函数的表示法(一)

合集下载

函数的表示法(一)

函数的表示法(一)

1.2.2 函数的表示方法(一)一 、学习目标1.掌握函数的三种主要表示方法2.能选择恰当的方法表示具体问题中的函数关系3.会画简单函数的图像学习重难点:图像法、列表法、解析法表示函数二 、 学习过程表示函数的方法,常用的有解析法、列表法和图象法三种. ⑴解析法:就是用 表示两个 之间的例如,s=602t ,A=π2r ,S=2rl π,y=a 2x +bx+c(a ≠0),y=2-x (x ≥2)等等都是用解析式表示函数关系的.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.⑵列表法:就是列出表格来表示两个变量之间的 .例如,某班学生的身高 单位:厘米数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表优点:不需要计算就可以直接看出与自变量的值相对应的函数值.⑶图象法:就是用 表示两个变量之间的 关系.例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.三、例题讲解例1某种笔记本每个5元,买 x ∈{1,2,3,4}个笔记本的钱数记为y (元),试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像例2 作出函数y=∣x ∣的图象例3 已知f (x )= 22x x -,求f (1x -)的解析式三 、当堂检测1、画出函数ψ=∣ξ-2∣的图象2、已知f (x )= 21x -, 求f (2x )的解析式3、已知f (x+1)= 223x x ++,求f (x )的解析式。

函数的表示法知识点总结

函数的表示法知识点总结

(B)2 或 5 2
(D)2 或 2 或 5 2
习题 3.
已知
f
(
x)

2x(x x 1(x
0) 0)
,若
f (a)
f (1) 0 ,则实数 a 的值等于________.
3.求分段函数自变量的取值范围
在分段函数的前提下,求某条件下自变量的取值范围的方法是:先假设自变量的值在分段函
1 1
,

f 1 a f 1 a , 则 a 的 值 为
_________. 解:当1 a 1,即 a 0 时,1 a 1
∴ f 1 a 21 a a 2 a , f 1 a 1 a 2a 1 3a
几种常见的分段函数
1.取整函数 y x( x表示不大于 x 的最大整数).
其图象如图(1)所示.
y
3 2 1
–3 –2 –1 O –1
1 2 3x
–2
–3
值 值 1值 值 值 值 值 值 值 值
y
fx = x + 2
3
2
1
–5 –4 –3 –2 –1 O –1
12x
值 值 2值 值 值 值 值 值 值 值 值
数的各段上,然后求出在相应各段定义域上自变量的取值范围,再求它们的并集即可.
例 3.
已知函数
f
(
x)

3x 2 2x 2
2x(x 1) 3(x 1)
,求使
f (x) 2 成立的 x 的取值范围.
解:由题意可得:
x 1
x 1
3x 2

2x

或 2

函数的表示方法_1

函数的表示方法_1

0
1
4
2
3
12
4
5
20
映射f:A→B,可理解为以下4点:
1、A中每个元素在B中必有唯一的象 2、对A中不同的元素,在B中可以有相同的象 3、允许B中元素没有原象 4、A中元素与B中元素的对应关系,可以 是:一对一,多对一,但不能一对多
例7 以下给出的对应是不是从集合A到B的映射?
(1)集合A={P|P是数轴上的点},集合B=R,对应关 系f:数轴上的点与它所代表的实数对应;
一般地,我们有:
设A、B是两个非空的数集,如果按照某种 确定的对应关系f,使对于集合A中的任意一个数 x,在集合B中都有唯一确定的数y和它对应,那 么称f:A→B为从集合A到集合B的一个函数
(function),记作:y=f(x), x A
映射
设A,B是两个非空的集合,如果按某一个 确定的对应关系f,使对于集合A中的任意一 个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A→B为从集合A到集 合B的一个映射。
(2)集合A={x|x是新华中学的班级},集合B={x|x 是新华中学的学生},对应关系f:每一个班级都对 应班里的学生;
课后作业: 练习本B
由此可知,映射是函数的推广,函 数是一种特殊的映射。
A 求 正弦 B
1
30 0
2
45 02 2ຫໍສະໝຸດ 60 032
90 0
1
A 求 平方 B
3
9
-3
2
4
-2
1
1
-1
A 开 平方 B
3
9
-3
4
2
-2
1
1 -1
A 乘 以 2B

