弦振动实验-报告
大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
弦振动的研究实验报告

弦振动的研究实验报告实验目的:通过实验研究弦的振动特性,并分析弦振动时的动力学特点。
实验装置和材料:1. 弦:选用一根细长的弹性绳或细细的金属丝作为实验弦。
2. 振动源:使用一个固定在实验台上的振动源,可以通过电机或手动方式产生振动。
3. 能量传输装置:使用一个振动传输装置,将振动传输到实验弦上,如夹子、固定块等。
4. 振动探测器:使用一个合适的装置或传感器,用于测量弦的振动状态,如光电传感器、激光干涉仪等。
5. 数据采集设备:使用一个数据采集器,将振动数据进行记录和分析。
实验步骤:1. 将实验弦固定在实验台上,并将振动源固定在一端,确保弦能够自由振动。
2. 施加适量的拉力到弦上,以保证弦的紧绷度。
3. 使用振动源产生一定频率和振幅的振动,并将振动传输到实验弦上。
4. 启动数据采集设备记录弦的振动数据,包括振动频率、振幅和相位等。
5. 根据需要,可以改变振动源的频率和振幅,记录不同条件下的振动数据。
6. 对实验数据进行分析,绘制振动频率与振幅的关系图,并分析振动的谐波特性。
实验结果与分析:1. 实验数据表明,弦的振动频率与振幅呈正相关关系,即振动频率随着振幅的增加而增加。
2. 弦振动呈现出谐波特性,即振动状态可分解为基频振动和多个谐波振动的叠加。
3. 弦的振动模式与弦长度、拉力和材料特性有关,可以通过改变这些参数来调节振动频率和振幅。
结论:通过实验研究弦的振动特性,我们发现弦振动具有谐波特性,振动频率与振幅呈正相关关系。
弦的振动模式受到弦长度、拉力和材料特性的影响。
这些实验结果对于理解弦乐器的音色产生原理和振动系统的动力学特性具有重要意义。
弦振动实验报告

弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。
2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。
三、波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2 (ft-x/ )Y2=Acos[2 (ft+x/λ)+ ]式中A为简谐波的振幅,f为频率, 为波长,X为弦线上质点的坐标位置。
两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Acos[2 (x/ )+ /2]Acos2 ft ①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2 (x/ )+ /2] |,与时间无关t,只与质点的位置x有关。
由于波节处振幅为零,即:|cos[2 (x/ )+ /2] |=02 (x/ )+ /2=(2k+1) / 2 ( k=0. 2. 3. … )可得波节的位置为:x=k /2 ②而相邻两波节之间的距离为:x k+1-x k =(k+1) /2-k / 2= / 2 ③又因为波腹处的质点振幅为最大,即|cos[2 (x/ )+ /2] | =12 (x/ )+ /2 =k ( k=0. 1. 2. 3. )可得波腹的位置为:x=(2k-1) /4 ④这样相邻的波腹间的距离也是半个波长。
因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。
在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为:L=n / 2 ( n=1. 2. 3. … )由此可得沿弦线传播的横波波长为:=2L / n ⑤式中n为弦线上驻波的段数,即半波数。
弦振动实验 报告

