全等三角形单元复习教案

合集下载

(精)人教版数学八年级上册《全等三角形》全单元教案

(精)人教版数学八年级上册《全等三角形》全单元教案

第十二章《全等三角形》单元备课一、教课剖析1、内容剖析:本章主要内容是学习全等三角形的观点、性质以及判断方法,应用全等三角形的性质和判断研究角均分线的性质,能够应用全等三等三角形的性质和判断以及角均分线的性质解决简单的几何老是,初步掌握推理证明的方法。

2、教材剖析:学生已经学过线段、角、订交线、平行线、相关三角形的一些知识,经过本章的学习能够丰富和加深学生对已学图形的认识,同时为学习其余图形打好基础,教材力争创建与生活场景邻近的、风趣的问题情境引入,使学生经历了从现实生活研究并抽象出几何模型,并应用几何模型解决实质问题的过程,在内容上重点研究三角形全等的判断方法经及应用,至于角均分线的改天换地的两上互逆定理,只需修业生认识其条件与结论之间的关系,不用介绍互逆定理的观点,经过联合详细问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培育学生的推理能力。

二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.认识全等三角形的观点和性质,能够正确地辨识全等三角形中的对应元素。

2.研究三角形全等的判断方法,能利用三角形全等进行证明,掌握综合法证明的格式。

3.利用尺规作图作一个角等于已知角、作一个角的角均分线。

4、经历角均分线的性质和判断方法的研究过程,灵巧应用角均分线的性质和判断解决问题 .三、本章教课建议(一)着重研究结论(二)着重推理能力的培育1.注意减缓坡度,顺序渐进。

2.在不一样的阶段,安排不一样的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。

3.着重剖析思路,让学生学会思虑问题,着重书写格式,让学生学会清楚地表达思虑的过程。

(三)着重联系实质三、几个值得关注的问题(一)对于内容之间的联系(二)对于证明一般状况下,证明一个几何中的命题有以下步骤:(1 )明确命题中的已知和求证;(2 )依据题意,画出图形,并用数学符号表示已知和求证;(3 )经过剖析,找出由已知推出求证的门路,写出证明过程。

初中数学八年级上册第一章《 全等三角形》复习课 教案

初中数学八年级上册第一章《 全等三角形》复习课 教案

数学八年级上册《全等三角形》复习课教案
本课时学习目标1、掌握三角形全等的“角边角”“边角边”条件.能运用全等三角形的条件,解决推理证明问题
2.积极讨论,体验探索成功的快乐。


本课时重难点及学习建议重点:灵活运用三角形全等条件证明.难点:灵活运用三角形全等条件证明.
本课时教学
资源使用
多媒体
学习过程学习要求或学法指导一、复习巩固
判别三角形全等的条件
二、巩固练习:
例题1、 AC=BD,∠1=∠2,
求证:△ABC≌△BAD
例题2 AB=AD,B,D 分别是AC,AE的中点,求证:△A DC≌△ABE 例题3. C是 AE 的中点,AB//CD 且 BC//DE ,求证:AB=CD
例题4 AB=AC,BE 、CD是中线,
求证: BE=CD
理解记忆
已经学过的两个判定方

学生讲解
如何证明
找两个学生讲解
一定要会
培养学生语言表达能力
让学生养成一种定势告诉这个条件立刻想到
什么
回顾中线的定义
例题5 AB//CD,AE=FD,BE//CF,求证:BE=CF
例题5已知:△AED≌△BEC
求证:△AEC≌△BED 告诉平行,想到角相等
告诉两个三角形全等能得到很多东西
看你具体需要什么条件
课后反思与经验总结板书设计。

八年级数学上册12全等三角形复习教案新人教版

八年级数学上册12全等三角形复习教案新人教版

全等三角形课题全等三角形复习共 1课时第 1课时课型复习教学目标1知识目标:了解全等形及全等三角形的概念,理解全等三角形的性质。

掌握全等三角形的判定,灵活运用全等三角形的判定定理和性质定理,证明简单的全等三角形问题。

2过程与方法:通过复习全等三角形的性质和判定,培养学生综合应用能力,培养学生的作图及识图能力。

3情感态度与价值目标:学生通过在综合运用全等三角形性质和全等三角形判定定理的过程中感受到数学与生活息息相关,从而激发学生学习数学的兴趣。

重点难点【重点、难点】重点:全等三角形的性质和判定以及所学知识的综合应用难点:加强应用型与探究型题型训练教学策略自主探索、合作交流教学活动课前、课中反思一、热身练习,知识再现1 的两个三角形叫做全等三角形.全等三角形的性质是: 2一般三角形全等的判别方法: 。

