金红石结构、刚玉结构、 CaTiO3、尖晶石结构14、硅酸盐晶体结构、硅酸盐晶体结构分类的依据15、层状硅酸盐晶体的结构特点,(晶胞参数a 和b 值相近)16、石英、鳞石英、方石英的结构特点第二章、晶体结构缺陷1、缺陷的概念(凡是造成晶体点阵的周期性势场发生畸变的一切因素)2、热缺陷 (弗伦克尔缺陷、肖特基缺陷)及计算 热缺陷是一种本征缺陷、高于0K 就存在,影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构)3、杂质缺陷、固溶体(晶态固体) 固溶体、化合物、混合物之间的比较4、非化学计量化合物结构缺陷 种类、形成条件、特点,缺陷的计算等5、连续置换型固溶体的形成条件6、影响形成间隙型固溶体的因素7、组分缺陷(补偿缺陷):不等价离子取代 形成条件、特点(浓度取决于掺杂量和固溶度) 缺陷浓度的计算、与热缺陷的比较8、缺陷反应方程和固溶式产生的各种缺陷杂质基质−−→−i Cl K K Cl 2l C Cl Ca CaCl '++−→−⨯∙⨯∙'+'+−→−ClK K KCl 2l C 2V Ca CaCl9、固溶体的研究与计算写出缺陷反应方程固溶式、算出晶胞的体积和重量理论密度(间隙型、置换型)和实测密度比较10、位错概念刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行第三章、非晶态固体1、熔体的概念:不同聚合程度的各种聚合物的混合物硅酸盐熔体的粘度与组成的关系2、非晶态物质的特点3、玻璃的通性4、Tg 、Tf 相对应的粘度和特点5、网络形成体、网络变化体、网络中间体计算(如Pb玻璃中Pb2+的作用)6、玻璃形成的热力学观点(结晶化、玻璃化、分相)7、玻璃形成的动力学条件3T图---临界冷却速率8、玻璃形成的结晶化学条件(键强、键型)9、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处)10、玻璃的结构参数(注意给出的条件)Z可根据玻璃类型确定,先计算R,再计算X、Y11、硼的反常现象12、硅酸盐晶体与硅酸盐玻璃的区别硅酸盐晶体与硅酸盐玻璃在结构上的区别:(1)在硅酸盐晶体中,[SiO4]骨架按一定的对称规律有序排列;在硅酸盐玻璃中[SiO4]骨架的排列是无序的。

材料科学基础期末总结复习资料

材料科学基础期末总结复习资料

材料科学基础期末总结复习资料材料科学基础期末总结复习资料1、名词解释(1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。

(2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。

(3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。

即HJB---包晶转变线,LB+δH→rJ(4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。

(5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析(6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。

(7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。

(9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。

(10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。

(11)加工硬化:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。

(12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 按照柏氏矢量与位错线的夹角划分,平行时是螺位错,垂直 时是刃位错,其它情况是混合位错; • 可以在(111)和(111)面上存在; • 两个分解式为: a/2[110]a/6[121]+a/6[211] a/2[110]a/6[211]+a/6[121]
2. (本题10分) 什么是位错的非保守运动?其最本质的过程是 什么?控制这种运动速度的过程是什么?最粗略地估计两个 不同温度下的非保守运动速度的比值应该查阅什么参数?为 什么?
北京科技大学2005~2006学年第2学期材料科学基础试题
1. (本题10分) 位错有哪些类型?判别位错类型的依据是什么? 面心立方晶体中柏氏矢量为 [110] 的全位错可以在哪些 {111} 面上存在,并写出该全位错在这些面上分解为两个<112>分 位错的反应式。 • 刃位错、螺位错及混合位错;
第九章 材料的形变
• 相关公式
cos h1h2 k1k2 l1l2
2 2 2 h12 k12 l12 h2 k2 l2
cos cos
F m A0