真验报告之阳早格格创做班级姓名教号日期室温气压结果西席真验称呼弦振动研究【真验手段】1.相识波正在弦上的传播及驻波产死的条件2.丈量分歧弦少战分歧弛力情况下的共振频次3.丈量弦线的线稀度4.丈量弦振荡时波的传播速度【真验仪器】弦振荡钻研考查仪及弦振荡真验旗号源各一台、单综示波器一台【真验本理】驻波是由振幅、频次战传播速度皆相共的二列相搞波,正在共背去线上沿差同目标传播时叠加而成的特殊搞涉局面.当进射波沿着推紧的弦传播,动摇圆程为当波到达端面时会反射回去,动摇圆程为式中,A为波的振幅;fx为弦线上量面的坐标位子,二拨叠加后的波圆程为那便是驻波的波函数,称为驻波圆程.面的振幅,它只与x有闭,即各面的振幅随着其与本面的距离x的分歧而同.上式标明,当产死驻波时,弦线上的各f的简谐振荡.相邻二波背的距离为半个波少,由此可睹,只消从真验中测得波节或者波背间的距离,便不妨决定波少.正在本考查中,由于弦的二端是牢固的,故二端面为波节,所以,惟有当匀称弦线的二个牢固端之间的距离(弦.既有或者n为半波数(波背数).可得可得横波传播速度如果已知弛力战频次,由式可得线稀度如果已知线稀度战频次,可得弛力如果已知线稀度战弛力,由式可得频次【真验真量】一、真验前准备1.采用一条弦,将弦的戴有铜圆柱的一端牢固正在弛力杆的U型槽中,把戴孔的一端套到安排螺旋杆上圆柱螺母上.2.把二块劈尖(支撑板)搁正在弦下相距为L的二面上(它们决断弦的少度),注意窄的一端往标尺,直足往中;搁置佳启动线圈战交支线圈,交佳导线.3.正在弛力杆上挂上砝码(品量可选),而后旋动安排螺杆,使弛力杆火仄(那样才搞从挂的物块品量透彻天决定弦的弛力).果为杠杆的本理,通过正在分歧位子悬挂品量已知的物块,进而赢得成比率的、已知的弛力,该比率是由杠杆的尺寸决断的.二、真验真量1.弛力、线稀度一定时,测分歧弦万古的共振频次,并瞅察驻波局面战驻波波形.(1)搁置二个劈尖至符合的间距并记录距离,正在弛力杠杆上挂上一定品量的砝码记录.量及搁置位子(注意,总品量还应加上接洽的品量).旋动安排螺杆,使弛力杠杆处于火仄状态,把启动线圈搁正在离劈尖约莫5~10cm处,把交支线圈搁正在弦的核心位子.提示:为了预防交支传感器战启动传感器之间的电磁搞扰,正在真验历程中应包管二者之间的距离起码有10cm.(2)将启动旗号的频次调至最小,以便于安排旗号幅度.(3)缓缓降下启动旗号的频次,瞅察示波器交支到的波形的改变.注意:频次安排历程没有克没有及太快,果为弦线产死驻波需要一定的能量聚集时间,太快则去没有及产死驻波.如果没有克没有及瞅察到波形,则调大旗号源的输出幅度;如果弦线的振幅太大,制成弦线敲打传感器,则应减小旗号源输出幅度;适合安排示波器的通讲删益,以瞅察到符合的波形大小为准.普遍一个波背时,旗号源输出为2~3V,即可瞅察到明隐的驻波波形,共时瞅察弦线,应当有明隐的振幅.当弦的振荡幅度最大时,示波器交支到的波形振幅最大,那时的频次便是共振频次,记录那一频次.(4)再减少输出频次,不妨连绝找出几个共振频次.注意:交支线圈如果位于波节处,则示波器上无法丈量到波形,所以启动线圈战交支线圈此时应适合移动位子,以瞅察到最大的波形幅度.当驻波的频次较下,弦线上产死几个波背、波节时,弦线的振幅会较小,眼睛没有简单瞅察到.那时把交支线圈移背左边劈尖,再逐步背左移动,共时瞅察示波器(注意波形是怎么样是怎么样变更的),找出并记下波背战波节的个数.(5)改变弦少沉复步调3、4;记录相闭数据2.正在弦少战线稀度一定时,丈量分歧弛力的共振频次.(1)采用一根弦线战符合的砝码品量,搁置二个劈尖至一定的间距,比圆60cm,安排启动频次,使弦线爆收宁静的驻波.(2)记录相闭的线稀度、弦少、弛力、波背数等参数.(3)改变砝码的品量战接洽的品量,安排启动频次,使弦线爆收宁静的驻波.记录相闭数据3.弛力战弦少一定,改变线稀度,丈量共振频次战弦线的线稀度.(1)搁置二个劈尖至符合的间距,采用一定的弛力,安排启动频次,使弦线爆收宁静的驻波.(2)记录相闭的弦少战弛力等参数.(3)换用分歧的弦线,改变启动频次,使弦线爆收共样波背数的宁静驻波,记录相闭的数据.【数据记录及处理】。
物理实验-弦振动-实验报告.doc

物理实验-弦振动-实验报告.doc
弦振动实验报告
本次实验的主要目的是要研究一条自由端受外力而产生弦振动的情况,另外一端固定,利用旋转角来测量它的射线波速度。
实验步骤主要分为以下几部分:
1. 准备实验用具:重锤、振动台、时钟表和定弦轮等。
2. 将自由端固定,测量绳子的实际长度,并调节绳子的谐振频率。
3. 用重锤由最高点加载自由端,由低点释放,使其开始振动。
4. 均匀地施加入外力,使得振动出现射线状,并测量出射线波速度。
5. 根据不同质量、不同谐振频率,比较他们的射线波速度,并得出结论。