直角三角形全等的判别方法: . 3、证明两个三角形全等的基本思路:(1)已知两边__________)(____________)(__________)⎧⎪⎨⎪⎩找第三边(找夹角看是否是直角三角形 (2)已知一边一角(_____)(_____)(_____)(_____)(_____)⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩找这边的另一邻角已知一边与邻角找这个角的另一边找这边的对角找一角已知一边与对角已知是直角,找一边 (3)已知两角______________)(______________)⎧⎪⎨⎪⎩找夹边(找夹边外任意一边 二、合作探究1、如图,已知AD 平分∠BAC ,要使△ABD ≌△ACD , 根据“SAS ”需要添加条件 ; 根据“ASA ”需要添加条件 ; 根据“AAS ”需要添加条件 。

2、如图,AC =AD ,在图中标记出△AB C 与△ABD灵活运用全等三角形的判定定理和性质定理,证明简单的全等三角形问题中对应相等的元素,思考:△AB C与△ABD全等吗?这个问题说明了什么?3如图,若BC=CE,∠A=∠D,则△AB C≌.4。

人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

°.
【知识点】三角形全等的性质;三角形内角和定理. 【思路点拨】由△ABC≌△A′B′C′,其中∠C′=24°可得∠C=24°,所以∠ B=180°-∠A-∠C=180°-36°-24°=1200 【解答过程】解:∵△ABC≌△A′B′C′, ∴∠C=∠C′=24° ∵∠A+∠B+∠C=1800
∠A=36° ∴∠B=180°-∠A-∠C=180°-36°-24°=1200 【答案】1200 14.如图 BC=EF,AC=DF,要证明△ABC≌△DEF,还需添加一个条件: (1)若以“ ”为依据,需添加的条件是 ; (2)若以“ ”为依据,需添加的条件是 .
【考点】全等三角形的判定与性质. 【思路点拨】延长 BA 交 CE 的延长线于 F,证明△BCE≌△BFE,由全等可证 CE=EF, 再证△ACF≌△ABD,可得 BD=CF 【数学思想】截长补短. 【解答过程】 证明:延长 BA 交 CE 的延长线于 F, ∵BE 平分∠ABC,CE⊥BE, ∴△BCE≌△BFE, ∴CE=EF, ∵在△ABC 中,∠BAC=90°,CE⊥BE, ∴∠FCA=∠ABD, 又∵ AB=AC ∠FAC=∠BAD ∴△ACF≌△ABD, ∴BD=CF, ∴BD=2CE.
2
三、章末检测题
一、选择题 (每题 4 分,共 48 分)
1.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍
然不能证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D
B.BC=EF
C.∠ACB=∠F
D.AC=DF
【知识点】三角形全等的判定 【思路点拨】已知有一条边和相邻的一个角对应相等,可以添∠A=∠D(依据 ASA) 或∠ACB=∠F(依据 AAS),也可以添边 BC=EF(依据 SAS) 【解答过程】选项 A 的依据为 ASA; 选项 B 的依据为 SAS;选项 C 的依据为 AAS; 选项 D 不能判断两个三角形全等. 【答案】D 2.下列说法正确的是( ) A.周长相等的两个三角形全等; B.有两边和其中一边的对角对应相等的两个三角形全等; C.面积相等的两个三角形全等; D.有两角和其中一角的对边对应相等的两个三角形全等. 【知识点】三角形全等的判定和性质. 【思路点拨】三角形全等的判定方法有:SSS;SAS;AAS;ASA;HL. 【解答过程】选项 A 周长相等不能判断三角形全等;选项 B 两边和一个角对应相 等,只能是两边和两边的夹角对应相等才能判定三角形全等;选项 C 面积相等的 两个三角形不一定全等;选项 D 对,依据为 AAS.