Gb Gb s l
1 2
y 0 kyd
第十章 相变的基本原理
• 相变分类—按:热力学参数,方式,原子迁移特征
第六章 有序介质中的点缺陷和线缺陷
• 点缺陷 • 空位和间隙原子—平衡浓度 • 离子晶体中的点缺陷—Kroger-Vink符号 • 禀性点缺陷和非禀性点缺陷 • 线缺陷 • 位错几何特征—位错类型:刃(正负)、螺(左右)、混合 • 位错应力场—直螺位错、直刃位错 • 位错能量—刃位错、螺位错、混合位错 • 位错受力—保守运动和非保守运动,滑移和攀移 • 位错运动 • 交互作用—弯结、割阶、科垂尔气团、史诺克气团 • 位错产生和增殖—F-R源 • 实际晶体中的位错—全位错、部分位错、扩展位错
• 位错运动引起晶体体积变化,称非保守运动; • 本质是原子或空位的扩散过程及形成割阶的能力; • 控制非保守运动速度的过程是原子扩散能力,而温度及是否 有外界正应力有明显影响; • 高温及正应力促进非保守运动。应查两温度下的原子自扩散 系数或空位扩散系数。
Hale Waihona Puke 3. (本题15分) 什么是重合位置点阵?如何用重合位置点阵描述 晶界结构?比较面心立方金属中小角晶界、普通大角晶界和 Σ3孪晶界的能量、杂质偏析和迁移率的相对高低。
第八章 固体中原子的扩散
• 扩散机制—间隙、空位、换位 • 扩散系数—微观意义、影响因素 • 扩散激活能 • 扩散方程的解 •误差函数解、高斯解、三角函数解、数值解、平方根关系 •Matano平面 • 高扩散率通道—晶界、位错、表面等 • 反应扩散 • 影响扩散系数的因素 • 离子晶体、玻璃和聚合物中的扩散
第七章 面缺陷和体缺陷
• 表面 • 张力、能量、形貌、弛豫和重构、吸(脱)附和偏析 • 晶界 • 小角晶界—倾转晶界、扭转晶界 • 大角晶界—几何结构模型(CSL、DSC、O) • 奇异晶界、邻位晶界 • 小角晶界和大角晶界:能量、偏析、迁移 • 取向差 • 相界—共格、半共格、非共格 • 体缺陷
• 相变驱动力
• 相变形核—均匀、非均匀;形核功、形核半径;形核率 • 固态转变时晶核长大—界面过程控制、长程扩散控制
• 转变动力学—JMAK方程
• Ostwald熟化
第十一章 凝固
• 纯金属的结晶 • 液态金属结构 • 结晶一般过程 • 结晶条件 • 结晶驱动力 • 形核(均匀、非均匀) • 临界晶核半径、临界形核功、形核率 • 晶核长大 • 液固界面结构(光滑、粗糙) • 晶核长大方式 • 固溶体的结晶 • 平衡凝固、非平衡凝固 • 平衡分配系数、Scheil方程、成分过冷 • 共晶凝固和包晶凝固
第九章 材料的形变
• 滑移和孪生 • 滑移要素和滑移系 • 单系滑移、交滑移、多系滑移 • 临界分切应力定律 • 孪生要素、机制 • 滑移和孪生比较 • 应力-应变曲线 • 加工硬化理论
• 宏(微)观应变协调和宏(微)观组织变化 • CB、DDW、MB、GNB、IDB、SB、LB
• 形变织构 • 类型 • 表征
第八章 固体中原子的扩散
• 相关公式
cx, t c2 c1 c2 c1 x erf 2 2 2 Dt
Q H m
cs cx x erf cs c0 2 Dt
Q Hm H f
Q D D0 exp RT
第十一章 凝固
• 相关公式
CL C0 f Lk0 1
CS k0C0 1 f S
mL C0 1 k0 G L DL k0 v
k0 1
第十二章 固态转变
• 合金脱溶 • 脱溶贯序 • 时效 • 共析转变、块状转变 • 连续型转变—调幅分解、无序—有序转变 • 无扩散型相变 • 回复和再结晶 • 组织、性能变化、驱动力 • 再结晶基本规律、动力学及影响因素 • 再结晶形核 • 晶粒长大 • 动态回复和动态再结晶 • 再结晶织构
4. (本题10分) 什么是临界分切应力定律?在面心立方晶体中的 位错,柏氏矢量b=a/2[110],位错线t=a/√6[112],临界 分切应力0.5MPa。(1)确定这个位错的滑移面;(2)分别计 算在 [010] 方向和 [001] 方向施加多大的正应力才能使这个位 错滑动。
• 两点阵相互穿插,由两点阵中重合阵点组成的周期点阵称为重合位置点 阵。 • 晶界两侧点阵取向不同,就有不同程度的重合度,用重合点阵密度Σ表 示。当晶界穿过重合位置点阵晶面,特别是密排面时,晶界两侧原子键 破坏的比例相对普通大角晶界要少一些,即原子匹配的比例高一些。如 Σ3 、 Σ5、 Σ7、 Σ9 等晶界。他们表示两相互穿插的点阵中每 3/5/7/9 个原 子中就重合一次。这种晶界的能量、迁移率及杂质偏析量与一般大角晶 界不同。 • 小角晶界能量低,杂质偏析少,迁移率低;大角晶界能量高,杂质偏析 多,迁移率高;Σ3孪晶界是共格的,很稳定,能量很低,甚至低于小角 晶界;杂质偏析少,迁移率很低。
相关文档
最新文档