《函数的表示法》(第1课时)教学设计

《函数的表示法》(第1课时)教学设计

函数的表示法(第1课时)教学设计一、内容和内容解析1.内容函数的表示法.2.内容解析在“对应关系”说的基础上建立了函数概念之后,随即而来的任务就是研究函数本身.而函数的呈现形式就是“函数的表示”问题.学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所必须的,而且是加深理解函数概念,以及向学生渗透数形结合方法的过程.函数的表示法是在已有函数概念的基础上进行学习的,是对函数知识的深化.这部分内容也是函数内容的重要基础.本节的主要内容是在初中已经接触过函数的三种表示法——解析法、列表法和图象法的基础上,明确三种表示法各自的优点及适用对象;通过函数y=|x|引出分段函数的概念,并通过具体实例(例6)熟悉分段函数概念,掌握研究分段函数的一般思想和方法.基于以上分析,确定本节课的教学重点:使学生面对数学问题时,会根据不同的需要选择恰当的方法(解析法、列表法、图象法)表示函数;掌握分段函数概念.二、目标和目标解析1.目标(1)了解解析法、列表法、图象法各自的优点及适用对象;使学生面对数学问题时,会根据不同的需要选择恰当的方法表示函数.(2)了解分段函数的概念,明确分段函数是一个函数,掌握研究分段函数的一般思想和方法.2.目标解析达成上述目标的标志是:(1)学生通过教科书第67页例4,以及之前的学习经验,能自主总结出解析法、列表法、图象法各自的特点;能举出具体实例说明三种表示法的适用情况.(2)学生能理解绝对值函数向分段函数的转化过程,通过具体实例体会分段函数是一个函数而不是几个函数.三、教学问题诊断分析学生在初中学习函数概念时,接触过函数的三种表示法:解析法、列表法、图象法,但是对其并没有深入研究.尤其是在高中阶段“对应关系”说意义下重新建立了函数概念的基础上,函数的三种表示法又有怎样的特点呢?这就是本节课第一个教学问题.针对这一问题,教科书引入了一个实际问题,其本质为离散的一次函数模型,此问题三种表示法均适用,进而可直观地比较出三种表示法各自的特点.而后可根据不同表示法各自的适用范围,选择恰当的方法表示函数.三种表示法各自的特点清楚了,那么它们在研究具体函数问题时,是如何起到相应的作用的呢?于是教科书中举出了绝对值函数的例子(例5),从而引出了高中阶段非常重要的、实际问题中广泛应用的一类函数——分段函数.这是本节课第二个教学问题.通过例5、例6的学习,可让学生体会解析法、图象法在处理连续函数问题时的威力,同时也体现出研究函数的一个非常重要思想——数形结合.正所谓“数缺形时少直观,形少数时难入微”,数形结合研究函数是贯穿整个高中的思想方法.四、教学支持条件分析在研究绝对值函数(分段函数,例5)和最大值函数(例6)的过程中,可借助图形计算器、几何画板、Geogebra等技术工具画出函数图象,观察得出结论,体现信息技术在数学教学和学习过程中的辅助探究与检验作用.五、教学过程设计引导语:我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法.解析法,就是用数学表达式表示两个变量之间的对应关系,如3.1.1的问题1,2.列表法,就是列出表格来表示两个变量之间的对应关系,如3.1.1的问题4.图象法,就是用图象表示两个变量之间的对应关系,如3.1.1的问题3.这三种方法是常用的函数表示法.(一)函数的表示法问题1:某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.(1)你能用函数的三种表示法分别表示函数y=f(x)吗?(2)比较函数的三种表示法,它们各自的特点是什么?(3)所有函数都能用解析法表示吗?列表法与图象法呢?请你举出实例加以说明.师生活动:教师给出问题(1)后,让每位学生自己写出函数表达式、列表格、画图象,注意再次强调“研究函数,先看定义域”.之后让同桌互相核对结果,尤其注意函数图象是否为五个离散的点.