全等三角形.复习课教学设计(改)doc

全等三角形.复习课教学设计(改)doc

《全等三角形》复习课教学设计一、教材分析:本节课是全等三角形的全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形的概念,理解性质、判定和运用;其次对学生所学的全等三角形知识进行查缺补漏,再次通过拓展延伸以的习题训练,提高学生综合运用全等三角形解决问题的能力二、学情分析在知识上,学生经历全等三角形全章的学习,对全等三角形性质、判定以及应用基本掌握,初步具有整体认识。

对全等三角形的综合应用以及全章知识脉络的形成正是以上各种能力的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理能力、发散思维能力和概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形的概念,掌握三角形全等的条件和性质;会应用全等三角形的性质与判定解决有关问题.2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生归纳总结的能力,使学生体会数形结合思想、转化思想在解决问题中的作用.四、教学重难点重点:全等三角形性质与判定的应用.难点:能理解运用三角形全等解题的基本过程。

五、教法与学法以“自助探究”为主,以小组合作、练习法为辅;在具体的教学活动中,要给予学生充足的时间让学生自主学习,先形成自己的全等三角形知识认知体系,尝试完成练习;给予学生充足的空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课的教学目的.六、教具准备多媒体课件,七、教学过程本节课是全等三角形全章的复习课,本节课我主要采用学生“练后思”的模式,帮助学生搜整《全等三角形》全章知识脉络,建构知识网络,通过基础训练、概念变式练习、典例探究、拓展应用等活动进行查缺补漏和拓展延伸;借助“基础了题目-变式题目-典型题目-拓展题目”五个梯次递进的教学活动达成教学目标,使用多媒体课件展示教学思路,引导学生思维的方向,实现课堂教学最优化活动1 反思回顾,(2分钟).请同学们对本章学过的基础知识进行梳理:1.问题:判断三角形全等至少要有几个条件?2.证明两个三角形全等的基本思路:(括号中填判定方法)活动2 基础练习(15分钟).1.如图,△AOB ≌△COD ,AB=7,∠C=80°则CD= ,∠A= .2.如图,△ABC ≌△DEF ,DE=4,AE=1,则BE 的长是( ) A .5 B .4 C .3D .23. 如图,在△ABC 和△BAD 中,BC = AD ,请你再补充一个条件,△ABC ≌△BAD . 你补充的条件是___________.4. 已知:如图, △AEF 与△ABC 中,∠E =∠B, EF=BC.请你添加一个条件_______________, 使△AEF ≌ △ABC.5. 如图 ,AB=AC,∠B=∠C, 那么△ABE 和 △ACD 全等吗?为什么?活动3 变式深化(20分钟)1. 将一长方形纸片按如图方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( ) A 、600 B 、750 C 、900 D 、9502. 如图,△ABC 中,AD ⊥BC ,垂足为D ,BE ⊥AC ,垂足为E ,AD 、BE 相交于点F 。

八年级第十一章全等三角形复习教案

八年级第十一章全等三角形复习教案

第十三章全等三角形复习教案一、知识点:1.全等三角形:⑴全等形:能够完全重合的两个图形叫全等形。

⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。

⑶全等三角形的性质:全等三角形对应边相等,对应角相等。

2.三角形全等的性质:全等三角形的识别:SAS,ASA,AAS,SSS,HL(直角三角形)3.角平分线的性质:⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。

⑵角平分线的判定:到角两边距离相等的点在角的平分线上。

⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。

二、经验与提示1.寻找全等三角形对应边、对应角的规律:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边.④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)2.找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

3.角的平分线是射线,三角形的角平分线是线段。

4.证明线段相等的方法:(1)中点定义;(2)等式的性质;(3)全等三角形的对应边相等;(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。

随着知识深化,今后还有其它方法。

5.证明角相等的方法:(1)对顶角相等;(2)同角(或等角)的余角(或补角)相等;(3)两直线平行,同位角、内错角相等;(4)角的平分线定义;(5)等式的性质;(6)垂直的定义;(7)全等三角形的对应角相等;(8)三角形的外角等于与它不相邻的两内角和。