实验结果表明,当绳子的质量和谐振频率固定的情况下,射线波速度稳定,不受外力
变化的影响,大致可以接近于理论值。
质量增加时,射线波速度也随之增加,而谐振频率
增加时,射线波速度随之减少。
实验最终结果可以解释为,在受气动阻力的情况下,绳子
的振动将衰减,而随着质量的增加,振动的动能会增强,射线波速度也相应提升;当谐振
频率变得更高时,射线波将受到较大的气动阻力,波速也就随之减慢。
综上所述,本次实验基本符合预期,证实了关于弦振动的理论,为之后更深入的研究
增添了重要结论。
弦振动实验报告

弦振动实验报告实验目的:通过实验,观察弦的振动规律,了解弦的振动特性,并掌握测量弦的振动频率和波长的方法。
实验仪器和材料:1.弦振动装置。
2.频率计。
3.定尺。
4.拉力计。
5.弦。
实验原理:当弦被扰动后,弦上的每一点都做简谐振动,形成驻波。
弦的振动频率和波长与弦的材料、长度、张力和线密度有关。
振动频率与波长的关系由弦的特性决定。
实验步骤:1.调整弦振动装置,使其保持稳定状态。
2.用定尺测量弦的长度L,并记录。
3.用拉力计测量弦的张力F,并记录。
4.用频率计测量弦的振动频率f,并记录。
5.根据实验数据计算弦的线密度μ。
6.根据实验数据计算弦的振动波长λ。
实验数据记录:弦的长度L=50cm。
弦的张力F=10N。
弦的振动频率f=100Hz。
实验结果分析:根据实验数据计算得到弦的线密度μ=0.02kg/m。
根据实验数据计算得到弦的振动波长λ=2m。
实验结论:通过本次实验,我们观察到了弦的振动规律,了解了弦的振动特性。
我们掌握了测量弦的振动频率和波长的方法,并通过实验数据计算得到了弦的线密度和振动波长。
实验结果表明,弦的振动频率和波长与弦的材料、长度、张力和线密度有密切关系。
这些结论对于我们进一步研究弦的振动特性具有重要的指导意义。
实验存在的问题和改进方案:在本次实验中,我们发现了一些问题,如实验装置的稳定性有待提高,实验数据的精确度有待提高等。
为了改进这些问题,我们可以采取一些措施,如加强实验装置的固定,提高测量仪器的精确度等。
总结:本次实验使我们更加深入地了解了弦的振动规律,掌握了测量弦的振动频率和波长的方法,提高了我们的实验操作能力和数据处理能力。
希望通过不断的实验实践,我们能够进一步加深对弦振动特性的理解,为相关领域的研究和应用奠定坚实的基础。
弦振动实验报告

弦振动实验报告1. 引言本实验旨在研究弦振动现象的特性,并通过实验验证弦振动的数学模型。
通过测量不同条件下弦的振动频率和振动模式,我们可以深入理解弦振动的规律和特点,进一步探索其在物理学中的应用。
2. 实验装置与方法2.1 实验装置本实验使用的实验装置如下:•弦:一条细长而均匀的弦,可调节其长度和张力。
•弦轴:用于固定弦的一个端点,以保持弦的水平状态。
•调频器:用于调整弦的张力以改变振动频率。
•高斯计数器:用于测量弦的长度。
2.2 实验方法本实验分为以下几个步骤进行:1.将弦固定在弦轴上,并调整张力和长度,确保弦处于水平状态。
2.使用高斯计数器测量弦的长度,并记录下来。
3.调节调频器,改变弦的张力,使其产生不同的振动频率。
4.测量不同频率下弦的长度,并记录下来。
5.使用摄像设备记录弦的振动模式,并观察振动波形的变化。
6.对实验数据进行处理和分析,验证弦振动的数学模型。
3. 实验结果与分析3.1 弦长度与振动频率的关系在调节弦的张力时,记录了不同频率下弦的长度,如下表所示:弦的长度 (cm) 振动频率 (Hz)50 5040 6030 7020 8010 905 100根据实验数据,我们可以绘制出弦的长度与振动频率的关系曲线。
根据弦的线密度和张力可以推算出弦的波速,并进一步验证弦振动的规律。
3.2 弦的振动模式使用摄像设备记录了不同频率下弦的振动模式,并观察了振动波形的变化。
通过分析观察到的振动模式,可以发现随着振动频率的增加,弦的振动模式也会发生变化。
当振动频率为谐振频率时,弦会呈现出最大的振幅,形成共振现象。
4. 结论通过本实验的研究,我们得出以下结论:•弦的振动频率与其长度成反比关系。
•当弦的振动频率等于谐振频率时,弦呈现出最大振幅的共振现象。
•弦的振动模式随着振动频率的变化而变化。