然后出示问题(2),小组讨论,总结归纳三种表示法各自的优点,最后与教师一起总结出结论(可用PPT展示):出示问题(3),找学生代表回答,例如可回答:不是,3.1.1的问题3、问题4就不能用解析法表示;3.1.1的问题1不能用列表法表示;3.1.1的问题4不能用图象法表示.答案均可从教科书中找到,如果学生理解了3.1.1的知识,回答此问题并不困难.设计意图:问题(1)是让学生回忆并熟悉三种表示法的具体呈现过程,并再次强调定义域的决定作用;问题(2)是为了让学生总结归纳三种表示法各自的优点,明确特征,方可合理运用;问题(3)是突出三种方法各自的局限性,从而在处理实际问题挑选方法时合理回避不需要的表示法.问题2:(教科书第69页练习1)如图,把直截面半径为25 cm的圆形木头锯成矩形木料,如果矩形的一边长为x(单位:cm),面积为y(单位:cm2),你能把y表示为x的函数吗?师生活动:学生阅读题目后,自主从三种表示法中选择恰当可行的方法解决此问题. 之后教师可利用多媒体手段将答案进行呈现,与其他同学一起点评结果.设计意图:考察学生对三种表示法的特点的理解与把握,以及在实际问题中选择恰当的表示法解决问题的能力.(二)分段函数问题3:(1)你了解函数y=|x|吗?(2)你会画函数y=|x|的图象吗?师生活动:教师出示问题(1),先让学生独立思考,之后可引导学生对不熟悉的绝对值函数y=|x|进行变形,去掉绝对值,转化成熟悉的一次函数,然后规范写法,写成分段函数形式.之后出示问题(2),学生即可很自然地画出相应图象.最后教师引入分段函数概念,强调分段函数是一个函数,而不是几个函数,并介绍其普遍性与应用价值;并总结思路:绝对值函数可转化为分段函数进行研究;对于分段函数的图象,只需分别画出每段的函数图象,并注意端点的开闭即可.教科书中对分段函数给出的是描述性定义,学生只需能判断什么样的函数是分段函数即可,不必纠结于分段函数的确切定义.追问:(教科书第69页练习2)有了问题3的基础,你会画函数y=|x-2|的图象吗?教师让学生自主研究,然后利用多媒体手段将典型作答图象投到屏幕上,叫同学回答解题过程,寻找问题所在,纠正错误,落实正确解题思路.对于中上等水平的班级,可根据时间情况,适当借助图形计算器、几何画板、Geogebra等技术工具,设计参数a,制作动态演示课件,介绍函数y=|x-a|的图象变化情况.设计意图:问题(1)是让学生从解析式入手,转化成熟悉的函数,为问题(2)解决画函数图象问题做铺垫,体现了转化与化归思想;问题(2)则是考查学生对图象法表示函数的掌握程度.追问是对问题3举一反三,考查学生的理解、掌握程度.师生活动:给学生充分画图的时间,有初中的基础,学生基本都可画出图3.1-4,然后对最大值函数M(x)做适当解读:当x每取一个值时,f(x)与g (x)各有唯一一个函数值与之对应,而M(x)对应的则是两个函数值中的较大者,由函数定义可知,M(x)是x的函数.当最大值函数解释清楚后,学生可很自然地对图3.1-4进行处理,得到图3.1-5所示的函数M(x)的图象;利用图象和解方程知识,学生一般可顺利求出M(x)的解析式.追问:你能用其他方法求出M(x)的解析式吗?先小组讨论,然后找有想法的同学分享思路,最终达成共识.设计意图:问题4是训练学生同时研究两个函数的能力,以及对新概念的分析理解能力,感受分段函数的另一种构造方式及其图象和解析式的求法,加深对分段函数的理解与运用.追问是引导学生从不同的角度分析问题,解决问题,进一步加深对分段函数的理解.问题5:(教科书第69页练习3)给定函数f(x)=-x+1, g(x)=(x-a)2,x ∈R(1)你能画出函数f(x),g(x)的图象吗?师生活动:学生自主完成练习,然后找代表分享思路与结果.有了问题4的铺垫,学生对最小值函数的理解应比较到位,解决此问题会相对顺利.设计意图:创设熟悉的情境,提出类似的问题,对学生的知识与解题技能进行再巩固.(三)课堂小结、布置作业教师引导学生回顾本节课的学习内容,并引导学生回答下列问题:(1)函数的三种表示法分别是什么?其各自的特点是什么?(2)什么样的函数称为分段函数?分段函数是几个函数还是一个函数?(3)如何画分段函数的图象?师生活动:教师出示问题后,先由学生思考后再进行全班交流,最后教师再进行总结。