全等三角形的复习课教学设计

全等三角形的复习课教学设计

全等三角形的复习课教学设计一、教学内容本节课的教学内容为全等三角形的性质及判定。

教材选用为人教版《数学》五年级下册第二章第三节“全等三角形”。

内容包括:全等三角形的定义、全等三角形的性质、全等三角形的判定方法(SSS、SAS、ASA、AAS)。

二、教学目标1. 理解全等三角形的定义,掌握全等三角形的性质,能运用全等三角形的性质解决实际问题。

2. 掌握全等三角形的判定方法,能运用判定方法判断两个三角形是否全等。

3. 培养学生的空间想象力,提高学生的逻辑思维能力。

三、教学难点与重点重点:全等三角形的定义、性质及判定方法。

难点:全等三角形的判定方法的运用,以及如何根据全等三角形的性质解决实际问题。

四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。

学具:练习本、彩笔、剪刀、胶水。

五、教学过程1. 情景引入教师展示两幅完全相同的三角形图案,提问:“请大家观察这两幅图案,它们有什么特点?”引导学生发现两幅图案的三角形完全相同,从而引出全等三角形的概念。

2. 知识讲解(2)全等三角形的性质:教师通过多媒体展示全等三角形的性质,引导学生发现全等三角形对应边相等、对应角相等。

(3)全等三角形的判定方法:教师讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题展示判定过程。

3. 随堂练习教师给出练习题,学生独立完成,检验自己对全等三角形概念、性质和判定方法的理解。

4. 例题讲解教师选取一道典型例题,讲解解题思路,引导学生运用全等三角形的性质和判定方法解决问题。

5. 实践环节学生分组进行实践,利用全等三角形的性质和判定方法,解决实际问题。

教师巡回指导,解答学生疑问。

6. 课堂小结7. 作业布置教师布置作业,包括课后练习题和实际问题解决题。

六、板书设计板书内容:全等三角形的定义、性质、判定方法。

七、作业设计1. 课后练习题:(1)判断题:a. 全等三角形的对应边相等。

()b. 全等三角形的对应角相等。

()c. 如果两个三角形的一边和两个角分别相等,那么这两个三角形全等。

八年级数学上册 第十二章 全等三角形章末复习教案(新版)新人教版-(新版)新人教版初中八年级上册数学

八年级数学上册 第十二章 全等三角形章末复习教案(新版)新人教版-(新版)新人教版初中八年级上册数学

章末复习【知识与技能】1.了解全等三角形的概念和性质,能够准确辨认全等三角形中的对应元素.2.探索三角形全等的条件,能够利用三角形全等进行证明,掌握综合法证明的格式.3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【过程与方法】通过学习全等三角形的性质与条件,培养学生综合应用能力,培养学生的几何直觉.【情感态度】通过综合运用全等三角形性质和全等三角形条件以及角平分线的过程中,感受数学与生活息息相关,从而激发学数学的兴趣.【教学重点】全等三角形的性质和条件的综合应用.【教学难点】全等三角形性质、条件与其他知识的综合应用.一、知识框图,整体把握【教学说明】教师依据以上框图,带领学生一起全面回忆本章知识点.二、释疑解惑,加深理解教师针对本章易错点引导学生予以归纳并分析错因.1.寻找全等三角形的对应边和对应角时出错.例1 如图,已知△ABC≌△FED,∠C=∠D,AE=BF,指出其它的对应边和对应角.【常见错解】对应边BC与DF,AE与BF,对应角∠DFE和∠ABC.【错解分析】识图能力差,不能从重合的角度(将其中一个三角形先平移使AB与EF重合,然后沿EF翻折)来认识三角形的对应,从而无法正确找到对应边\,对应角.“SSS”掌握不熟练,自造条件用于判定三角形全等.例2 如图,AB=CD,AC和BD交于点O,若AC=BD,则∠B=∠C吗?为什么?【常见错解】∵AC=BD,∴∵AB=CD,∴△ABO≌△DCO(SSS),∴∠B=∠C.【错解分析】OA=OD,OB=OC属于自造条件,由AC=BD无法推出OA=OD,OB=OC.3.