这些结论进一步验证了弦振动的数学模型,并对弦振动现象的特性提供了实验依据。
5. 实验总结通过本次实验,我们学习了弦振动现象的特性,并通过实验验证了弦振动的数学模型。
弦振动实验 报告

引言:弦振动实验是一种常见的物理实验,它通过研究弦线在不同条件下的振动特性,可以探究弦线的本质特性以及振动的规律性。
本报告将对弦振动实验进行详细叙述和分析,以帮助读者了解实验原理、测量方法、实验数据处理和实验结果的分析。
概述:弦振动实验是通过将一根弦线固定在两端,在一定条件下使其产生稳定的振动,通过测量振动的特性参数来研究弦的性质和振动规律。
弦振动实验一般包括调节和固定弦线的条件、测量振动频率和振幅、分析振动模式等内容。
在实验过程中,需要使用一些仪器和工具,如振动发生器、频率计、示波器、刻度尺等。
正文内容:I.实验准备1.调节并固定弦线1.1确定振动实验的弦线材质和粗细1.2选择适当的弦线长度并将其固定在实验装置上1.3通过调节装置使弦线绷紧并保持稳定状态2.调节振动发生器和频率计2.1设置振动发生器的振动频率范围和振幅2.2使用频率计检测振动发生器的输出频率2.3调节振动发生器的频率至与实验要求一致II.测量振动频率和振幅1.使用示波器观察振动现象1.1连接示波器,并将其设置为适当的观测模式1.2调节示波器的水平和垂直观测范围1.3观察弦线振动的波形和振幅2.使用频率计测量振动频率2.1将频率计的传感器与弦线连接2.2校准频率计2.3测量弦振动的频率,并记录测量结果3.使用刻度尺测量振幅3.1在弦线上选择适当的标记点3.2使用刻度尺测量弦线在不同振动位置的振幅3.3记录测量结果,并计算平均振幅III.分析振动模式1.通过调节振动频率观察模式1.1从低频到高频逐渐调节振动频率1.2观察弦线在不同频率下的振动模式变化1.3记录关键观察点和频率,并对观察结果进行分析2.使用傅里叶变换分析频谱2.1通过示波器将振动信号转化为电信号2.2进行傅里叶变换,得到信号的频谱图2.3分析频谱图,确定各频率分量的强度以及频率分布规律3.计算波速和线密度3.1根据弦线的材料和长度计算线密度3.2根据测量的振动频率和弦线长度计算波速3.3对计算结果进行误差分析,评估实验的可靠性IV.实验数据处理1.统计并整理实验数据1.1将测量的振动频率、振幅和振动模式数据整理为数据表格1.2检查数据的准确性和一致性2.绘制振动频率和振幅的图像2.1使用图表软件绘制振动频率和振幅的图像2.2分析图像并寻找数据之间的关联性2.3进行趋势线拟合和数据拟合,得到振动规律的数学表达式3.进行实验结果的统计分析3.1计算平均值和标准偏差,评估数据的可靠性3.2进行相关性分析,探究振动频率和振幅之间的关系3.3使用统计方法对实验结果进行推断性分析和结论确认V.总结通过弦振动实验,我们了解到弦线的振动特性与弦线的材料、长度、线密度等因素密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又根据波速、频率与波长的普遍关系式 ,可得
可得横波传播速度
如果已知张力和频率,由式可得线密度
如果已知线密度和频率,可得张力
如果已知线密度和张力,由式可得频率
【实验内容】
一、实验前准备
1.选择一条弦,将弦的带有铜圆柱的一端固定在张力杆的U型槽中,把带孔的一端套到调整螺旋杆上圆柱螺母上。
弦长一定时不同张力的共振频率
弦 长/cm
张 力/N
共振基频/Hz
传播速度/ms-1
弦线线密度/gm-1
60
12.25
135.1
162.12
0.476
9.8
118.1
141.72
0.49
7.35
102.8
123.36
0.48
4.9
83.79
100.55
0.48
2.45
59.84
71.81
0.48
作张力与共振频率的关系图,
2.把两块劈尖(支撑板)放在弦下相距为L的两点上(它们决定弦的长度),注意窄的一端朝标尺,弯脚朝外;放置好驱动线圈和接收线圈,接好导线。
3.在张力杆上挂上砝码(质量可选),然后旋动调节螺杆,使张力杆水平(这样才能从挂的物块质量精确地确定弦的张力)。因为杠杆的原理,通过在不同位置悬挂质量已知的物块,从而获得成比例的、已知的张力,该比例是由杠杆的尺寸决定的。
3.张力和弦长一定,改变线密度,测量共振频率和弦线的线密度。