人教版高一年级数学必修课程《函数的表示法》(第一课时)优质教案

人教版高一年级数学必修课程《函数的表示法》(第一课时)优质教案

1.2.2函数的表示法(第一课时)学习目标:1.了解函数的一些基本表示法(列表法、图象法、解析法)2.会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想. 学习重点:函数的三种表示方法学习难点:对函数解析法的理解学习过程:(一)导入新课我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(二)师生互动,新课讲解(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.例1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.例 2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80 赵磊68 65 73 72 75 82 班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀; 张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.例3.将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数关系式,并求定义域和值域,作出函数的图象.分析:解此题的关键是先把实际问题转化成数学问题,即把面积y 表示为x 的函数,用数学的方法解决,然后再回到实际中去. 解:设矩形一边长为x,则另一边长为21(a-2x),则面积y=21(a-2x)x=-x 2+21ax. 又⎩⎨⎧>>0,2x -a 0,x 得0<x<2a ,即定义域为(0,2a).由于y=-(x 4a -)2+161a 2≤161a 2, 如图1-2-2-4所示,结合函数的图象得值域为(0,161a 2].图1-2-2-4例4.已知2f(x)+f(-x)=3x+2,则f(x)=________.分析:由题意得⎩⎨⎧+=++=+2,-3x f(x)2f(-x)2,3x f(-x)2f(x)把f(x)和f(-x)看成未知数,解方程即得. (三)课堂练习1.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图1-2-2-5所示,那么水瓶的形状是( )图1-2-2-5 图1-2-2-6答案:B2.2007宁夏银川一模,理14已知f(x x +-11)=2211x x +-,则f(x)=________.分析:可设x x +-11=t,则有x=tt+-11, 所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+.答案:212xx+ 3.已知函数f(x)=273++x x ,写出函数的定义域和值域.(换元法)注意:讨论函数的值域要先考虑函数的定义域,换元后马上写出新元的取值范围 (四)课堂小结:本节课学习了函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数. (五)作业:1.车管站在某个星期日保管的自行车和电动车共有3 500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.(1)若设自行车停放的辆次数为x,总的保管费收入为y 元,试写出y 关于x 的函数关系式;(2)若估计前来停放的3 500辆次自行车中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.2.水池有2个进水口,1个出水口,每个水口进出水的速度如图1-2-2-9甲、乙所示.某天0点到6点,该水池的蓄水量如图1-2-2-9丙所示(至少打开一个水口).图1-2-2-9给出以下三个论断: ①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水;其中一定正确的论断是( )A.①B.①②C.①③D.①②③3.求值域y=x4+ x2-2(六)教学反思:。

1.2.2 函数的表示法 第一课时 课件(人教A版必修1)

1.2.2 函数的表示法 第一课时 课件(人教A版必修1)
【例4】 已知f(x2+2)=x4+4x2,求f(x)的解析式. 错解:∵f(x2+2)=x4+4x2=(x2+2)2-4, 设t=x2+2,则f(t)=t2-4,∴f(x)=x2-4. 错因分析:本题错解的原因是忽略了函数f(x)的定 义域.上面的解法,似乎是无懈可击,然而从其结 论,即f(x)=x2-4来看,并未注明f(x)的定义域,那么 按一般理解,就应认为其定义域是全体实数.但是f(x) =x2-4的定义域不是全体实数.
图象法
课前自主学习
课堂讲练互动
课后智能提升
典例剖析
题型一 函数的表示法
【例 1】 已知完成某项任务的时间 t 与参加完成 b 此项任务的人数 x 之间适合关系式 t=ax+ ,当 x= x 2 时,t=100;当 x=14 时,t=28,且参加此项任务 的人数不能超过 20 人.
课前自主学习
课堂讲练互动
1 1 解析:令 =t,则 x= ,且 t≠0, x t 1 t ∴f(t)= = (t+1≠0), 1 t+1 1+ t x ∴f(x)= (x≠0 且 x≠-1). x+1
x 答案: (x≠0 且 x≠-1) x+1
课前自主学习
课堂讲练互动
课后智能提升
4.如图,函数 f(x)的图象是曲 线 OAB,其中点 O,A,B 的坐标 1 分别为(0,0),(1,2),(3,1),则 f f3 的值等于________.
课前自主学习
课堂讲练互动
课后智能提升
正解:∵f(x2+2)=x4+4x2=(x2+2)2-4, 令t=x2+2(t≥2),则f(t)=t2-4(t≥2), ∴f(x)=x2-4(x≥2). 纠错心得:采用换元法求函数的解析式时,一 定要注意换元后的自变量的取值范围.如本题中令t =x2+2后,则t≥2.