对SAS,AAS中的“夹角”“对应边”的内涵理解不清,导致用错.例3 如图,AE=AC,AB=AD,∠EAB=∠CAD.求证:∠B=∠D.【常见错解】在△ABC和△ADE中,AC=AE,∠CAD=∠EAB,AB=AD,∴△ABC≌△ADE(SAS),∴∠B=∠D.【错解分析】没有认真地结合图形来分析条件,对应角认识不明确,错把∠EAB和∠CAD 看成△ABC和△ADE的内角.三、典例精析,复习新知例4 已知,如图,AB=AC,∠BAC=∠DAE,∠ABD=∠ACE.试证明BD=CE.【分析】欲证BD=CE,结合已知条件可知,只需证明BD,CE所在的△ABD和△ACE全等.【归纳】证明两条线段相等,可通过两个三角形全等得到,首先结合图形和已知条件观察它们所在的三角形是否全等,再予以证明.2.证明两角相等.例5 如图,AB=DC,∠A=∠D.求证:∠ABC=∠DCB【分析】由AB=DC,∠A=∠D,想到如果取AD的中点N,连NB,NC,再由“SAS”得△ABN≌△D,所以BN=,∠ABN=∠∠NBC=∠NCB,再取BC中点M,连MN,则由“SSS”证得△NBM≌△NCM,推得∠NBC=∠NCB,从而使问题得证.【归纳】所证的两角没有分布在两个三角形中,所以不能直接利用两个三角形全等的性质来证明,但取AD的中点N,连BN,,把四边形分解成三角形,再用三角形知识来解题,体现了转化的思想.例6 如图,△ABC中,AD平分∠BAC交BC于点D,过D点作DE⊥AB于E,DF⊥AC于F.连EF交AD于G.求证:EF⊥AD.【分析】由已知条件不难看出△ADE≌△ADF,进一步易证△AGE≌△AGF或△DGE≌△DGF,从而得到∠AGE与∠AGF相等且互补,故EF⊥AD.【证明】∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴△ADE和Rt△ADF中,AD=ADDE=DF∴Rt△ADE≌Rt△ADF(HL)∴AE=AF在△AGE和△AGF中AE=AF,∠EAG=∠FAG,AG=AG.∴△AGE≌△AGF(SAS),∴∠AGE=∠AGF.∵∠AGE+∠AGF=180°,∴∠AGE=12×180°=90°,即EF⊥AD.4.证明两线平行例7 如图,△ABC中,AD平分∠BAC,E,F分别在BD,AD上,且DE=CD,EF=AC.求证:EF∥AB.【分析】要证EF∥AB,必须∠1=∠3,而∠1=∠2,故应有∠2=∠3,根据条件DE=CD,EF=AC,通过辅助线构造两个三角形全等来证明.【证明】分别作CM⊥AD于M,EN⊥AD交AD的延长线于N,在△EDN和△CDM中,∠END=∠CMD=90°,∠NDE=∠MDC(对顶角相等),DE=CD.∴△EDN≌△CDM(AAS),∴EN=CM.在Rt△FEN和Rt△ACM中,EF=AC,EN=CM.∴Rt△FEN≌Rt△ACM(HL),∴∠2=∠3.∵∠1=∠2,∴∠1=∠3,∴EF∥AB.例8 如图所示,CE,CB分别是△ABC,△ADC的中线,且AB=AC.求证:CD=2CE.【分析】为了证明CD=2CE,考虑CE是△ABC底边AB上的中线,故把CE延长到F,使CF=2CE,把原来证CD=2CE转化为证明CD=CF,如此把线段“倍半”的数量关系转化为证两条线段的相等关系.【归纳】三角形中有中线时,常加倍延长中线,构造全等三角形,使边\,角条件转换,将分散的边、角集中在一些图形中,使问题易于解决.【教学说明】在讲解例题的过程中,老师引导学生回顾三角形全等和角平分线性质的知识.1.布置作业:从教材“复习题12”中选取.2.完成练习册中本课时的练习.本课时教学应重点突出:1.利用知识回顾与错例剖析,使学生进一步巩固和深化对所学知识的理解,建立起清晰的知识框架,形成严谨的思维习惯.2.强调转化思想的认识与应用,证明线段与角的相等可以转化成证明三角形全等去解决,实际生活中的测量问题也可以利用全等三角形知识解决.利用这一系列问题帮助学生领悟和掌握这种数学思想方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一:全等三角形
1、全等三角形的定义
能够完全重合的两个图形叫做_______。