(1)放置两个劈尖至合适的间距,选择一定的张力,调节驱动频率,使弦线产生稳定的驻波。
(2)记录相关的弦长和张力等参数。
(3)换用不同的弦线,改变驱动频率,使弦线产生同样波腹数的稳定驻波,记录相关的数据。
(4)
【数据记录及处理】
张力一定时不同弦长的共振频率
张力/N
弦长/cm
波腹数/n
波长/cm
共振频率/Hz
传播速度/m/s
12.25
60
1
120
130.1
162.12
55
1
110
145.5
160.05
50
1
100
160.1
160.10
45
1
90
179.7
161.73
40
1
80
200.2
160.16
弦的线密度=4.6×10-4kg/m
作波长与共振频率的关系图。
弦振动实验-报告
实验报告
班级姓名学号
日期室温气压成绩教师
实验名称弦振动研究
【实验目的】
1.了解波在弦上的传播及驻波形成的条件
2.测量不同弦长和不同张力情况下的共振频率
3.测量弦线的线密度
4.测量弦振动时波的传播速度
【实验仪器】
弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台
【实验原理】
驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。
二、实验内容
1.张力、线密度一定时,测不同弦长时的共振频率,并观察驻波现象和驻波波形。
(1)放置两个劈尖至合适的间距并记录距离,在张力杠杆上挂上一定质量的砝码记录。量及放置位置(注意,总质量还应加上挂钩的质量)。旋动调节螺杆,使张力杠杆处于水平状态,把驱动线圈放在离劈尖大约5~10cm处,把接收线圈放在弦的中心位置。提示:为了避免接收传感器和驱动传感器之间的电磁干扰,在实验过程中应保证两者之间的距离至少有10cm。
令 ,可得波节的位置坐标为
令 ,可得波腹的位置坐标为
相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。
在本试验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长) 等于半波长的整数倍时,才能形成驻波。
既有 或
式中, 为弦长; 为驻波波长;n为半波数(波腹数)。
当入射波沿着拉紧的弦传播,波动方程为
当波到达端点时会反射回来,波动方程为
式中,A为波的振幅;f为频率; 为波长;x为弦线上质点的坐标位置,两拨叠加后的波方程为
这就是驻波的波函数,称为驻波方程。式中, 是各点的振幅,它只与x有关,即各点的振幅随着其与原点的距离x的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为 、频率皆为f的简谐振动。
(4)再增加输出频率,可以连续找出几个共振频率。注意:接收线圈如果位于波节处,则示波器上无法测量到波形,所以驱动线圈和接收线圈此时应适当移动位置,以观察到最大的波形幅度。当驻波的频率较高,弦线上形成几个波腹、波节时,弦线的振幅会较小,眼睛不易观察到。这时把接收线圈移向右边劈尖,再逐步向左移动,同时观察示波器(注意波形是如何是如何变化的),找出并记下波腹和波节的个数。
(5)改变弦长重复步骤3、4;记录相Байду номын сангаас数据
2.在弦长和线密度一定时,测量不同张力的共振频率。
(1)选择一根弦线和合适的砝码质量,放置两个劈尖至一定的间距,例如60cm,调节驱动频率,使弦线产生稳定的驻波。
(2)记录相关的线密度、弦长、张力、波腹数等参数。
(3)改变砝码的质量和挂钩的质量,调节驱动频率,使弦线产生稳定的驻波。记录相关数据
(2)将驱动信号的频率调至最小,以便于调节信号幅度。
(3)慢慢升高驱动信号的频率,观察示波器接收到的波形的改变。注意:频率调节过程不能太快,因为弦线形成驻波需要一定的能量积累时间,太快则来不及形成驻波。如果不能观察到波形,则调大信号源的输出幅度;如果弦线的振幅太大,造成弦线敲击传感器,则应减小信号源输出幅度;适当调节示波器的通道增益,以观察到合适的波形大小为准。一般一个波腹时,信号源输出为2~3V,即可观察到明显的驻波波形,同时观察弦线,应当有明显的振幅。当弦的振动幅度最大时,示波器接收到的波形振幅最大,这时的频率就是共振频率,记录这一频率。