高一数学函数的表示方法

高一数学函数的表示方法

函数的表示方法(一)1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法2、图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上.这种由图形表示函数的方法叫做图像法.3、如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法4、讨论分别用a x -,a y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?5、讨论分别用x -,y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?6、讨论分别用ax ,by 分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?7、讨论分别用||x ,|)(|x f 分别替换函数)(x f y =中的x ,)(x f 以后函数的图像会发生哪些变化?8、试作出下列函数的图像: (1)43-+=x x y (2)11-=x y11、若)3()3(x f x f +=-,那么函数)(x f 的图像有何性质? 12、)3(x f y -=与)3(x f +的图像之间有何关系函数的表示方法(二)1.例题:例1.(1)已知一次函数()f x 满足(0)5f =,图象过点(2,1)-,求()f x ;(2)已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ; (3)已知二次函数()F x ,其图象的顶点是(1,2)-,且经过原点,()F x .例2.(1)已知2()43f x x x =-+,(1)f x +; (2)已知2(1)2f x x x +=-,求()f x .例3.函数在闭区间[1,2]-例4.某人开汽车以60/km h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50/km h 的速度返回A 地,把汽车离开A 地的路程()x km 表示为时间()t h (从A 地出发是开始)的函数,并画出函数的图象;再把车速v /km h 表示为时间()t h 的函数,并画出函数的图象.例5.已知一个函数的解析式为22y x x =-,它的值域为[1,3]-,这样的函数有多少个?试写出其中两个函数.2.练习:(1)练习:(1)已知2(3)21f x x =-,求()f x ; (答案:22()19f x x =-)(2)已知2211()1f x x xx-=++,求()f x .(答案:2()3f x x =+)3.小结:1.已知函数类型,求函数解析式,常用待定系数法;它的基本步骤是:设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数; 2.已知()f x 的解析式,求[()]f g x 时,把x 用()g x 代替;已知[()]f g x 的解析式,求()f x 时,常用配凑法或换元法;3.在解决实际问题时,求出函数解析式后,一定要写出定义域。

新教材人教版高中数学必修1 第三章 3.1.2 函数的表示法(一)

新教材人教版高中数学必修1 第三章  3.1.2 函数的表示法(一)
对应关系f : 数轴上的点与它所代表的实数对应; (2)集合A {P | P是平面直角坐标系中的点},
集合B { x, y | x R, y R}
对应关系f : 平面直角坐标系中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆} 对应关系f : 每一个三角形都对应它的内切圆; (4)集合A {x | x是新华中学的班级}, 集合B {x | x是新华中学的学生}, 对应关系f : 每一个班级都对应班里的学生.
f’:平面直角坐标系内的点跟它的坐标对应
f’ : E F
➢映射概念
非空集合、唯一确定的对应关系、任意x、唯一确定的y
1、下列对应中,能构成映射的有(