能够完全重合的两个三角形叫做全等三角形。

要点诠释:
(1)把两个全等的三角形重合到一起,重合的顶点叫做________,重合的边叫做_________,重合的角叫做_________。

(2)记两个三角形全等时,通常把表示对应顶点的字母写在______的位置上。

例如,△ABC 与△DEF全等,点A与点D,点B与点E,点C与点F是对应顶点,记作△ABC≌△DEF,而不写作△ABC≌△EFD等其他形式。

2、全等三角形的性质
全等三角形的__________、_______________.
要点诠释:找对应边、对应角通常有下面两种方法:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

3、三角形全等的判定
(1)三边对应相等的两个三角形全等(可以简写成)。

(2)两边和它们的夹角对应相等的两个三角形全等(可以简写成)。

(3)两角和它们的夹边对应相等的两个三角形全等(可以简写成)。

(4)两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成)。

(5)在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成)。

要点诠释:
(1)没有“SSA”、“AAA”这样的判定定理。

(2)“HL”定理是直角三角形,对于一般三角形不成立。

(3)判定两个直角三角形全等时,这两个直角三角形已经有一对直角相等的条件,只需找另两个条件即可,而这两个条件中必须有一边对应相等。

能够完全的两个图形叫做全等形.
知识点二:角平分线的性质
(1)角的平分线的性质定理角的平分线上的点到这个。

(2)角的平分线的判定定理角的内部到的点在角的平分线上。

要点诠释:
三角形的三条角平分线交于一点。

注意在证明中用到这两个定理,如何把文字叙述转化成数学符号:例:如图
怎么运用角的平分线的性质定理:
∵OC是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E,
∴PD=PE
怎么运用角的平分线的判定定理:
∵PD⊥OA于D,PE⊥OB于E,PD=PE
∴点P在∠AOB的平分线上
类型一:全等三角形的性质
例1.如图,△ABC≌DEF,DF和AC,FE和CB是对应边。

若∠A=100°,∠F=47°,则∠DEF等于()
A. 100°
B. 53°
C.47°
D. 33°
类型二:全等三角形的证明
例2.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
类型三:角平分线的性质与判定
例3.已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .
【变式】如图,直线123,,l l l 表示三条互相交叉的公路,现要建一个塔台,若要求它到 三条公路的距离相等,试问:
可选择的地点有几处?
你能画出塔台的位置吗?
【变式2】如图,已知∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC ,求证:∠PCB+∠BAP=180º
类型四:利用三角形全等知识解决实际问题
例4.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=•BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC •≌△ABC ,•得到ED=AB ,21N P F C
B A
因此测得ED的长就是AB的长(如图),判定△EDC≌△ABC的理由是()
A.边角边公理B.角边角公理;C.边边边公理D.斜边直角边公理
【变式】如图,工人师傅要检查模型中的∠A和∠B是否相等,但他手边没有量角器,只有一把刻度尺,请你设计一个方案来说明∠A和∠B是否相等。

1、总结寻找对应边、角的规律:
(1)有公共边的,公共边一定是对应边;
(2)有公共角的,公共角一定是对应角;
(3)有对顶角的,对顶角一定是对应角;
(4)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等。

2、证明三角形全等的一般步骤及注意的问题
(1)先指明在哪两个三角形中研究问题;
(2)按边、角的顺序列出全等的三个条件,并用大括号括起来;
(3)写出结论,让两个全等三角形中表示对应顶点的字母顺序对齐;
(4)在证明中每一步推理都要有根据,不能想当然。

3、常用添加辅助线的方法
(1)作公共边构造全等三角形;
(2)有中点倍长构造全等三角形(中线法);
(3)有角平分线,向角两边引垂线或通过翻折构造全等三角形(截长补短);
(4)利用平移、轴对称、旋转变换构造全等。

相关文档
最新文档