A
B
a1
b1
a2
b2
a3
b3
a4
b4
(1)
A
B
a1
b1 b2
a2
b3 b4
(4)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(2)
A
B
a1
b1
a2
b2
(5)
(3) f ( x) 2x2 3x 5
[0, )
(, 2) U(2, ) [ 31 , )
8
一、复习回顾
实例1:炮弹距地面的高度h(单位:m)随时间t(单位:s)
变化的规律是 : h=130t-5t2
解析法
实例2:南极上空臭氧空洞的面积从1979~2001年的变
化情况:
图象法
实例3:
列表法
二、基础知识讲解
A
B
a1
b1
a2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
解:(1) 4
2
(2)
2 1 O
12
x
2
4
探究点:求函数解析式
一、函数的解析式: 把两个变量的函数关系,用一个等式来表示,这个等
式就叫函数的解析式,简称解析式. 二、求函数解析式的常用方法有:
1.代入法 2.待定系数法 3.换元法(配凑法)
例1.已知函数f(x)= x2 +1,求f(x+2)的解析式
f (xbk)2213,x,或13,k或 bf1(2.x,) 2x 1.
适合:已知函数的模型(如一次函数、二次函数、反比例
函数等)求函数解析式.
3.换元法及拼凑法
例 3:已知 f( x+1)=x+2 x,求 f(x).
解法一:x+2 x=( x)2+2 x+1-1=( x+1)2-1, ∴f( x+1)=( x+1)2-1( x+1≥1), 即 f(x)=x2-1(x≥1). 解法二:令 t= x+1,则 x=(t-1)2(t≥1),代入原式有 f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1, ∴f(x)=x2-1(x≥1).
(实例1) 炮弹发射 h=130t-5t2 (0≤t≤26) (2)图象法:就是用图象表示两个两个变量之间的对应关 系。(实例2)
南极臭氧层空洞
(3)列表法:
就是列出表格来 表示两个变量之 间的对应关系。 (实例3)
函数的三种表示法的优点和缺点:
解析法
优点
缺点
一是简明、全面地概括了变量间的关系; 二是可以通过解析式求出任意一个自变量 的值所对应的函数值。
x, x≥0, y= -x, x<0.
4 3 2 1
x
O 5 10 15 20 x
2, 0 x ≤ 5,
y

3, 4,
5 x ≤ 10, 10 x ≤15,
5, 15 x ≤ 20.
此函数用列表法表示
里程 x(km)
票价 y(元)
0 x ≤5 5 x ≤10 10 x ≤15 15 x ≤20
况比较稳定而且成绩优秀. 张城同学的数学成绩不稳定,总是在班级平均水平上
下波动,而且波动幅度较大. 赵磊同学的数学学习成绩低于班级平均水平,但他的
成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.
画出下列函数图象: (1) f (x) 2x, x R,且 x 2;
(2) f (x) x 2,(x N,且 x 3);
演练反馈
2.已知抛物线的顶点为(-1,-3),与轴交点为
(0,-5)求抛物线的解析式?
一般式: y=ax2+bx+c 解:设所求的二次函数为 y=a(x+1)2-3
y
两根式: y=a(x-x1)(x-x2)
由条件得: 点( 0,-5 )在抛物线上
a-3=-5, 得a=-2
x o
顶点式: y=a(xh)2+k
3, 4,
0 x ≤ 5, 5 x ≤ 10, 10 x ≤15,
y
5 4 3
5, 15
有些函数在它的定义域中,对于自变量的不同取值范 围,对应关系不同,这种函数通常称为分段函数.
y
y
5
5 4 3 2 1
-3 -2 -1 0 1 2 3
解:f(x+2)=(x+2)2+1=x2+4x+5
变式练习 设f(x)=2x-3,g(x)=x2+2,求f[g(x)]和g[f(x)]的解析式 解:f[g(x)]=2(x2+2)-3=2x2+1
g[f(x)]=(2x-3)2+2=4x2-12x+11
这种求解析式的方法叫做 “直接代入法”。
2.待定系数法 (函数类型确定时用此法)
82.6
请你对这三位同学在高一学年度的数学学习情况做一个分 析.
分析:从表中可以知道每位同学在每次测试中的成绩,但不太 容易分析每位同学的成绩变化情况.如果将“成绩”与“测试序 号”之间的关系用函数图象表示出来,如下图,那么就能比较 直观地看到成绩的变化情况.这对我们的分析很有帮助.
解:从图中可以看到: 王伟同学的数学成绩始终高于班级平均水平,学习情
(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公 里计算).
如果某条线路的总里程为20公里,请根据题意,写出票价y与 里程x之间的函数解析式,并画出函数的图象.
解:设票价为y元,里程为x公里,由题意可知,自变量的取值范
围是(0,20],由票价制定规则,可得到以下函数解析式:
2,
y

例2 下表是某校高一(1)班三名同学在高一学年度六次数
学测试的成绩及班级平均分表.
第一次 成绩 测试序号
姓名
王伟 98
张城 90
赵磊 68
班级平 均分
88.2
第二次 87 76 65
78.3
第三次 91 88 73
85.4
第四次 92 75 72
80.3
第五次 88 86 75
75.7
第六次 95 80 82
演练反馈
5.已知f ( x 1) x2 1 1 ,求f ( x).
x
xx
解:
f (1
1 x
)

1 x2

1 x
1

1
1 x

t,

x
t
1
1,t

1,
f (t) (t 1)2 (t 1) 1.
t2 t 1, (t 1). 即 f (x) x2 x 1, (x 1).
用图象法可将函数表示为右图: 函数的图象既可以是连续的曲线,也可以是直线、折线、 离散的点等。
(1)用解析法表示函数是否一定要写出自变量的取值范围?
函数的定义域是函数存在的前提,写函数解析式的时候, 一般要写出函数的定义域. (2)用描点法画函数图象的一般步骤是什么?
列表、描点、连线(视其定义域决定是否连线)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1
故所求的抛物线解析式为 y=- (x+1)(x-1)
即:y=-x2+1
时间应分配得精密,使每年、每月、每日 和每小时都有它的特殊任务。
2.1.2 函数表示法
1.回顾初中函数的表示方法有哪些?
2.下面是函数的哪些表示方法?
(1)一次函数 y 2x 4;
(2)某同学在一个学期中数学 月考的成绩如下表:
月份
9 10 11 12
数学成绩 (分)
83 68 97
86
(3) y x2
函数的常用表示方法:
(1)解析法:就是用数学表达式表示两个变量之间的对应关系。
三是函数关系清楚,便于研究函数性质。
不够形象、直 观、具体,一 些实际问题很 难找到它的解 析式。
图像法
直观形象地表示自变量的变化,相应的函 感性观察,不
数值变化的趋势,有利我们通过图象研究 够准确,画面
函数的某些性质。
局限性大。
列表法
不需要计算就可以直接看出与自变量的值 只能表示有限
相对应的函数值。这种方法常常应用到实 个元素间的函
际生产和生活中去。
数关系。
例1 某种笔记本的单价是5元,买 x x 1, 2,3, 4,5
个笔记本需要y元.试用函数的三种表示法表示函数. 解:这个函数的定义域是{1,2,3,4,5}
用解析法表示为 y 5x, x 1,2,3,4,5
用列表法表示如下:
x 1 2 3 45 y 5 10 15 20 25
故所求的抛物线解析式为 y=-2(x+1)2-3 即:y=-2x2-4x-5
演练反馈
3.已知抛物线与X轴交于A(-1,0),B(1,0) 并经过点M(0,1),求抛物线的解析式?
一般式: y=ax2+bx+c
解:设所求的二次函数为
y=a(x+1)(x-1) y
由条件得:
两根式: y=a(x-x1)(x-x2)
2
3
4
5
此分段函数的定义域为 (0, 20]
此分段函数的值域为 {2,3,4,5}
①自变量的范围是怎样得到的?②自变量的范围为什 么分成了四个区间?区间端点是怎样确定的?③每段 上的函数解析式是怎样求出的?
演练反馈
1.已知一个二次函数的图象过点(-1,10)、 (1,4)、(2,7)三点,求这个函数的解析式?
例2.已知f(x)是一次函数,且f[f(x)]=4x-1, 求f(x)的解 析式. 解:设 f (x) = kx+b,
则 f[f(x)]=f(kx+b)=k(kx+b)+b =k2x+kb+b=4x-1.
必有

k2 kb
4, b 1,
2b
k
b
2,
1,或2bkb2,1.
一般式: 解: 设所求的二次函数为 y=ax2+bx+c y y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得:
a-b+c=10 a+b+c=4 4a+2b+c=7
ox
顶点式:
解方程得: a=2, b=-3, c=5
y=a(x-h)2+k 因此:所求二次函数是: y=2x2-3x+5
注意点:注意换元的等价性,即要求出 t 的取值范围.
相关文档
最新文档